Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,50 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
-
#
|
5 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B")
|
6 |
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B")
|
7 |
|
8 |
-
#
|
9 |
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
10 |
|
11 |
-
#
|
12 |
-
def generate_text(prompt, max_length=50):
|
13 |
-
generated_text = text_gen_pipeline(prompt,
|
|
|
|
|
|
|
|
|
|
|
14 |
return generated_text[0]['generated_text']
|
15 |
|
16 |
-
# Interface
|
17 |
with gr.Blocks() as demo:
|
18 |
-
gr.Markdown("##
|
19 |
|
20 |
-
#
|
21 |
-
prompt_input = gr.Textbox(label="
|
22 |
|
23 |
-
# Slider
|
24 |
-
max_length_input = gr.Slider(minimum=10, maximum=200, value=50, step=10, label="
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
|
32 |
-
#
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
+
# Load the model and tokenizer
|
5 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B")
|
6 |
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B")
|
7 |
|
8 |
+
# Use a pipeline for text generation
|
9 |
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
10 |
|
11 |
+
# Text generation function with additional parameters
|
12 |
+
def generate_text(prompt, max_length=50, temperature=0.7, top_p=0.9, top_k=50):
|
13 |
+
generated_text = text_gen_pipeline(prompt,
|
14 |
+
max_length=max_length,
|
15 |
+
temperature=temperature,
|
16 |
+
top_p=top_p,
|
17 |
+
top_k=top_k,
|
18 |
+
num_return_sequences=1)
|
19 |
return generated_text[0]['generated_text']
|
20 |
|
21 |
+
# Gradio Interface
|
22 |
with gr.Blocks() as demo:
|
23 |
+
gr.Markdown("## Text Generation with Llama 3.2 - 1B")
|
24 |
|
25 |
+
# Input box for user prompt
|
26 |
+
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...")
|
27 |
|
28 |
+
# Slider for maximum text length
|
29 |
+
max_length_input = gr.Slider(minimum=10, maximum=200, value=50, step=10, label="Maximum Length")
|
30 |
|
31 |
+
# Slider for temperature (controls creativity)
|
32 |
+
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature (creativity)")
|
33 |
|
34 |
+
# Slider for top_p (nucleus sampling)
|
35 |
+
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
|
36 |
|
37 |
+
# Slider for top_k (controls diversity)
|
38 |
+
top_k_input = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k (sampling diversity)")
|
39 |
+
|
40 |
+
# Output box for the generated text
|
41 |
+
output_text = gr.Textbox(label="Generated Text")
|
42 |
+
|
43 |
+
# Submit button
|
44 |
+
generate_button = gr.Button("Generate")
|
45 |
+
|
46 |
+
# Action on button click
|
47 |
+
generate_button.click(generate_text, inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input], outputs=output_text)
|
48 |
|
49 |
+
# Launch the app
|
50 |
demo.launch()
|