Spaces:
Runtime error
Runtime error
from univa.models.configuration_univa_denoise_tower import UnivaDenoiseTowerConfig | |
from transformers.modeling_utils import PreTrainedModel | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
import numpy as np | |
from diffusers import FluxTransformer2DModel, SD3Transformer2DModel | |
from diffusers.utils import is_torch_version | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from torch.nn.utils.rnn import pad_sequence | |
class UnivaDenoiseTower(PreTrainedModel): | |
config_class = UnivaDenoiseTowerConfig | |
base_model_prefix = "model" | |
def __init__(self, config: UnivaDenoiseTowerConfig): | |
super().__init__(config) | |
self.config = config | |
if config.denoiser_type == "flux": | |
self.denoiser = FluxTransformer2DModel.from_config(config.denoiser_config) | |
elif config.denoiser_type == "sd3": | |
self.denoiser = SD3Transformer2DModel.from_config(config.denoiser_config) | |
else: | |
raise ValueError(f"Unknown denoiser type: {config.denoiser_type}") | |
self._init_denoise_projector() | |
self._init_vae_projector() | |
self._init_siglip_projector() | |
def _init_denoise_projector(self): | |
"""Initialize the denoise_projector for multi model input.""" | |
if self.config.denoise_projector_type == "mlp2x_gelu": | |
self.denoise_projector = nn.Sequential( | |
nn.Linear( | |
self.config.input_hidden_size, | |
self.config.output_hidden_size * 3, | |
), | |
nn.SiLU(), | |
nn.Linear( | |
self.config.output_hidden_size * 3, self.config.output_hidden_size | |
), | |
) | |
else: | |
raise ValueError( | |
f"Unknown denoise_projector_type: {self.config.denoise_projector_type}" | |
) | |
def _init_vae_projector(self): | |
"""Initialize the denoise_projector for multi model input.""" | |
if self.config.vae_projector_type == "mlp2x_gelu": | |
self.vae_projector = nn.Sequential( | |
nn.Linear( | |
self.config.vae_input_hidden_size, | |
# 2 * self.config.output_hidden_size, | |
3072, # HARDCODE, x_embedder from flux | |
), | |
nn.SiLU(), | |
nn.Linear( | |
# 2 * self.config.output_hidden_size, | |
3072, # HARDCODE, x_embedder from flux | |
self.config.output_hidden_size | |
), | |
) | |
# elif self.config.vae_projector_type == "linear": | |
# self.vae_projector = nn.Sequential( | |
# nn.Linear( | |
# self.config.vae_input_hidden_size, | |
# self.config.output_hidden_size, | |
# ), | |
# ) | |
else: | |
raise ValueError( | |
f"Unknown vae_projector_type: {self.config.vae_projector_type}" | |
) | |
def _init_siglip_projector(self): | |
"""Initialize the denoise_projector for multi model input.""" | |
self.siglip_projector = nn.Sequential( | |
nn.Linear( | |
1152, # HARDCODE, out from siglip | |
4096 * 3, # HARDCODE | |
), | |
nn.SiLU(), | |
nn.Linear( | |
4096 * 3, # HARDCODE | |
4096, # HARDCODE, context_embedder from flux | |
), | |
) | |
def _init_convnext_projector(self): | |
"""Initialize the denoise_projector for multi model input.""" | |
self.convnext_projector = nn.Sequential( | |
nn.Linear( | |
1152, # HARDCODE, out from convnext | |
4096 * 3, # HARDCODE | |
), | |
nn.SiLU(), | |
nn.Linear( | |
4096 * 3, # HARDCODE | |
4096, # HARDCODE, context_embedder from flux | |
), | |
) | |
def _insert_image_feats( | |
encoder_h, img_feats, img_pos, | |
output_hidden_size, vae_projector | |
): | |
""" | |
encoder_h: Tensor[B, L, D] | |
img_feats: list of B lists: 第 i 个元素是一个 list,长度 = len(img_pos[i]), | |
其内第 k 项是一个 Tensor[Nik, D] | |
img_pos: list of B lists: 第 i 个元素是个位置列表 [p_i0, p_i1, ...] | |
len(img_pos[i]) == len(img_feats[i]) | |
returns: Tensor[B, L + Nmax, D],在各自位置插入完后,按最长插入数 pad 右侧 | |
""" | |
B, L, D = encoder_h.shape | |
device = encoder_h.device | |
# —— 1. 每个样本先把多组 feats concat 成一条“插入流”,同时 expand positions | |
flat_feats = [] | |
flat_pos = [] | |
for feats_list, pos_list in zip(img_feats, img_pos): | |
assert len(feats_list) == len(pos_list) | |
# feats_list = [Tensor[N0,D], Tensor[N1,D], ...] | |
# pos_list = [p0, p1, ...] | |
# concat 所有要插入的 tokens | |
if len(feats_list) == 0: | |
# 没有插入 | |
concat_f = torch.empty(0, output_hidden_size, device=device) | |
pos_expanded = torch.empty(0, dtype=torch.long, device=device) | |
else: | |
concat_f = torch.cat(feats_list, dim=0) # [Ni_total, D] | |
concat_f = vae_projector(concat_f) | |
# 对应位置也 expand 成同样长度 | |
# eg. feats_list[0].shape[0] 个 p0, feats_list[1].shape[0] 个 p1,… | |
# ATTENTION p-1 | |
pos_expanded = torch.cat([ | |
torch.full((f.shape[0],), p-1, dtype=torch.long, device=device) | |
for f, p in zip(feats_list, pos_list) | |
], dim=0) # [Ni_total] | |
flat_feats.append(concat_f) | |
flat_pos.append(pos_expanded) | |
# —— 2. pad 到同一个长度 Nmax | |
padded_feats = pad_sequence(flat_feats, batch_first=True) # [B, Nmax, D] | |
pos_pad = pad_sequence(flat_pos, batch_first=True, padding_value=L) | |
# —— 3. 准备所有 token 的“排序键”(sort‐key) | |
# 原 token j 的 key = 2*j | |
orig_key = (torch.arange(L, device=device) * 2).unsqueeze(0).expand(B, -1) # [B, L] | |
# 插入 token 的 key = 2*pos + 1 | |
ins_key = pos_pad * 2 + 1 # [B, Nmax] | |
# —— 4. 拼接、一次性排序 + gather | |
all_keys = torch.cat([orig_key, ins_key], dim=1) # [B, L+Nmax] | |
all_feats = torch.cat([encoder_h, padded_feats], dim=1) # [B, L+Nmax, D] | |
sort_idx = all_keys.argsort(dim=1) # [B, L+Nmax] | |
new_seq = all_feats.gather(1, sort_idx.unsqueeze(-1).expand(-1, -1, D)) # [B, L+Nmax, D] | |
return new_seq | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
pooled_projections: torch.Tensor, | |
**kwargs, | |
) -> torch.Tensor: | |
# if encoder_hidden_states is not None: | |
# encoder_hidden_states = self.denoise_projector(encoder_hidden_states) | |
if self.config.denoiser_type == "flux": | |
prefix_prompt_embeds = kwargs.pop("prefix_prompt_embeds", None) | |
if encoder_hidden_states is not None: | |
if prefix_prompt_embeds is not None: | |
encoder_hidden_states = torch.concat( | |
[encoder_hidden_states, prefix_prompt_embeds], dim=1 | |
) | |
else: | |
assert prefix_prompt_embeds is not None | |
encoder_hidden_states = prefix_prompt_embeds | |
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to( | |
hidden_states.device, dtype=hidden_states.dtype | |
) | |
joint_attention_kwargs = kwargs.pop('joint_attention_kwargs', None) | |
# if joint_attention_kwargs is not None and 'attention_mask' in joint_attention_kwargs: | |
# attention_mask = joint_attention_kwargs['attention_mask'] | |
# else: | |
# attention_mask = torch.full( | |
# (hidden_states.shape[0], 1, hidden_states.shape[1]), | |
# True, dtype=torch.bool, device=hidden_states.device | |
# ) | |
enc_attention_mask = kwargs.pop('enc_attention_mask', None) | |
# if enc_attention_mask is None: | |
# enc_attention_mask = torch.full( | |
# (encoder_hidden_states.shape[0], 1, encoder_hidden_states.shape[1]), | |
# True, dtype=torch.bool, device=encoder_hidden_states.device | |
# ) | |
# else: | |
# enc_attention_mask = enc_attention_mask.unsqueeze(1) | |
# attention_mask = torch.concat([enc_attention_mask, attention_mask], dim=-1) | |
# attention_mask = attention_mask.unsqueeze(1) | |
# joint_attention_kwargs['attention_mask'] = attention_mask | |
# kwargs['joint_attention_kwargs'] = joint_attention_kwargs | |
# print(f'hidden_states.shape, {hidden_states.shape}, encoder_hidden_states.shape, {encoder_hidden_states.shape}') | |
# return self.fixed_flux_forward( | |
return self.denoiser( | |
hidden_states=hidden_states, | |
timestep=timestep, # Note: timestep is in [0, 1]. It has been scaled by 1000 in the training script. | |
encoder_hidden_states=encoder_hidden_states, | |
pooled_projections=pooled_projections, | |
txt_ids=txt_ids, | |
**kwargs, | |
)[0] | |
elif self.config.denoiser_type == "sd3": | |
prefix_prompt_embeds = kwargs.pop("prefix_prompt_embeds", None) | |
if prefix_prompt_embeds is not None: | |
encoder_hidden_states = torch.concat( | |
[prefix_prompt_embeds, encoder_hidden_states], dim=1 | |
) | |
return self.denoiser( | |
hidden_states=hidden_states, | |
timestep=timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
pooled_projections=pooled_projections, | |
**kwargs, | |
)[0] | |
def fixed_flux_forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_block_samples=None, | |
controlnet_single_block_samples=None, | |
return_dict: bool = True, | |
controlnet_blocks_repeat: bool = False, | |
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
""" | |
The [`FluxTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
hidden_states = self.denoiser.x_embedder(hidden_states) | |
timestep = timestep.to(hidden_states.dtype) * 1000 | |
if guidance is not None: | |
guidance = guidance.to(hidden_states.dtype) * 1000 | |
else: | |
guidance = None | |
temb = ( | |
self.denoiser.time_text_embed(timestep, pooled_projections) | |
if guidance is None | |
else self.denoiser.time_text_embed(timestep, guidance, pooled_projections) | |
) | |
encoder_hidden_states = self.denoiser.context_embedder(encoder_hidden_states) | |
if txt_ids.ndim == 3: | |
txt_ids = txt_ids[0] | |
if img_ids.ndim == 3: | |
img_ids = img_ids[0] | |
ids = torch.cat((txt_ids, img_ids), dim=0) | |
image_rotary_emb = self.denoiser.pos_embed(ids) | |
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: | |
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") | |
ip_hidden_states = self.denoiser.encoder_hid_proj(ip_adapter_image_embeds) | |
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) | |
for index_block, block in enumerate(self.denoiser.transformer_blocks): | |
if torch.is_grad_enabled() and self.denoiser.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
joint_attention_kwargs, # add this line | |
**ckpt_kwargs, | |
) | |
else: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
# controlnet residual | |
if controlnet_block_samples is not None: | |
interval_control = len(self.denoiser.transformer_blocks) / len(controlnet_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
# For Xlabs ControlNet. | |
if controlnet_blocks_repeat: | |
hidden_states = ( | |
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] | |
) | |
else: | |
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
for index_block, block in enumerate(self.denoiser.single_transformer_blocks): | |
if torch.is_grad_enabled() and self.denoiser.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
temb, | |
image_rotary_emb, | |
joint_attention_kwargs, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
joint_attention_kwargs=joint_attention_kwargs, | |
) | |
# controlnet residual | |
if controlnet_single_block_samples is not None: | |
interval_control = len(self.denoiser.single_transformer_blocks) / len(controlnet_single_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
+ controlnet_single_block_samples[index_block // interval_control] | |
) | |
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
hidden_states = self.denoiser.norm_out(hidden_states, temb) | |
output = self.denoiser.proj_out(hidden_states) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |