Spaces:
Runtime error
Runtime error
File size: 18,121 Bytes
0c8d55e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
from univa.models.configuration_univa_denoise_tower import UnivaDenoiseTowerConfig
from transformers.modeling_utils import PreTrainedModel
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
import numpy as np
from diffusers import FluxTransformer2DModel, SD3Transformer2DModel
from diffusers.utils import is_torch_version
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from torch.nn.utils.rnn import pad_sequence
class UnivaDenoiseTower(PreTrainedModel):
config_class = UnivaDenoiseTowerConfig
base_model_prefix = "model"
def __init__(self, config: UnivaDenoiseTowerConfig):
super().__init__(config)
self.config = config
if config.denoiser_type == "flux":
self.denoiser = FluxTransformer2DModel.from_config(config.denoiser_config)
elif config.denoiser_type == "sd3":
self.denoiser = SD3Transformer2DModel.from_config(config.denoiser_config)
else:
raise ValueError(f"Unknown denoiser type: {config.denoiser_type}")
self._init_denoise_projector()
self._init_vae_projector()
self._init_siglip_projector()
def _init_denoise_projector(self):
"""Initialize the denoise_projector for multi model input."""
if self.config.denoise_projector_type == "mlp2x_gelu":
self.denoise_projector = nn.Sequential(
nn.Linear(
self.config.input_hidden_size,
self.config.output_hidden_size * 3,
),
nn.SiLU(),
nn.Linear(
self.config.output_hidden_size * 3, self.config.output_hidden_size
),
)
else:
raise ValueError(
f"Unknown denoise_projector_type: {self.config.denoise_projector_type}"
)
def _init_vae_projector(self):
"""Initialize the denoise_projector for multi model input."""
if self.config.vae_projector_type == "mlp2x_gelu":
self.vae_projector = nn.Sequential(
nn.Linear(
self.config.vae_input_hidden_size,
# 2 * self.config.output_hidden_size,
3072, # HARDCODE, x_embedder from flux
),
nn.SiLU(),
nn.Linear(
# 2 * self.config.output_hidden_size,
3072, # HARDCODE, x_embedder from flux
self.config.output_hidden_size
),
)
# elif self.config.vae_projector_type == "linear":
# self.vae_projector = nn.Sequential(
# nn.Linear(
# self.config.vae_input_hidden_size,
# self.config.output_hidden_size,
# ),
# )
else:
raise ValueError(
f"Unknown vae_projector_type: {self.config.vae_projector_type}"
)
def _init_siglip_projector(self):
"""Initialize the denoise_projector for multi model input."""
self.siglip_projector = nn.Sequential(
nn.Linear(
1152, # HARDCODE, out from siglip
4096 * 3, # HARDCODE
),
nn.SiLU(),
nn.Linear(
4096 * 3, # HARDCODE
4096, # HARDCODE, context_embedder from flux
),
)
def _init_convnext_projector(self):
"""Initialize the denoise_projector for multi model input."""
self.convnext_projector = nn.Sequential(
nn.Linear(
1152, # HARDCODE, out from convnext
4096 * 3, # HARDCODE
),
nn.SiLU(),
nn.Linear(
4096 * 3, # HARDCODE
4096, # HARDCODE, context_embedder from flux
),
)
@staticmethod
def _insert_image_feats(
encoder_h, img_feats, img_pos,
output_hidden_size, vae_projector
):
"""
encoder_h: Tensor[B, L, D]
img_feats: list of B lists: 第 i 个元素是一个 list,长度 = len(img_pos[i]),
其内第 k 项是一个 Tensor[Nik, D]
img_pos: list of B lists: 第 i 个元素是个位置列表 [p_i0, p_i1, ...]
len(img_pos[i]) == len(img_feats[i])
returns: Tensor[B, L + Nmax, D],在各自位置插入完后,按最长插入数 pad 右侧
"""
B, L, D = encoder_h.shape
device = encoder_h.device
# —— 1. 每个样本先把多组 feats concat 成一条“插入流”,同时 expand positions
flat_feats = []
flat_pos = []
for feats_list, pos_list in zip(img_feats, img_pos):
assert len(feats_list) == len(pos_list)
# feats_list = [Tensor[N0,D], Tensor[N1,D], ...]
# pos_list = [p0, p1, ...]
# concat 所有要插入的 tokens
if len(feats_list) == 0:
# 没有插入
concat_f = torch.empty(0, output_hidden_size, device=device)
pos_expanded = torch.empty(0, dtype=torch.long, device=device)
else:
concat_f = torch.cat(feats_list, dim=0) # [Ni_total, D]
concat_f = vae_projector(concat_f)
# 对应位置也 expand 成同样长度
# eg. feats_list[0].shape[0] 个 p0, feats_list[1].shape[0] 个 p1,…
# ATTENTION p-1
pos_expanded = torch.cat([
torch.full((f.shape[0],), p-1, dtype=torch.long, device=device)
for f, p in zip(feats_list, pos_list)
], dim=0) # [Ni_total]
flat_feats.append(concat_f)
flat_pos.append(pos_expanded)
# —— 2. pad 到同一个长度 Nmax
padded_feats = pad_sequence(flat_feats, batch_first=True) # [B, Nmax, D]
pos_pad = pad_sequence(flat_pos, batch_first=True, padding_value=L)
# —— 3. 准备所有 token 的“排序键”(sort‐key)
# 原 token j 的 key = 2*j
orig_key = (torch.arange(L, device=device) * 2).unsqueeze(0).expand(B, -1) # [B, L]
# 插入 token 的 key = 2*pos + 1
ins_key = pos_pad * 2 + 1 # [B, Nmax]
# —— 4. 拼接、一次性排序 + gather
all_keys = torch.cat([orig_key, ins_key], dim=1) # [B, L+Nmax]
all_feats = torch.cat([encoder_h, padded_feats], dim=1) # [B, L+Nmax, D]
sort_idx = all_keys.argsort(dim=1) # [B, L+Nmax]
new_seq = all_feats.gather(1, sort_idx.unsqueeze(-1).expand(-1, -1, D)) # [B, L+Nmax, D]
return new_seq
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.Tensor,
encoder_hidden_states: torch.Tensor,
pooled_projections: torch.Tensor,
**kwargs,
) -> torch.Tensor:
# if encoder_hidden_states is not None:
# encoder_hidden_states = self.denoise_projector(encoder_hidden_states)
if self.config.denoiser_type == "flux":
prefix_prompt_embeds = kwargs.pop("prefix_prompt_embeds", None)
if encoder_hidden_states is not None:
if prefix_prompt_embeds is not None:
encoder_hidden_states = torch.concat(
[encoder_hidden_states, prefix_prompt_embeds], dim=1
)
else:
assert prefix_prompt_embeds is not None
encoder_hidden_states = prefix_prompt_embeds
txt_ids = torch.zeros(encoder_hidden_states.shape[1], 3).to(
hidden_states.device, dtype=hidden_states.dtype
)
joint_attention_kwargs = kwargs.pop('joint_attention_kwargs', None)
# if joint_attention_kwargs is not None and 'attention_mask' in joint_attention_kwargs:
# attention_mask = joint_attention_kwargs['attention_mask']
# else:
# attention_mask = torch.full(
# (hidden_states.shape[0], 1, hidden_states.shape[1]),
# True, dtype=torch.bool, device=hidden_states.device
# )
enc_attention_mask = kwargs.pop('enc_attention_mask', None)
# if enc_attention_mask is None:
# enc_attention_mask = torch.full(
# (encoder_hidden_states.shape[0], 1, encoder_hidden_states.shape[1]),
# True, dtype=torch.bool, device=encoder_hidden_states.device
# )
# else:
# enc_attention_mask = enc_attention_mask.unsqueeze(1)
# attention_mask = torch.concat([enc_attention_mask, attention_mask], dim=-1)
# attention_mask = attention_mask.unsqueeze(1)
# joint_attention_kwargs['attention_mask'] = attention_mask
# kwargs['joint_attention_kwargs'] = joint_attention_kwargs
# print(f'hidden_states.shape, {hidden_states.shape}, encoder_hidden_states.shape, {encoder_hidden_states.shape}')
# return self.fixed_flux_forward(
return self.denoiser(
hidden_states=hidden_states,
timestep=timestep, # Note: timestep is in [0, 1]. It has been scaled by 1000 in the training script.
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projections,
txt_ids=txt_ids,
**kwargs,
)[0]
elif self.config.denoiser_type == "sd3":
prefix_prompt_embeds = kwargs.pop("prefix_prompt_embeds", None)
if prefix_prompt_embeds is not None:
encoder_hidden_states = torch.concat(
[prefix_prompt_embeds, encoder_hidden_states], dim=1
)
return self.denoiser(
hidden_states=hidden_states,
timestep=timestep,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projections,
**kwargs,
)[0]
def fixed_flux_forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
return_dict: bool = True,
controlnet_blocks_repeat: bool = False,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`FluxTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
hidden_states = self.denoiser.x_embedder(hidden_states)
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
temb = (
self.denoiser.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.denoiser.time_text_embed(timestep, guidance, pooled_projections)
)
encoder_hidden_states = self.denoiser.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.denoiser.pos_embed(ids)
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
ip_hidden_states = self.denoiser.encoder_hid_proj(ip_adapter_image_embeds)
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
for index_block, block in enumerate(self.denoiser.transformer_blocks):
if torch.is_grad_enabled() and self.denoiser.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
joint_attention_kwargs, # add this line
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.denoiser.transformer_blocks) / len(controlnet_block_samples)
interval_control = int(np.ceil(interval_control))
# For Xlabs ControlNet.
if controlnet_blocks_repeat:
hidden_states = (
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
)
else:
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.denoiser.single_transformer_blocks):
if torch.is_grad_enabled() and self.denoiser.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
image_rotary_emb,
joint_attention_kwargs,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_kwargs=joint_attention_kwargs,
)
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.denoiser.single_transformer_blocks) / len(controlnet_single_block_samples)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.denoiser.norm_out(hidden_states, temb)
output = self.denoiser.proj_out(hidden_states)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
|