Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,206 Bytes
1250a66 aedf846 7999443 e5d1cff d4b8499 781c1a5 d4b8499 781c1a5 f160aee 6110d64 8c9f898 aedf846 f455561 781c1a5 1ed2bd5 a554383 4a172a5 e5d1cff 1250a66 4a172a5 1250a66 4a172a5 aedf846 1ed2bd5 aedf846 1250a66 4a172a5 5fc685b 1250a66 7999443 1ed2bd5 7999443 4a172a5 5fc685b 4a172a5 781c1a5 b373079 20d1485 b373079 781c1a5 1014999 781c1a5 f455561 aedf846 57aaf0c aedf846 f455561 87f19f6 19bf9cf 169a280 74ddeaf 169a280 74ddeaf 7999443 169a280 0d9cf7e aedf846 1250a66 f845c63 a071416 f845c63 88260e2 d4b8499 88260e2 781c1a5 f455561 88260e2 781c1a5 f845c63 f455561 f845c63 7999443 f455561 87f19f6 f845c63 a530f5c a071416 f845c63 f455561 f845c63 781c1a5 a530f5c 781c1a5 aedf846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import torch
import spaces
import os
from diffusers.utils import load_image
from diffusers.hooks import apply_group_offloading
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import T5EncoderModel
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from liger_kernel.transformers import apply_liger_kernel_to_llama
from PIL import Image
from threading import Thread
from typing import Generator
from peft import PeftModel, PeftConfig
# from attention_map_diffusers import (
# attn_maps,
# init_pipeline,
# save_attention_maps
# )
import gradio as gr
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
MAX_SEED = 1000000
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
cap_processor = AutoProcessor.from_pretrained(MODEL_PATH)
cap_model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
assert isinstance(cap_model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(cap_model)}"
cap_model.eval()
apply_liger_kernel_to_llama(model=cap_model.language_model)
# quant_config = TransformersBitsAndBytesConfig(load_in_8bit=True,)
# text_encoder_2_8bit = T5EncoderModel.from_pretrained(
# "LPX55/FLUX.1-merged_uncensored",
# subfolder="text_encoder_2",
# quantization_config=quant_config,
# torch_dtype=torch.bfloat16,
# token=huggingface_token
# )
text_encoder_2_unquant = T5EncoderModel.from_pretrained(
"LPX55/FLUX.1-merged_uncensored",
subfolder="text_encoder_2",
torch_dtype=torch.bfloat16,
token=huggingface_token
)
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=huggingface_token).to("cuda")
# Load pipeline
# controlnet = FluxControlNetModel.from_pretrained(
# "jasperai/Flux.1-dev-Controlnet-Upscaler",
# torch_dtype=torch.bfloat16
# )
pipe = FluxControlNetPipeline.from_pretrained(
"LPX55/FLUX.1M-8step_upscaler-cnet",
torch_dtype=torch.bfloat16,
text_encoder_2=text_encoder_2_unquant,
token=huggingface_token
)
# adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha"
# adapter_id2 = "XLabs-AI/flux-RealismLora"
# adapter_id3 = "enhanceaiteam/Flux-uncensored-v2"
pipe.to("cuda")
# try:
# pipe.vae.enable_slicing()
# except:
# print("debug-2")
# try:
# pipe.vae.enable_tiling()
# except:
# print("debug-3")
# pipe.load_lora_weights(adapter_id, adapter_name="turbo")
# pipe.load_lora_weights(adapter_id2, adapter_name="real")
# pipe.load_lora_weights(adapter_id3, weight_name="lora.safetensors", adapter_name="enhance")
# pipe.set_adapters(["turbo", "real", "enhance"], adapter_weights=[0.9, 0.66, 0.6])
# pipe.fuse_lora(adapter_names=["turbo", "real", "enhance"], lora_scale=1.0)
# pipe.unload_lora_weights()
# save to the Hub
# pipe.push_to_hub("FLUX.1M-8step_upscaler-cnet")
@spaces.GPU()
@torch.no_grad()
def caption(input_image: Image.Image, prompt: str, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]:
torch.cuda.empty_cache()
if input_image is None:
yield "No image provided. Please upload an image."
return
if log_prompt:
print(f"PromptLog: {repr(prompt)}")
convo = [
{
"role": "system",
"content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.",
},
{
"role": "user",
"content": prompt.strip(),
},
]
convo_string = cap_processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
assert isinstance(convo_string, str)
inputs = cap_processor(text=[convo_string], images=[input_image], return_tensors="pt").to('cuda')
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
streamer = TextIteratorStreamer(cap_processor.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True if temperature > 0 else False,
suppress_tokens=None,
use_cache=True,
temperature=temperature if temperature > 0 else None,
top_k=None,
top_p=top_p if temperature > 0 else None,
streamer=streamer,
)
_ = cap_model.generate(**generate_kwargs)
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
@spaces.GPU()
@torch.no_grad()
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
generator = torch.Generator().manual_seed(seed)
# Load control image
control_image = load_image(control_image)
w, h = control_image.size
w = w - w % 32
h = h - h % 32
control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR
print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
with torch.inference_mode():
image = pipe(
generator=generator,
prompt=prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0],
control_guidance_start=0.0,
control_guidance_end=guidance_end,
).images[0]
return image
# Create Gradio interface with rows and columns
with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as iface:
gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY")
with gr.Row():
control_image = gr.Image(type="pil", label="Control Image", show_label=False)
generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt")
output_caption = gr.Textbox(label="Caption")
scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25)
generate_button = gr.Button("Generate Image", variant="primary")
caption_button = gr.Button("Generate Caption", variant="secondary")
with gr.Column(scale=1):
seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
steps = gr.Slider(2, 16, value=8, label="Steps")
controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale")
guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
with gr.Row():
with gr.Accordion("Generation settings", open=False):
prompt_box = gr.Textbox(lines=4, value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with “This image is…” or similar phrasing.", visible=False)
temperature_slider = gr.Slider(
minimum=0.0, maximum=2.0, value=0.6, step=0.05,
label="Temperature",
info="Higher values make the output more random, lower values make it more deterministic.",
visible=False
)
top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=0.9, step=0.01,
label="Top-p",
visible=False
)
max_tokens_slider = gr.Slider(
minimum=1, maximum=2048, value=512, step=1,
label="Max New Tokens",
info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.",
visible=False
)
log_prompt = gr.Checkbox(value=True, label="Help improve JoyCaption by logging your text query", visible=False)
gr.Markdown("**Tips:** 8 steps is all you need!")
generate_button.click(
fn=generate_image,
inputs=[prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end],
outputs=[generated_image]
)
caption_button.click(
fn=caption,
inputs=[control_image, prompt_box, temperature_slider, top_p_slider, max_tokens_slider, log_prompt],
outputs=output_caption,
)
# Launch the app
iface.launch() |