LPX55 commited on
Commit
f455561
·
verified ·
1 Parent(s): 8c9f898

Update raw.py

Browse files
Files changed (1) hide show
  1. raw.py +14 -6
raw.py CHANGED
@@ -14,6 +14,7 @@ from peft import PeftModel, PeftConfig
14
  # )
15
  import gradio as gr
16
  huggingface_token = os.getenv("HUGGINFACE_TOKEN")
 
17
 
18
  quant_config = TransformersBitsAndBytesConfig(load_in_8bit=True,)
19
  text_encoder_2_8bit = T5EncoderModel.from_pretrained(
@@ -55,15 +56,19 @@ pipe.unload_lora_weights()
55
  # pipe.push_to_hub("fused-t-r")
56
 
57
  @spaces.GPU
58
- def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale):
 
 
59
  # Load control image
60
  control_image = load_image(control_image)
61
  w, h = control_image.size
62
- # Upscale x1
 
63
  control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR
64
  print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
65
  with torch.inference_mode():
66
  image = pipe(
 
67
  prompt=prompt,
68
  control_image=control_image,
69
  controlnet_conditioning_scale=controlnet_conditioning_scale,
@@ -71,6 +76,7 @@ def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_
71
  guidance_scale=guidance_scale,
72
  height=control_image.size[1],
73
  width=control_image.size[0]
 
74
  ).images[0]
75
 
76
  return image
@@ -86,12 +92,14 @@ with gr.Blocks(title="FLUX ControlNet Image Generation", fill_height=True) as if
86
  with gr.Row():
87
  with gr.Column(scale=1):
88
  prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt")
 
89
  generate_button = gr.Button("Generate Image", variant="primary")
90
  with gr.Column(scale=1):
91
- scale = gr.Slider(1, 3, value=1, label="Scale")
92
- steps = gr.Slider(6, 30, value=8, label="Steps")
93
- guidance_scale = gr.Slider(1, 20, value=3.5, label="Guidance Scale")
94
  controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
 
 
95
 
96
 
97
  with gr.Row():
@@ -99,7 +107,7 @@ with gr.Blocks(title="FLUX ControlNet Image Generation", fill_height=True) as if
99
 
100
  generate_button.click(
101
  fn=generate_image,
102
- inputs=[prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale],
103
  outputs=[generated_image]
104
  )
105
 
 
14
  # )
15
  import gradio as gr
16
  huggingface_token = os.getenv("HUGGINFACE_TOKEN")
17
+ MAX_SEED = 1000000
18
 
19
  quant_config = TransformersBitsAndBytesConfig(load_in_8bit=True,)
20
  text_encoder_2_8bit = T5EncoderModel.from_pretrained(
 
56
  # pipe.push_to_hub("fused-t-r")
57
 
58
  @spaces.GPU
59
+ def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
60
+ generator = torch.Generator().manual_seed(seed)
61
+
62
  # Load control image
63
  control_image = load_image(control_image)
64
  w, h = control_image.size
65
+ w = w - w % 32
66
+ h = h - h % 32
67
  control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR
68
  print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
69
  with torch.inference_mode():
70
  image = pipe(
71
+ generator=generator
72
  prompt=prompt,
73
  control_image=control_image,
74
  controlnet_conditioning_scale=controlnet_conditioning_scale,
 
76
  guidance_scale=guidance_scale,
77
  height=control_image.size[1],
78
  width=control_image.size[0]
79
+ control_guidance_end=guidance_end
80
  ).images[0]
81
 
82
  return image
 
92
  with gr.Row():
93
  with gr.Column(scale=1):
94
  prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt")
95
+ scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25)
96
  generate_button = gr.Button("Generate Image", variant="primary")
97
  with gr.Column(scale=1):
98
+ seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
99
+ steps = gr.Slider(2, 16, value=8, label="Steps")
 
100
  controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
101
+ guidance_scale = gr.Slider(1, 20, value=3.5, label="Guidance Scale")
102
+ guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
103
 
104
 
105
  with gr.Row():
 
107
 
108
  generate_button.click(
109
  fn=generate_image,
110
+ inputs=[prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end],
111
  outputs=[generated_image]
112
  )
113