File size: 8,672 Bytes
94e4aac 2c33bf2 94e4aac 3f639cf 94e4aac 3f639cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import torch
import gradio as gr
from PyPDF2 import PdfReader
from transformers import (
AutoTokenizer, pipeline,
AutoModelForCausalLM, AutoConfig,
BitsAndBytesConfig
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
from langchain import HuggingFacePipeline
api_key=os.getenv("api_key")
try:
login(token=api_key)
except Exception as e:
print(f"Login failed: {e}")
# ------------------------------
# Device setup
# ------------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------------------------------
# Embedding model config
# ------------------------------
modelPath = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {"device": str(device)}
encode_kwargs = {"normalize_embedding": False}
embeddings = HuggingFaceEmbeddings(
model_name=modelPath,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# ------------------------------
# Load Mistral model in 4bit
# ------------------------------
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto"
)
# ------------------------------
# Improved Text Generation Pipeline
# ------------------------------
text_generation = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
temperature=0.7,
top_p=0.9,
top_k=50,
repetition_penalty=1.1,
return_full_text=False,
max_new_tokens=2000,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
)
# Wrap in LangChain interface
mistral_llm = HuggingFacePipeline(pipeline=text_generation)
# ------------------------------
# PDF Processing Functions
# ------------------------------
def pdf_text(pdf_docs):
text = ""
for doc in pdf_docs:
reader = PdfReader(doc)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text
def get_chunks(text):
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = splitter.split_text(text)
return [Document(page_content=chunk) for chunk in chunks]
def get_vectorstore(documents):
db = FAISS.from_documents(documents, embedding=embeddings)
db.save_local("faiss_index")
# ------------------------------
# Conversational Prompt Template
# ------------------------------
def get_qa_prompt():
prompt_template = """<s>[INST]
You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context.
Guidelines:
- Respond in a natural, conversational tone
- Be detailed but concise
- Use paragraphs and bullet points when appropriate
- If you don't know, say so
- Maintain a friendly and professional demeanor
Conversation History:
{chat_history}
Relevant Context:
{context}
Current Question: {question}
Provide a helpful response: [/INST]"""
return PromptTemplate(
template=prompt_template,
input_variables=["context", "question", "chat_history"]
)
# ------------------------------
# Chat Handling Functions
# ------------------------------
def handle_pdf_upload(pdf_files):
try:
if not pdf_files:
return "โ ๏ธ Please upload at least one PDF file"
text = pdf_text(pdf_files)
if not text.strip():
return "โ ๏ธ Could not extract text from PDFs - please try different files"
chunks = get_chunks(text)
get_vectorstore(chunks)
return f"โ
Processed {len(pdf_files)} PDF(s) with {len(chunks)} text chunks"
except Exception as e:
return f"โ Error: {str(e)}"
def format_chat_history(chat_history):
return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in chat_history[-3:]])
def user_query(msg, chat_history):
if not os.path.exists("faiss_index"):
chat_history.append((msg, "Please upload PDF documents first so I can help you."))
return "", chat_history
try:
# Load vector store
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
retriever = db.as_retriever(search_kwargs={"k": 3})
# Get relevant context
docs = retriever.get_relevant_documents(msg)
context = "\n\n".join([d.page_content for d in docs])
# Generate response
prompt = get_qa_prompt()
chain = LLMChain(llm=mistral_llm, prompt=prompt)
response = chain.run({
"question": msg,
"context": context,
"chat_history": format_chat_history(chat_history)
})
# Clean response
response = response.strip()
for end_token in ["</s>", "[INST]", "[/INST]"]:
if response.endswith(end_token):
response = response[:-len(end_token)].strip()
chat_history.append((msg, response))
return "", chat_history
except Exception as e:
error_msg = f"Sorry, I encountered an error: {str(e)}"
chat_history.append((msg, error_msg))
return "", chat_history
# ------------------------------
# Gradio Interface
# ------------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
with gr.Row():
gr.Markdown("""
# ๐ PDF Chat Assistant
### Have natural conversations with your documents
""")
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.Markdown("### Document Upload")
pdf_input = gr.File(
file_types=[".pdf"],
file_count="multiple",
label="Upload PDFs",
height=100
)
upload_btn = gr.Button("Process Documents", variant="primary")
status_box = gr.Textbox(label="Status", interactive=False)
gr.Markdown("""
**Instructions:**
1. Upload PDF documents
2. Click Process Documents
3. Start chatting in the right panel
""")
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=600,
bubble_full_width=False,
avatar_images=(
"user.png",
"bot.png"
)
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your question about the documents...",
show_label=False,
container=False,
scale=7,
autofocus=True
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_chat = gr.Button("๐งน Clear Conversation")
examples = gr.Examples(
examples=[
"Summarize the key points from the documents",
"What are the main findings?",
"Explain this in simpler terms"
],
inputs=message,
label="Example Questions"
)
# Event handlers
upload_btn.click(
fn=handle_pdf_upload,
inputs=pdf_input,
outputs=status_box
)
submit_btn.click(
fn=user_query,
inputs=[message, chatbot],
outputs=[message, chatbot]
)
message.submit(
fn=user_query,
inputs=[message, chatbot],
outputs=[message, chatbot]
)
clear_chat.click(
lambda: [],
None,
chatbot,
queue=False
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7861,
share=True,
debug=True
) |