Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
2 |
with gr.Row():
|
3 |
gr.Markdown("""
|
@@ -79,4 +274,13 @@ with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
|
79 |
None,
|
80 |
chatbot,
|
81 |
queue=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from transformers import (
|
6 |
+
AutoTokenizer, pipeline,
|
7 |
+
AutoModelForCausalLM, AutoConfig,
|
8 |
+
BitsAndBytesConfig
|
9 |
+
)
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain_community.vectorstores import FAISS
|
12 |
+
from langchain.prompts import PromptTemplate
|
13 |
+
from langchain.chains import LLMChain
|
14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
+
from langchain.schema import Document
|
16 |
+
from langchain import HuggingFacePipeline
|
17 |
+
|
18 |
+
# ------------------------------
|
19 |
+
# Device setup
|
20 |
+
# ------------------------------
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
|
23 |
+
# ------------------------------
|
24 |
+
# Embedding model config
|
25 |
+
# ------------------------------
|
26 |
+
modelPath = "sentence-transformers/all-mpnet-base-v2"
|
27 |
+
model_kwargs = {"device": str(device)}
|
28 |
+
encode_kwargs = {"normalize_embedding": False}
|
29 |
+
|
30 |
+
embeddings = HuggingFaceEmbeddings(
|
31 |
+
model_name=modelPath,
|
32 |
+
model_kwargs=model_kwargs,
|
33 |
+
encode_kwargs=encode_kwargs
|
34 |
+
)
|
35 |
+
|
36 |
+
# ------------------------------
|
37 |
+
# Load Mistral model in 4bit
|
38 |
+
# ------------------------------
|
39 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.1"
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
41 |
+
tokenizer.pad_token = tokenizer.eos_token
|
42 |
+
tokenizer.padding_side = "right"
|
43 |
+
|
44 |
+
# 4-bit quantization config
|
45 |
+
bnb_config = BitsAndBytesConfig(
|
46 |
+
load_in_4bit=True,
|
47 |
+
bnb_4bit_quant_type="nf4",
|
48 |
+
bnb_4bit_use_double_quant=True,
|
49 |
+
bnb_4bit_compute_dtype=torch.float16
|
50 |
+
)
|
51 |
+
|
52 |
+
# Load model
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
model_name,
|
55 |
+
quantization_config=bnb_config,
|
56 |
+
device_map="auto"
|
57 |
+
)
|
58 |
+
|
59 |
+
# ------------------------------
|
60 |
+
# Improved Text Generation Pipeline
|
61 |
+
# ------------------------------
|
62 |
+
text_generation = pipeline(
|
63 |
+
model=model,
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
task="text-generation",
|
66 |
+
temperature=0.7,
|
67 |
+
top_p=0.9,
|
68 |
+
top_k=50,
|
69 |
+
repetition_penalty=1.1,
|
70 |
+
return_full_text=False,
|
71 |
+
max_new_tokens=2000,
|
72 |
+
do_sample=True,
|
73 |
+
eos_token_id=tokenizer.eos_token_id,
|
74 |
+
)
|
75 |
+
|
76 |
+
# Wrap in LangChain interface
|
77 |
+
mistral_llm = HuggingFacePipeline(pipeline=text_generation)
|
78 |
+
|
79 |
+
# ------------------------------
|
80 |
+
# PDF Processing Functions
|
81 |
+
# ------------------------------
|
82 |
+
def pdf_text(pdf_docs):
|
83 |
+
text = ""
|
84 |
+
for doc in pdf_docs:
|
85 |
+
reader = PdfReader(doc)
|
86 |
+
for page in reader.pages:
|
87 |
+
page_text = page.extract_text()
|
88 |
+
if page_text:
|
89 |
+
text += page_text + "\n"
|
90 |
+
return text
|
91 |
+
|
92 |
+
def get_chunks(text):
|
93 |
+
splitter = RecursiveCharacterTextSplitter(
|
94 |
+
chunk_size=1000,
|
95 |
+
chunk_overlap=200,
|
96 |
+
length_function=len
|
97 |
+
)
|
98 |
+
chunks = splitter.split_text(text)
|
99 |
+
return [Document(page_content=chunk) for chunk in chunks]
|
100 |
+
|
101 |
+
def get_vectorstore(documents):
|
102 |
+
db = FAISS.from_documents(documents, embedding=embeddings)
|
103 |
+
db.save_local("faiss_index")
|
104 |
+
|
105 |
+
# ------------------------------
|
106 |
+
# Conversational Prompt Template
|
107 |
+
# ------------------------------
|
108 |
+
def get_qa_prompt():
|
109 |
+
prompt_template = """<s>[INST]
|
110 |
+
You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context.
|
111 |
+
|
112 |
+
Guidelines:
|
113 |
+
- Respond in a natural, conversational tone
|
114 |
+
- Be detailed but concise
|
115 |
+
- Use paragraphs and bullet points when appropriate
|
116 |
+
- If you don't know, say so
|
117 |
+
- Maintain a friendly and professional demeanor
|
118 |
+
|
119 |
+
Conversation History:
|
120 |
+
{chat_history}
|
121 |
+
|
122 |
+
Relevant Context:
|
123 |
+
{context}
|
124 |
+
|
125 |
+
Current Question: {question}
|
126 |
+
|
127 |
+
Provide a helpful response: [/INST]"""
|
128 |
+
|
129 |
+
return PromptTemplate(
|
130 |
+
template=prompt_template,
|
131 |
+
input_variables=["context", "question", "chat_history"]
|
132 |
+
)
|
133 |
+
|
134 |
+
# ------------------------------
|
135 |
+
# Chat Handling Functions
|
136 |
+
# ------------------------------
|
137 |
+
def handle_pdf_upload(pdf_files):
|
138 |
+
try:
|
139 |
+
if not pdf_files:
|
140 |
+
return "⚠️ Please upload at least one PDF file"
|
141 |
+
|
142 |
+
text = pdf_text(pdf_files)
|
143 |
+
if not text.strip():
|
144 |
+
return "⚠️ Could not extract text from PDFs - please try different files"
|
145 |
+
|
146 |
+
chunks = get_chunks(text)
|
147 |
+
get_vectorstore(chunks)
|
148 |
+
return f"✅ Processed {len(pdf_files)} PDF(s) with {len(chunks)} text chunks"
|
149 |
+
except Exception as e:
|
150 |
+
return f"❌ Error: {str(e)}"
|
151 |
+
|
152 |
+
def format_chat_history(chat_history):
|
153 |
+
return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in chat_history[-3:]])
|
154 |
+
|
155 |
+
def user_query(msg, chat_history):
|
156 |
+
if not os.path.exists("faiss_index"):
|
157 |
+
chat_history.append((msg, "Please upload PDF documents first so I can help you."))
|
158 |
+
return "", chat_history
|
159 |
+
|
160 |
+
try:
|
161 |
+
# Load vector store
|
162 |
+
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
163 |
+
retriever = db.as_retriever(search_kwargs={"k": 3})
|
164 |
+
|
165 |
+
# Get relevant context
|
166 |
+
docs = retriever.get_relevant_documents(msg)
|
167 |
+
context = "\n\n".join([d.page_content for d in docs])
|
168 |
+
|
169 |
+
# Generate response
|
170 |
+
prompt = get_qa_prompt()
|
171 |
+
chain = LLMChain(llm=mistral_llm, prompt=prompt)
|
172 |
+
|
173 |
+
response = chain.run({
|
174 |
+
"question": msg,
|
175 |
+
"context": context,
|
176 |
+
"chat_history": format_chat_history(chat_history)
|
177 |
+
})
|
178 |
+
|
179 |
+
# Clean response
|
180 |
+
response = response.strip()
|
181 |
+
for end_token in ["</s>", "[INST]", "[/INST]"]:
|
182 |
+
if response.endswith(end_token):
|
183 |
+
response = response[:-len(end_token)].strip()
|
184 |
+
|
185 |
+
chat_history.append((msg, response))
|
186 |
+
return "", chat_history
|
187 |
+
|
188 |
+
except Exception as e:
|
189 |
+
error_msg = f"Sorry, I encountered an error: {str(e)}"
|
190 |
+
chat_history.append((msg, error_msg))
|
191 |
+
return "", chat_history
|
192 |
+
|
193 |
+
# ------------------------------
|
194 |
+
# Gradio Interface
|
195 |
+
# ------------------------------
|
196 |
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
|
197 |
with gr.Row():
|
198 |
gr.Markdown("""
|
|
|
274 |
None,
|
275 |
chatbot,
|
276 |
queue=False
|
277 |
+
)
|
278 |
+
|
279 |
+
# Launch the app
|
280 |
+
if __name__ == "__main__":
|
281 |
+
demo.launch(
|
282 |
+
server_name="0.0.0.0",
|
283 |
+
server_port=7861,
|
284 |
+
share=True,
|
285 |
+
debug=True
|
286 |
)
|