File size: 8,035 Bytes
62b8a3e
 
 
 
 
f104ea6
62b8a3e
c71921d
 
 
3b0ce16
c71921d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62b8a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f104ea6
62b8a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f104ea6
62b8a3e
8d4d16e
62b8a3e
f104ea6
a7fb7fa
 
 
53e6e1c
c71921d
 
 
 
53e6e1c
a7fb7fa
bc889e8
 
a7fb7fa
c71921d
 
 
0daa9ac
c71921d
39e65a2
 
53e6e1c
 
 
 
 
 
 
 
39e65a2
 
 
 
 
 
53e6e1c
 
 
 
39e65a2
 
 
 
 
 
 
53e6e1c
39e65a2
 
 
 
c71921d
f104ea6
c71921d
f104ea6
c71921d
 
 
 
 
 
 
 
 
 
f104ea6
 
c71921d
f104ea6
c71921d
 
 
 
 
 
 
 
f104ea6
 
c71921d
 
f104ea6
c71921d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d4d16e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
import streamlit as st
import os
import numpy as np

st.markdown("""
<style>
.big-title {
    font-size: 1.8em;
    font-weight: 800;
    margin-bottom: 0.2em;
}
.sub-info {
    font-size: 1.1em;
    color: #666;
    margin-bottom: 1.2em;
}
.card {
    background-color: #f1f3f6;
    padding: 1.2em;
    border-left: 5px solid #3366cc;
    border-radius: 6px;
    margin-bottom: 1em;
}
</style>
""", unsafe_allow_html=True)


KOTE_LABELS = [
    '๋ถˆํ‰/๋ถˆ๋งŒ', 'ํ™˜์˜/ํ˜ธ์˜', '๊ฐ๋™/๊ฐํƒ„', '์ง€๊ธ‹์ง€๊ธ‹', '๊ณ ๋งˆ์›€', '์Šฌํ””', 'ํ™”๋‚จ/๋ถ„๋…ธ', '์กด๊ฒฝ',
    '๊ธฐ๋Œ€๊ฐ', '์šฐ์ญ๋Œ/๋ฌด์‹œํ•จ', '์•ˆํƒ€๊นŒ์›€/์‹ค๋ง', '๋น„์žฅํ•จ', '์˜์‹ฌ/๋ถˆ์‹ ', '๋ฟŒ๋“ฏํ•จ', 'ํŽธ์•ˆ/์พŒ์ ',
    '์‹ ๊ธฐํ•จ/๊ด€์‹ฌ', '์•„๊ปด์ฃผ๋Š”', '๋ถ€๋„๋Ÿฌ์›€', '๊ณตํฌ/๋ฌด์„œ์›€', '์ ˆ๋ง', 'ํ•œ์‹ฌํ•จ', '์—ญ๊ฒจ์›€/์ง•๊ทธ๋Ÿฌ์›€',
    '์งœ์ฆ', '์–ด์ด์—†์Œ', '์—†์Œ', 'ํŒจ๋ฐฐ/์ž๊ธฐํ˜์˜ค', '๊ท€์ฐฎ์Œ', 'ํž˜๋“ฆ/์ง€์นจ', '์ฆ๊ฑฐ์›€/์‹ ๋‚จ', '๊นจ๋‹ฌ์Œ',
    '์ฃ„์ฑ…๊ฐ', '์ฆ์˜ค/ํ˜์˜ค', 'ํ๋ญ‡ํ•จ(๊ท€์—ฌ์›€/์˜ˆ์จ)', '๋‹นํ™ฉ/๋‚œ์ฒ˜', '๊ฒฝ์•…', '๋ถ€๋‹ด/์•ˆ_๋‚ดํ‚ด', '์„œ๋Ÿฌ์›€',
    '์žฌ๋ฏธ์—†์Œ', '๋ถˆ์Œํ•จ/์—ฐ๋ฏผ', '๋†€๋žŒ', 'ํ–‰๋ณต', '๋ถˆ์•ˆ/๊ฑฑ์ •', '๊ธฐ์จ', '์•ˆ์‹ฌ/์‹ ๋ขฐ'
]

class MLPClassifier(nn.Module):
    def __init__(self, input_dim=1024, num_labels=44):
        super(MLPClassifier, self).__init__()
        self.mlp = nn.Sequential(
            nn.Linear(input_dim, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(512, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(256, num_labels)
        )

    def forward(self, x):
        return self.mlp(x)

@st.cache_resource
def load_model():
    device = torch.device("cpu")
    tokenizer = AutoTokenizer.from_pretrained("klue/roberta-large")
    base_model = AutoModel.from_pretrained("klue/roberta-large").eval()
    mlp_model = MLPClassifier().eval()
    ckpt_path = os.path.join("checkpoints", "mlp_model.pth")
    mlp_model.load_state_dict(torch.load(ckpt_path, map_location=device))
    return tokenizer, base_model, mlp_model

tokenizer, base_model, mlp_model = load_model()

def predict_emotion(text, top_k=5):
    encoded = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
    with torch.no_grad():
        outputs = base_model(**encoded)
        cls_emb = outputs.last_hidden_state[:, 0, :]
        logits = mlp_model(cls_emb)
        probs = torch.sigmoid(logits).squeeze(0).numpy()
    result = sorted(zip(KOTE_LABELS, probs), key=lambda x: x[1], reverse=True)
    return result[:top_k], probs

tabs = st.tabs(["๊ฐ์ • ๋ถ„์„ ์ฒดํ—˜", "AI๋Š” ์–ด๋–ป๊ฒŒ ๊ฐ์ •์„ ์ดํ•ดํ• ๊นŒ?", "Few-shot Fine-tuning์ด๋ž€?", "ํ™œ์šฉ๊ณผ ์˜์˜", "๊ธฐํƒ€ ์ž๋ฃŒ๋ฃŒ"])

with tabs[0]:
    st.markdown('<div class="big-title">๐ŸŽญ ํ•œ๊ตญ์–ด ๊ฐ์ • ๋ถ„์„ AI ์ฒดํ—˜</div>', unsafe_allow_html=True)
    st.markdown('<div class="sub-info">2025๋…„ 1ํ•™๊ธฐ ๋””์ง€ํ„ธ ์ธ๋ฌธํ•™ ์ž…๋ฌธ (SLA23501) ยท <b>Team ์ƒ๋Ÿฌ๋“œ๋ณผ</b><br>๊ฐ•์ˆ˜ํ˜„ ยท ๊น€๋™์šฐ ยท ์ •์˜ˆ์€ ยท ์ •ํ˜„์„ฑ ยท ์ตœ์ข…์œค</div>', unsafe_allow_html=True)

    st.markdown("""
    <div class="card">
    ์ธ๊ณต์ง€๋Šฅ์€ ์ž…๋ ฅ๋œ ๋ฌธ์žฅ์„ ๋ถ„์„ํ•ด ๊ฐ์ •์ด ์–ด๋–ป๊ฒŒ ํ‘œํ˜„๋˜์—ˆ๋Š”์ง€๋ฅผ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.<br>
    ์•„๋ž˜์— ๋ฌธ์žฅ์„ ์ž…๋ ฅํ•˜๊ฑฐ๋‚˜ ์˜ˆ์‹œ ๋ฌธ์žฅ์„ ๋ถˆ๋Ÿฌ์˜จ ํ›„, ๊ฐ์ • ์˜ˆ์ธก ๋ฒ„ํŠผ์„ ๋ˆŒ๋Ÿฌ ์ฒดํ—˜ํ•ด๋ณด์„ธ์š”.
    </div>
    """, unsafe_allow_html=True)

    if "text_input" not in st.session_state:
        st.session_state.text_input = ""

    col1, col2 = st.columns([1, 1])
    with col1:
        if st.button("๐Ÿ“Œ ์˜ˆ์‹œ ๋ฌธ์žฅ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ"):
            st.session_state.text_input = "๊ทธ๊ฑธ ์ด์ œ ๋งํ•ด์ค˜? ์นœ์ ˆํ•˜๋„ค ์ •๋ง"
    with col2:
        predict_clicked = st.button("๐Ÿ” ๊ฐ์ • ์˜ˆ์ธกํ•˜๊ธฐ")

    text = st.text_area(
        "โœ๏ธ ๋ฌธ์žฅ์„ ์ž…๋ ฅํ•˜์„ธ์š”:",
        value=st.session_state.text_input,
        height=120,
        placeholder="์˜ˆ: ์˜ค๋Š˜ ํ•˜๋ฃจ ์ •๋ง ํ–‰๋ณตํ–ˆ์–ด์š”."
    )
    st.session_state.text_input = text

    if predict_clicked:
        if text.strip():
            with st.spinner("AI๊ฐ€ ๊ฐ์ •์„ ๋ถ„์„ ์ค‘์ž…๋‹ˆ๋‹ค..."):
                results, full_probs = predict_emotion(text)

            top_emotion, top_prob = results[0]
            st.markdown(
                f'<div class="card"><div class="highlight">โœ… ๊ฐ€์žฅ ๊ฐ•ํ•˜๊ฒŒ ํ‘œํ˜„๋œ ๊ฐ์ •: <b>{top_emotion}</b> ({top_prob:.2f})</div>',
                unsafe_allow_html=True
            )

            st.subheader("๐Ÿ“Š ์ƒ์œ„ ๊ฐ์ • ๊ฒฐ๊ณผ")
            for label, prob in results:
                st.markdown(f"- **{label}**: `{prob:.3f}`")

            st.subheader("๐Ÿ“ˆ ํ™•๋ฅ  ๋ถ„ํฌ (Top 5)")
            st.bar_chart({label: prob for label, prob in results})

            st.markdown("</div>", unsafe_allow_html=True)
        else:
            st.warning("๋ฌธ์žฅ์„ ๋จผ์ € ์ž…๋ ฅํ•ด์ฃผ์„ธ์š”.")


with tabs[1]:
    st.markdown('<div class="big-title">๐Ÿค– ์ธ๊ณต์ง€๋Šฅ์€ ๊ฐ์ •์„ ์–ด๋–ป๊ฒŒ ์ดํ•ดํ• ๊นŒ์š”?</div>', unsafe_allow_html=True)
    st.markdown("""
    <div class="card">
    ์ธ๊ณต์ง€๋Šฅ์€ ๋ฌธ์žฅ์„ '์ˆซ์ž์˜ ๋ฒกํ„ฐ'๋กœ ๋ฐ”๊พธ์–ด ์ดํ•ดํ•ฉ๋‹ˆ๋‹ค.<br><br>
    ์ด ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‹จ๊ณ„๋กœ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค:
    <ol>
        <li><b>์‚ฌ์ „ํ•™์Šต ์–ธ์–ด ๋ชจ๋ธ</b>(KLUE-RoBERTa)์ด ๋ฌธ์žฅ์„ ์ฝ๊ณ  ํ•ต์‹ฌ ์˜๋ฏธ๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.</li>
        <li>์ด ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ <b>๊ฐ์ • ๋ถ„๋ฅ˜๊ธฐ</b>(MLP)๊ฐ€ ๊ฐ์ •์„ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.</li>
        <li>๊ฐ ๊ฐ์ •์— ๋Œ€ํ•œ ๊ฐ€๋Šฅ์„ฑ์„ <b>ํ™•๋ฅ ๋กœ</b> ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.</li>
    </ol>
    </div>
    """, unsafe_allow_html=True)

with tabs[2]:
    st.markdown('<div class="big-title">๐Ÿง  Few-shot Fine-tuning์ด๋ž€?</div>', unsafe_allow_html=True)
    st.markdown("""
    <div class="card">
    ์šฐ๋ฆฌ๊ฐ€ ์‚ฌ์šฉํ•˜๋Š” KLUE-RoBERTa ๋ชจ๋ธ์€ ์ด๋ฏธ ์ˆ˜๋งŽ์€ ๋ฌธ์žฅ์„ ํ•™์Šตํ•œ ๊ฑฐ๋Œ€ํ•œ ์–ธ์–ด ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.<br><br>
    ํ•˜์ง€๋งŒ ๊ฐ์ • ๋ถ„์„์ด๋ผ๋Š” ํŠน์ •ํ•œ ์ž‘์—…์— ๋งž๊ฒŒ ์กฐ๊ธˆ ๋” ํ•™์Šต์‹œํ‚ค๋Š” ๊ณผ์ •์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.<br><br>
    ์ด๋•Œ ์ „์ฒด ๋ชจ๋ธ์„ ๋‹ค์‹œ ํ•™์Šตํ•˜์ง€ ์•Š๊ณ , ๋งˆ์ง€๋ง‰ ๋ถ„๋ฅ˜๊ธฐ(MLP)๋งŒ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์ด ๋ฐ”๋กœ
    <b>Few-shot Fine-tuning</b>์ž…๋‹ˆ๋‹ค.<br><br>
    ์ด ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ ์€ ์–‘์˜ ๊ฐ์ • ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ๋„ ๋†’์€ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    </div>
    """, unsafe_allow_html=True)

with tabs[3]:
    st.markdown('<div class="big-title">๐Ÿ“Œ ์ด ๊ธฐ์ˆ ์€ ์–ด๋””์— ์“ฐ์ผ ์ˆ˜ ์žˆ์„๊นŒ์š”?</div>', unsafe_allow_html=True)

    st.markdown("""
    <div class="card">
    ์ด ๊ฐ์ • ๋ถ„์„ ๊ธฐ์ˆ ์€ ๋‹จ์ˆœํžˆ ๋ฌธ์žฅ์˜ ๊ฐ์ •์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐ ๊ทธ์น˜์ง€ ์•Š๊ณ ,  
    <b>๋””์ง€ํ„ธ ์‚ฌํšŒ์—์„œ์˜ ๊ฐ์ • ํ๋ฆ„</b>๊ณผ <b>๊ณต๋ก ์žฅ์˜ ์ •์„œ์  ๊ตฌ์กฐ</b>๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ๊นŒ์ง€ ํ™•์žฅ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.<br><br>

    ํŠนํžˆ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ถ„์•ผ์— ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:
    <ul>
        <li>๐Ÿ˜ก <b>์•…์„ฑ ๋Œ“๊ธ€ ํƒ์ง€</b>: ์œ ํ•ด ํ‘œํ˜„, ํ˜์˜ค ํ‘œํ˜„์„ ์กฐ๊ธฐ์— ๊ฐ์ง€ํ•˜๊ณ  ํ•„ํ„ฐ๋ง</li>
        <li>๐Ÿ“ˆ <b>๋Œ“๊ธ€ ๊ฐ์ • ํ๋ฆ„ ์‹œ๊ฐํ™”</b>: ์œ ํŠœ๋ธŒ๋‚˜ ๋‰ด์Šค ๋Œ“๊ธ€์—์„œ ๊ฐ์ • ์ „ํŒŒ ๊ตฌ์กฐ ๋ถ„์„</li>
        <li>๐Ÿ“ฐ <b>์‚ฌํšŒ ์ด์Šˆ ๊ณต๊ฐ/ํ˜์˜ค ๋ฐ˜์‘ ์ถ”์ </b>: ํŠน์ • ์‚ฌ๊ฑด์— ๋Œ€ํ•œ ๊ฐ์ • ๋ฐ˜์‘ ๋ชจ๋‹ˆํ„ฐ๋ง</li>
        <li>๐Ÿ’ฌ <b>์˜จ๋ผ์ธ ๊ณต๋ก ์žฅ ๊ฐ์ • ์ „์—ผ ์—ฐ๊ตฌ</b>: ๊ฐ์ •์ด ๋Œ“๊ธ€-๋Œ€๋Œ“๊ธ€๋กœ ์–ด๋–ป๊ฒŒ ํ™•์‚ฐ๋˜๋Š”์ง€ ์ •๋Ÿ‰์  ๋ถ„์„</li>
    </ul>

    ๋‚˜์•„๊ฐ€ ์ด ๊ธฐ์ˆ ์€ <b>๋””์ง€ํ„ธ ์ธ๋ฌธํ•™์˜ ์ƒˆ๋กœ์šด ๋ถ„์„ ๋„๊ตฌ</b>๋กœ ํ™œ์šฉ๋˜์–ด,  
    ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ์—ฌ๋ก ์˜ ์ •์„œ์  ๊ตฌ์กฐ๋ฅผ ๋ณด๋‹ค ๊นŠ์ด ์žˆ๊ฒŒ ์ดํ•ดํ•˜๋Š” ๊ธฐ๋ฐ˜์ด ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    </div>
    """, unsafe_allow_html=True)

with tabs[4]:
    st.image("image/clustering-2.png", use_column_width=True)
    st.image("image/clustering-10.png", use_column_width=True)
    st.image("image/clustering-plutchiks.png", use_column_width=True)
    st.image("image/clustering-plutchiks-bert.png", use_column_width=True)