Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler | |
from diffusers.utils import export_to_video | |
from transformers import CLIPVisionModel | |
import gradio as gr | |
import tempfile | |
import spaces | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import random | |
# Base MODEL_ID (using original Wan model that's compatible with diffusers) | |
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers" | |
# FusionX enhancement LoRAs (based on FusionX composition) | |
LORA_REPO_ID = "Kijai/WanVideo_comfy" | |
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors" | |
# Additional enhancement LoRAs for FusionX-like quality | |
ACCVIDEO_LORA_REPO = "alibaba-pai/Wan2.1-Fun-Reward-LoRAs" | |
MPS_LORA_FILENAME = "Wan2.1-MPS-Reward-LoRA.safetensors" | |
# Load enhanced model components | |
print("π Loading FusionX Enhanced Wan2.1 I2V Model...") | |
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32) | |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) | |
pipe = WanImageToVideoPipeline.from_pretrained( | |
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16 | |
) | |
# FusionX optimized scheduler settings | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) | |
pipe.to("cuda") | |
# Load FusionX enhancement LoRAs | |
lora_adapters = [] | |
lora_weights = [] | |
try: | |
# Load CausVid LoRA (strength 1.0 as per FusionX) | |
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME) | |
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora") | |
lora_adapters.append("causvid_lora") | |
lora_weights.append(1.0) # FusionX uses 1.0 for CausVid | |
print("β CausVid LoRA loaded (strength: 1.0)") | |
except Exception as e: | |
print(f"β οΈ CausVid LoRA not loaded: {e}") | |
try: | |
# Load MPS Rewards LoRA (strength 0.7 as per FusionX) | |
mps_path = hf_hub_download(repo_id=ACCVIDEO_LORA_REPO, filename=MPS_LORA_FILENAME) | |
pipe.load_lora_weights(mps_path, adapter_name="mps_lora") | |
lora_adapters.append("mps_lora") | |
lora_weights.append(0.7) # FusionX uses 0.7 for MPS | |
print("β MPS Rewards LoRA loaded (strength: 0.7)") | |
except Exception as e: | |
print(f"β οΈ MPS LoRA not loaded: {e}") | |
# Apply LoRA adapters if any were loaded | |
if lora_adapters: | |
pipe.set_adapters(lora_adapters, adapter_weights=lora_weights) | |
pipe.fuse_lora() | |
print(f"π₯ FusionX Enhancement Applied: {len(lora_adapters)} LoRAs fused") | |
else: | |
print("π No LoRAs loaded - using base Wan model") | |
MOD_VALUE = 32 | |
DEFAULT_H_SLIDER_VALUE = 576 # FusionX optimized default | |
DEFAULT_W_SLIDER_VALUE = 1024 # FusionX optimized default | |
NEW_FORMULA_MAX_AREA = 576.0 * 1024.0 # Updated for FusionX | |
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1080 | |
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1920 | |
MAX_SEED = np.iinfo(np.int32).max | |
FIXED_FPS = 24 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 121 # FusionX supports up to 121 frames | |
# Enhanced prompts for FusionX-style output | |
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography" | |
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards" | |
# Enhanced CSS for FusionX theme | |
custom_css = """ | |
/* Enhanced FusionX theme with cinematic styling */ | |
.gradio-container { | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; | |
background: linear-gradient(135deg, #1a1a2e 0%, #16213e 25%, #0f3460 50%, #533a7d 75%, #6a4c93 100%) !important; | |
background-size: 400% 400% !important; | |
animation: cinematicShift 20s ease infinite !important; | |
} | |
@keyframes cinematicShift { | |
0% { background-position: 0% 50%; } | |
25% { background-position: 100% 50%; } | |
50% { background-position: 100% 100%; } | |
75% { background-position: 0% 100%; } | |
100% { background-position: 0% 50%; } | |
} | |
/* Main container with cinematic glass effect */ | |
.main-container { | |
backdrop-filter: blur(15px); | |
background: rgba(255, 255, 255, 0.08) !important; | |
border-radius: 25px !important; | |
padding: 35px !important; | |
box-shadow: 0 12px 40px 0 rgba(31, 38, 135, 0.4) !important; | |
border: 1px solid rgba(255, 255, 255, 0.15) !important; | |
position: relative; | |
overflow: hidden; | |
} | |
.main-container::before { | |
content: ''; | |
position: absolute; | |
top: 0; | |
left: 0; | |
right: 0; | |
bottom: 0; | |
background: linear-gradient(45deg, rgba(255,255,255,0.1) 0%, transparent 50%, rgba(255,255,255,0.05) 100%); | |
pointer-events: none; | |
} | |
/* Enhanced header with FusionX branding */ | |
h1 { | |
background: linear-gradient(45deg, #ffffff, #f0f8ff, #e6e6fa) !important; | |
-webkit-background-clip: text !important; | |
-webkit-text-fill-color: transparent !important; | |
background-clip: text !important; | |
font-weight: 900 !important; | |
font-size: 2.8rem !important; | |
text-align: center !important; | |
margin-bottom: 2.5rem !important; | |
text-shadow: 2px 2px 8px rgba(0,0,0,0.3) !important; | |
position: relative; | |
} | |
h1::after { | |
content: 'π¬ FusionX Enhanced'; | |
display: block; | |
font-size: 1rem; | |
color: #6a4c93; | |
margin-top: 0.5rem; | |
font-weight: 500; | |
} | |
/* Enhanced component containers */ | |
.input-container, .output-container { | |
background: rgba(255, 255, 255, 0.06) !important; | |
border-radius: 20px !important; | |
padding: 25px !important; | |
margin: 15px 0 !important; | |
backdrop-filter: blur(10px) !important; | |
border: 1px solid rgba(255, 255, 255, 0.12) !important; | |
box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1) !important; | |
} | |
/* Cinematic input styling */ | |
input, textarea, .gr-box { | |
background: rgba(255, 255, 255, 0.95) !important; | |
border: 1px solid rgba(106, 76, 147, 0.3) !important; | |
border-radius: 12px !important; | |
color: #1a1a2e !important; | |
transition: all 0.4s ease !important; | |
box-shadow: 0 2px 8px rgba(106, 76, 147, 0.1) !important; | |
} | |
input:focus, textarea:focus { | |
background: rgba(255, 255, 255, 1) !important; | |
border-color: #6a4c93 !important; | |
box-shadow: 0 0 0 3px rgba(106, 76, 147, 0.15) !important; | |
transform: translateY(-1px) !important; | |
} | |
/* Enhanced FusionX button */ | |
.generate-btn { | |
background: linear-gradient(135deg, #6a4c93 0%, #533a7d 50%, #0f3460 100%) !important; | |
color: white !important; | |
font-weight: 700 !important; | |
font-size: 1.2rem !important; | |
padding: 15px 40px !important; | |
border-radius: 60px !important; | |
border: none !important; | |
cursor: pointer !important; | |
transition: all 0.4s ease !important; | |
box-shadow: 0 6px 20px rgba(106, 76, 147, 0.4) !important; | |
position: relative; | |
overflow: hidden; | |
} | |
.generate-btn::before { | |
content: ''; | |
position: absolute; | |
top: 0; | |
left: -100%; | |
width: 100%; | |
height: 100%; | |
background: linear-gradient(90deg, transparent, rgba(255,255,255,0.3), transparent); | |
transition: left 0.5s ease; | |
} | |
.generate-btn:hover::before { | |
left: 100%; | |
} | |
.generate-btn:hover { | |
transform: translateY(-3px) scale(1.02) !important; | |
box-shadow: 0 8px 25px rgba(106, 76, 147, 0.6) !important; | |
} | |
/* Enhanced slider styling */ | |
input[type="range"] { | |
background: transparent !important; | |
} | |
input[type="range"]::-webkit-slider-track { | |
background: linear-gradient(90deg, rgba(106, 76, 147, 0.3), rgba(83, 58, 125, 0.5)) !important; | |
border-radius: 8px !important; | |
height: 8px !important; | |
} | |
input[type="range"]::-webkit-slider-thumb { | |
background: linear-gradient(135deg, #6a4c93, #533a7d) !important; | |
border: 3px solid white !important; | |
border-radius: 50% !important; | |
cursor: pointer !important; | |
width: 22px !important; | |
height: 22px !important; | |
-webkit-appearance: none !important; | |
box-shadow: 0 2px 8px rgba(106, 76, 147, 0.3) !important; | |
} | |
/* Enhanced accordion */ | |
.gr-accordion { | |
background: rgba(255, 255, 255, 0.04) !important; | |
border-radius: 15px !important; | |
border: 1px solid rgba(255, 255, 255, 0.08) !important; | |
margin: 20px 0 !important; | |
backdrop-filter: blur(5px) !important; | |
} | |
/* Enhanced labels */ | |
label { | |
color: #ffffff !important; | |
font-weight: 600 !important; | |
font-size: 1rem !important; | |
margin-bottom: 8px !important; | |
text-shadow: 1px 1px 2px rgba(0,0,0,0.5) !important; | |
} | |
/* Enhanced image upload */ | |
.image-upload { | |
border: 3px dashed rgba(106, 76, 147, 0.4) !important; | |
border-radius: 20px !important; | |
background: rgba(255, 255, 255, 0.03) !important; | |
transition: all 0.4s ease !important; | |
position: relative; | |
} | |
.image-upload:hover { | |
border-color: rgba(106, 76, 147, 0.7) !important; | |
background: rgba(255, 255, 255, 0.08) !important; | |
transform: scale(1.01) !important; | |
} | |
/* Enhanced video output */ | |
video { | |
border-radius: 20px !important; | |
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.4) !important; | |
border: 2px solid rgba(106, 76, 147, 0.3) !important; | |
} | |
/* Enhanced examples section */ | |
.gr-examples { | |
background: rgba(255, 255, 255, 0.04) !important; | |
border-radius: 20px !important; | |
padding: 25px !important; | |
margin-top: 25px !important; | |
border: 1px solid rgba(255, 255, 255, 0.1) !important; | |
} | |
/* Enhanced checkbox */ | |
input[type="checkbox"] { | |
accent-color: #6a4c93 !important; | |
transform: scale(1.2) !important; | |
} | |
/* Responsive enhancements */ | |
@media (max-width: 768px) { | |
h1 { font-size: 2.2rem !important; } | |
.main-container { padding: 25px !important; } | |
.generate-btn { padding: 12px 30px !important; font-size: 1.1rem !important; } | |
} | |
/* Badge container styling */ | |
.badge-container { | |
display: flex; | |
justify-content: center; | |
gap: 15px; | |
margin: 20px 0; | |
flex-wrap: wrap; | |
} | |
.badge-container img { | |
border-radius: 8px; | |
transition: transform 0.3s ease; | |
} | |
.badge-container img:hover { | |
transform: scale(1.05); | |
} | |
""" | |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area, | |
min_slider_h, max_slider_h, | |
min_slider_w, max_slider_w, | |
default_h, default_w): | |
orig_w, orig_h = pil_image.size | |
if orig_w <= 0 or orig_h <= 0: | |
return default_h, default_w | |
aspect_ratio = orig_h / orig_w | |
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio)) | |
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio)) | |
calc_h = max(mod_val, (calc_h // mod_val) * mod_val) | |
calc_w = max(mod_val, (calc_w // mod_val) * mod_val) | |
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val)) | |
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val)) | |
return new_h, new_w | |
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val): | |
if uploaded_pil_image is None: | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
try: | |
new_h, new_w = _calculate_new_dimensions_wan( | |
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA, | |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W, | |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE | |
) | |
return gr.update(value=new_h), gr.update(value=new_w) | |
except Exception as e: | |
gr.Warning("Error attempting to calculate new dimensions") | |
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE) | |
def get_duration(input_image, prompt, height, width, | |
negative_prompt, duration_seconds, | |
guidance_scale, steps, | |
seed, randomize_seed, | |
progress): | |
# FusionX optimized duration calculation | |
if steps > 8 and duration_seconds > 3: | |
return 100 | |
elif steps > 8 or duration_seconds > 3: | |
return 80 | |
else: | |
return 65 | |
def generate_video(input_image, prompt, height, width, | |
negative_prompt=default_negative_prompt, duration_seconds=3, | |
guidance_scale=1, steps=8, # FusionX optimized default | |
seed=42, randomize_seed=False, | |
progress=gr.Progress(track_tqdm=True)): | |
if input_image is None: | |
raise gr.Error("Please upload an input image.") | |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) | |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) | |
resized_image = input_image.resize((target_w, target_h)) | |
# Enhanced prompt for FusionX-style output | |
enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting" | |
with torch.inference_mode(): | |
output_frames_list = pipe( | |
image=resized_image, | |
prompt=enhanced_prompt, | |
negative_prompt=negative_prompt, | |
height=target_h, | |
width=target_w, | |
num_frames=num_frames, | |
guidance_scale=float(guidance_scale), | |
num_inference_steps=int(steps), | |
generator=torch.Generator(device="cuda").manual_seed(current_seed) | |
).frames[0] | |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: | |
video_path = tmpfile.name | |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) | |
return video_path, current_seed | |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_classes=["main-container"]): | |
gr.Markdown("# β‘ FusionX Enhanced Wan 2.1 I2V (14B)") | |
# Enhanced badges for FusionX | |
gr.HTML(""" | |
<div class="badge-container"> | |
<a href="https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=FusionX&message=ENHANCED%20MODEL&color=%236a4c93&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="FusionX Enhanced"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-FusioniX&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX2" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-Fusioni2X&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model"> | |
</a> | |
<a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank"> | |
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(elem_classes=["input-container"]): | |
input_image_component = gr.Image( | |
type="pil", | |
label="πΌοΈ Input Image (auto-resized to target H/W)", | |
elem_classes=["image-upload"] | |
) | |
prompt_input = gr.Textbox( | |
label="βοΈ Enhanced Prompt (FusionX-style enhancements applied)", | |
value=default_prompt_i2v, | |
lines=3 | |
) | |
duration_seconds_input = gr.Slider( | |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), | |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), | |
step=0.1, | |
value=2, | |
label="β±οΈ Duration (seconds)", | |
info=f"FusionX Enhanced supports {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps. Recommended: 2-5 seconds" | |
) | |
with gr.Accordion("βοΈ Advanced FusionX Settings", open=False): | |
negative_prompt_input = gr.Textbox( | |
label="β Negative Prompt (FusionX Enhanced)", | |
value=default_negative_prompt, | |
lines=4 | |
) | |
seed_input = gr.Slider( | |
label="π² Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
interactive=True | |
) | |
randomize_seed_checkbox = gr.Checkbox( | |
label="π Randomize seed", | |
value=True, | |
interactive=True | |
) | |
with gr.Row(): | |
height_input = gr.Slider( | |
minimum=SLIDER_MIN_H, | |
maximum=SLIDER_MAX_H, | |
step=MOD_VALUE, | |
value=DEFAULT_H_SLIDER_VALUE, | |
label=f"π Output Height (FusionX optimized: {MOD_VALUE} multiples)" | |
) | |
width_input = gr.Slider( | |
minimum=SLIDER_MIN_W, | |
maximum=SLIDER_MAX_W, | |
step=MOD_VALUE, | |
value=DEFAULT_W_SLIDER_VALUE, | |
label=f"π Output Width (FusionX optimized: {MOD_VALUE} multiples)" | |
) | |
steps_slider = gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=8, # FusionX optimized | |
label="π Inference Steps (FusionX Enhanced: 8-10 recommended)", | |
info="FusionX Enhanced delivers excellent results in just 8-10 steps!" | |
) | |
guidance_scale_input = gr.Slider( | |
minimum=0.0, | |
maximum=20.0, | |
step=0.5, | |
value=1.0, | |
label="π― Guidance Scale (FusionX optimized)", | |
visible=False | |
) | |
generate_button = gr.Button( | |
"π¬ Generate FusionX Enhanced Video", | |
variant="primary", | |
elem_classes=["generate-btn"] | |
) | |
with gr.Column(elem_classes=["output-container"]): | |
video_output = gr.Video( | |
label="π₯ FusionX Enhanced Generated Video", | |
autoplay=True, | |
interactive=False | |
) | |
input_image_component.upload( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
input_image_component.clear( | |
fn=handle_image_upload_for_dims_wan, | |
inputs=[input_image_component, height_input, width_input], | |
outputs=[height_input, width_input] | |
) | |
ui_inputs = [ | |
input_image_component, prompt_input, height_input, width_input, | |
negative_prompt_input, duration_seconds_input, | |
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox | |
] | |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) | |
with gr.Column(): | |
gr.Examples( | |
examples=[ | |
["peng.png", "a penguin gracefully dancing in the pristine snow, cinematic motion with detailed feathers", 576, 576], | |
["frog.jpg", "the frog jumps energetically with smooth, lifelike motion and detailed texture", 576, 576], | |
], | |
inputs=[input_image_component, prompt_input, height_input, width_input], | |
outputs=[video_output, seed_input], | |
fn=generate_video, | |
cache_examples="lazy", | |
label="π FusionX Enhanced Example Gallery" | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |