File size: 20,998 Bytes
5f364b5
f4cf641
c103ac7
f4cf641
5f364b5
 
c103ac7
5f364b5
f4cf641
12d6cf5
8268b44
5f364b5
014e784
 
25bd139
014e784
bfa6fb3
 
 
014e784
 
 
 
 
 
afae83c
 
 
 
 
25bd139
 
afae83c
 
 
014e784
 
 
 
25bd139
014e784
25bd139
 
014e784
 
 
 
 
 
 
 
 
 
 
 
 
25bd139
014e784
 
 
 
 
 
 
 
 
afae83c
bfa6fb3
25bd139
014e784
25bd139
8116465
25bd139
 
ec4cebf
8116465
bfa6fb3
 
25bd139
bfa6fb3
014e784
25bd139
014e784
afae83c
25bd139
afae83c
25bd139
afae83c
 
25bd139
afae83c
25bd139
afae83c
bfa6fb3
25bd139
afae83c
25bd139
 
 
afae83c
 
 
25bd139
afae83c
25bd139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afae83c
 
25bd139
afae83c
25bd139
afae83c
 
 
25bd139
 
afae83c
25bd139
 
 
afae83c
 
25bd139
 
 
 
 
 
 
 
 
 
afae83c
25bd139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afae83c
25bd139
 
afae83c
25bd139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afae83c
 
 
25bd139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f792a37
 
 
1e531a7
8268b44
bfa6fb3
 
 
 
 
 
 
 
 
 
afae83c
bfa6fb3
014e784
 
25bd139
afae83c
 
25bd139
 
 
 
 
 
 
 
afae83c
 
bfa6fb3
 
 
 
 
ec4cebf
afae83c
 
014e784
fe14409
25bd139
fe14409
 
25bd139
 
 
1c74078
 
fe14409
1c74078
 
 
 
 
fe14409
 
 
ec4cebf
25bd139
afae83c
 
 
 
 
 
 
 
014e784
afae83c
25bd139
afae83c
 
 
 
 
b1f8aa0
afae83c
b1f8aa0
afae83c
c68ae83
25bd139
afae83c
014e784
afae83c
25bd139
bfa6fb3
afae83c
 
 
 
 
 
 
bfa6fb3
afae83c
 
 
 
ec4cebf
c68ae83
afae83c
 
 
 
 
25bd139
c68ae83
afae83c
 
 
 
 
25bd139
bfa6fb3
 
afae83c
25bd139
afae83c
25bd139
014e784
 
afae83c
 
 
 
 
 
25bd139
ec4cebf
 
afae83c
 
014e784
ec4cebf
afae83c
ec4cebf
afae83c
 
ec4cebf
014e784
afae83c
 
ec4cebf
afae83c
 
 
 
 
 
ec4cebf
afae83c
 
 
 
c68ae83
afae83c
 
 
 
 
 
 
 
 
 
 
1c74078
 
afae83c
 
 
 
 
014e784
afae83c
25bd139
bfa6fb3
5f364b5
afae83c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random

# Base MODEL_ID (using original Wan model that's compatible with diffusers)
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"

# FusionX enhancement LoRAs (based on FusionX composition)
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

# Additional enhancement LoRAs for FusionX-like quality
ACCVIDEO_LORA_REPO = "alibaba-pai/Wan2.1-Fun-Reward-LoRAs"
MPS_LORA_FILENAME = "Wan2.1-MPS-Reward-LoRA.safetensors"

# Load enhanced model components
print("πŸš€ Loading FusionX Enhanced Wan2.1 I2V Model...")
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)

# FusionX optimized scheduler settings
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

# Load FusionX enhancement LoRAs
lora_adapters = []
lora_weights = []

try:
    # Load CausVid LoRA (strength 1.0 as per FusionX)
    causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
    pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
    lora_adapters.append("causvid_lora")
    lora_weights.append(1.0)  # FusionX uses 1.0 for CausVid
    print("βœ… CausVid LoRA loaded (strength: 1.0)")
except Exception as e:
    print(f"⚠️ CausVid LoRA not loaded: {e}")

try:
    # Load MPS Rewards LoRA (strength 0.7 as per FusionX)
    mps_path = hf_hub_download(repo_id=ACCVIDEO_LORA_REPO, filename=MPS_LORA_FILENAME)
    pipe.load_lora_weights(mps_path, adapter_name="mps_lora")
    lora_adapters.append("mps_lora")
    lora_weights.append(0.7)  # FusionX uses 0.7 for MPS
    print("βœ… MPS Rewards LoRA loaded (strength: 0.7)")
except Exception as e:
    print(f"⚠️ MPS LoRA not loaded: {e}")

# Apply LoRA adapters if any were loaded
if lora_adapters:
    pipe.set_adapters(lora_adapters, adapter_weights=lora_weights)
    pipe.fuse_lora()
    print(f"πŸ”₯ FusionX Enhancement Applied: {len(lora_adapters)} LoRAs fused")
else:
    print("πŸ“ No LoRAs loaded - using base Wan model")

MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 576  # FusionX optimized default
DEFAULT_W_SLIDER_VALUE = 1024  # FusionX optimized default  
NEW_FORMULA_MAX_AREA = 576.0 * 1024.0  # Updated for FusionX

SLIDER_MIN_H, SLIDER_MAX_H = 128, 1080
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1920
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121  # FusionX supports up to 121 frames

# Enhanced prompts for FusionX-style output
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"

# Enhanced CSS for FusionX theme
custom_css = """
/* Enhanced FusionX theme with cinematic styling */
.gradio-container {
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
    background: linear-gradient(135deg, #1a1a2e 0%, #16213e 25%, #0f3460 50%, #533a7d 75%, #6a4c93 100%) !important;
    background-size: 400% 400% !important;
    animation: cinematicShift 20s ease infinite !important;
}

@keyframes cinematicShift {
    0% { background-position: 0% 50%; }
    25% { background-position: 100% 50%; }
    50% { background-position: 100% 100%; }
    75% { background-position: 0% 100%; }
    100% { background-position: 0% 50%; }
}

/* Main container with cinematic glass effect */
.main-container {
    backdrop-filter: blur(15px);
    background: rgba(255, 255, 255, 0.08) !important;
    border-radius: 25px !important;
    padding: 35px !important;
    box-shadow: 0 12px 40px 0 rgba(31, 38, 135, 0.4) !important;
    border: 1px solid rgba(255, 255, 255, 0.15) !important;
    position: relative;
    overflow: hidden;
}

.main-container::before {
    content: '';
    position: absolute;
    top: 0;
    left: 0;
    right: 0;
    bottom: 0;
    background: linear-gradient(45deg, rgba(255,255,255,0.1) 0%, transparent 50%, rgba(255,255,255,0.05) 100%);
    pointer-events: none;
}

/* Enhanced header with FusionX branding */
h1 {
    background: linear-gradient(45deg, #ffffff, #f0f8ff, #e6e6fa) !important;
    -webkit-background-clip: text !important;
    -webkit-text-fill-color: transparent !important;
    background-clip: text !important;
    font-weight: 900 !important;
    font-size: 2.8rem !important;
    text-align: center !important;
    margin-bottom: 2.5rem !important;
    text-shadow: 2px 2px 8px rgba(0,0,0,0.3) !important;
    position: relative;
}

h1::after {
    content: '🎬 FusionX Enhanced';
    display: block;
    font-size: 1rem;
    color: #6a4c93;
    margin-top: 0.5rem;
    font-weight: 500;
}

/* Enhanced component containers */
.input-container, .output-container {
    background: rgba(255, 255, 255, 0.06) !important;
    border-radius: 20px !important;
    padding: 25px !important;
    margin: 15px 0 !important;
    backdrop-filter: blur(10px) !important;
    border: 1px solid rgba(255, 255, 255, 0.12) !important;
    box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1) !important;
}

/* Cinematic input styling */
input, textarea, .gr-box {
    background: rgba(255, 255, 255, 0.95) !important;
    border: 1px solid rgba(106, 76, 147, 0.3) !important;
    border-radius: 12px !important;
    color: #1a1a2e !important;
    transition: all 0.4s ease !important;
    box-shadow: 0 2px 8px rgba(106, 76, 147, 0.1) !important;
}

input:focus, textarea:focus {
    background: rgba(255, 255, 255, 1) !important;
    border-color: #6a4c93 !important;
    box-shadow: 0 0 0 3px rgba(106, 76, 147, 0.15) !important;
    transform: translateY(-1px) !important;
}

/* Enhanced FusionX button */
.generate-btn {
    background: linear-gradient(135deg, #6a4c93 0%, #533a7d 50%, #0f3460 100%) !important;
    color: white !important;
    font-weight: 700 !important;
    font-size: 1.2rem !important;
    padding: 15px 40px !important;
    border-radius: 60px !important;
    border: none !important;
    cursor: pointer !important;
    transition: all 0.4s ease !important;
    box-shadow: 0 6px 20px rgba(106, 76, 147, 0.4) !important;
    position: relative;
    overflow: hidden;
}

.generate-btn::before {
    content: '';
    position: absolute;
    top: 0;
    left: -100%;
    width: 100%;
    height: 100%;
    background: linear-gradient(90deg, transparent, rgba(255,255,255,0.3), transparent);
    transition: left 0.5s ease;
}

.generate-btn:hover::before {
    left: 100%;
}

.generate-btn:hover {
    transform: translateY(-3px) scale(1.02) !important;
    box-shadow: 0 8px 25px rgba(106, 76, 147, 0.6) !important;
}

/* Enhanced slider styling */
input[type="range"] {
    background: transparent !important;
}

input[type="range"]::-webkit-slider-track {
    background: linear-gradient(90deg, rgba(106, 76, 147, 0.3), rgba(83, 58, 125, 0.5)) !important;
    border-radius: 8px !important;
    height: 8px !important;
}

input[type="range"]::-webkit-slider-thumb {
    background: linear-gradient(135deg, #6a4c93, #533a7d) !important;
    border: 3px solid white !important;
    border-radius: 50% !important;
    cursor: pointer !important;
    width: 22px !important;
    height: 22px !important;
    -webkit-appearance: none !important;
    box-shadow: 0 2px 8px rgba(106, 76, 147, 0.3) !important;
}

/* Enhanced accordion */
.gr-accordion {
    background: rgba(255, 255, 255, 0.04) !important;
    border-radius: 15px !important;
    border: 1px solid rgba(255, 255, 255, 0.08) !important;
    margin: 20px 0 !important;
    backdrop-filter: blur(5px) !important;
}

/* Enhanced labels */
label {
    color: #ffffff !important;
    font-weight: 600 !important;
    font-size: 1rem !important;
    margin-bottom: 8px !important;
    text-shadow: 1px 1px 2px rgba(0,0,0,0.5) !important;
}

/* Enhanced image upload */
.image-upload {
    border: 3px dashed rgba(106, 76, 147, 0.4) !important;
    border-radius: 20px !important;
    background: rgba(255, 255, 255, 0.03) !important;
    transition: all 0.4s ease !important;
    position: relative;
}

.image-upload:hover {
    border-color: rgba(106, 76, 147, 0.7) !important;
    background: rgba(255, 255, 255, 0.08) !important;
    transform: scale(1.01) !important;
}

/* Enhanced video output */
video {
    border-radius: 20px !important;
    box-shadow: 0 8px 30px rgba(0, 0, 0, 0.4) !important;
    border: 2px solid rgba(106, 76, 147, 0.3) !important;
}

/* Enhanced examples section */
.gr-examples {
    background: rgba(255, 255, 255, 0.04) !important;
    border-radius: 20px !important;
    padding: 25px !important;
    margin-top: 25px !important;
    border: 1px solid rgba(255, 255, 255, 0.1) !important;
}

/* Enhanced checkbox */
input[type="checkbox"] {
    accent-color: #6a4c93 !important;
    transform: scale(1.2) !important;
}

/* Responsive enhancements */
@media (max-width: 768px) {
    h1 { font-size: 2.2rem !important; }
    .main-container { padding: 25px !important; }
    .generate-btn { padding: 12px 30px !important; font-size: 1.1rem !important; }
}

/* Badge container styling */
.badge-container {
    display: flex;
    justify-content: center;
    gap: 15px;
    margin: 20px 0;
    flex-wrap: wrap;
}

.badge-container img {
    border-radius: 8px;
    transition: transform 0.3s ease;
}

.badge-container img:hover {
    transform: scale(1.05);
}
"""

def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h,
                                 min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w

    aspect_ratio = orig_h / orig_w
    
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))

    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

def get_duration(input_image, prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    # FusionX optimized duration calculation
    if steps > 8 and duration_seconds > 3:
        return 100
    elif steps > 8 or duration_seconds > 3:
        return 80
    else:
        return 65

@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width, 
                   negative_prompt=default_negative_prompt, duration_seconds=3,
                   guidance_scale=1, steps=8,  # FusionX optimized default
                   seed=42, randomize_seed=False, 
                   progress=gr.Progress(track_tqdm=True)):
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    resized_image = input_image.resize((target_w, target_h))

    # Enhanced prompt for FusionX-style output
    enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"

    with torch.inference_mode():
        output_frames_list = pipe(
            image=resized_image, 
            prompt=enhanced_prompt, 
            negative_prompt=negative_prompt,
            height=target_h, 
            width=target_w, 
            num_frames=num_frames,
            guidance_scale=float(guidance_scale), 
            num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    return video_path, current_seed

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_classes=["main-container"]):
        gr.Markdown("# ⚑ FusionX Enhanced Wan 2.1 I2V (14B)")

        # Enhanced badges for FusionX
        gr.HTML("""
        <div class="badge-container">
            <a href="https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX" target="_blank">
                <img src="https://img.shields.io/static/v1?label=FusionX&message=ENHANCED%20MODEL&color=%236a4c93&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="FusionX Enhanced">
            </a>
            <a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX" target="_blank">
                <img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-FusioniX&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model">
            </a>
            <a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX2" target="_blank">
                <img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-Fusioni2X&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model">
            </a>            
            <a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank">
                <img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
            </a>
        </div>
        """)
        
        
        with gr.Row():
            with gr.Column(elem_classes=["input-container"]):
                input_image_component = gr.Image(
                    type="pil", 
                    label="πŸ–ΌοΈ Input Image (auto-resized to target H/W)",
                    elem_classes=["image-upload"]
                )
                prompt_input = gr.Textbox(
                    label="✏️ Enhanced Prompt (FusionX-style enhancements applied)", 
                    value=default_prompt_i2v,
                    lines=3
                )
                duration_seconds_input = gr.Slider(
                    minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), 
                    maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), 
                    step=0.1, 
                    value=2, 
                    label="⏱️ Duration (seconds)", 
                    info=f"FusionX Enhanced supports {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps. Recommended: 2-5 seconds"
                )
                
                with gr.Accordion("βš™οΈ Advanced FusionX Settings", open=False):
                    negative_prompt_input = gr.Textbox(
                        label="❌ Negative Prompt (FusionX Enhanced)", 
                        value=default_negative_prompt, 
                        lines=4
                    )
                    seed_input = gr.Slider(
                        label="🎲 Seed", 
                        minimum=0, 
                        maximum=MAX_SEED, 
                        step=1, 
                        value=42, 
                        interactive=True
                    )
                    randomize_seed_checkbox = gr.Checkbox(
                        label="πŸ”€ Randomize seed", 
                        value=True, 
                        interactive=True
                    )
                    with gr.Row():
                        height_input = gr.Slider(
                            minimum=SLIDER_MIN_H, 
                            maximum=SLIDER_MAX_H, 
                            step=MOD_VALUE, 
                            value=DEFAULT_H_SLIDER_VALUE, 
                            label=f"πŸ“ Output Height (FusionX optimized: {MOD_VALUE} multiples)"
                        )
                        width_input = gr.Slider(
                            minimum=SLIDER_MIN_W, 
                            maximum=SLIDER_MAX_W, 
                            step=MOD_VALUE, 
                            value=DEFAULT_W_SLIDER_VALUE, 
                            label=f"πŸ“ Output Width (FusionX optimized: {MOD_VALUE} multiples)"
                        )
                    steps_slider = gr.Slider(
                        minimum=1, 
                        maximum=20, 
                        step=1, 
                        value=8,  # FusionX optimized
                        label="πŸš€ Inference Steps (FusionX Enhanced: 8-10 recommended)", 
                        info="FusionX Enhanced delivers excellent results in just 8-10 steps!"
                    ) 
                    guidance_scale_input = gr.Slider(
                        minimum=0.0, 
                        maximum=20.0, 
                        step=0.5, 
                        value=1.0, 
                        label="🎯 Guidance Scale (FusionX optimized)", 
                        visible=False
                    )

                generate_button = gr.Button(
                    "🎬 Generate FusionX Enhanced Video", 
                    variant="primary",
                    elem_classes=["generate-btn"]
                )
                
            with gr.Column(elem_classes=["output-container"]):
                video_output = gr.Video(
                    label="πŸŽ₯ FusionX Enhanced Generated Video", 
                    autoplay=True, 
                    interactive=False
                )

        input_image_component.upload(
            fn=handle_image_upload_for_dims_wan,
            inputs=[input_image_component, height_input, width_input],
            outputs=[height_input, width_input]
        )
        
        input_image_component.clear( 
            fn=handle_image_upload_for_dims_wan,
            inputs=[input_image_component, height_input, width_input],
            outputs=[height_input, width_input]
        )
        
        ui_inputs = [
            input_image_component, prompt_input, height_input, width_input,
            negative_prompt_input, duration_seconds_input,
            guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
        ]
        generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

        with gr.Column():
            gr.Examples(
                examples=[ 
                    ["peng.png", "a penguin gracefully dancing in the pristine snow, cinematic motion with detailed feathers", 576, 576],
                    ["frog.jpg", "the frog jumps energetically with smooth, lifelike motion and detailed texture", 576, 576],
                ],
                inputs=[input_image_component, prompt_input, height_input, width_input], 
                outputs=[video_output, seed_input], 
                fn=generate_video, 
                cache_examples="lazy",
                label="🌟 FusionX Enhanced Example Gallery"
            )
        

if __name__ == "__main__":
    demo.queue().launch()