Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,998 Bytes
5f364b5 f4cf641 c103ac7 f4cf641 5f364b5 c103ac7 5f364b5 f4cf641 12d6cf5 8268b44 5f364b5 014e784 25bd139 014e784 bfa6fb3 014e784 afae83c 25bd139 afae83c 014e784 25bd139 014e784 25bd139 014e784 25bd139 014e784 afae83c bfa6fb3 25bd139 014e784 25bd139 8116465 25bd139 ec4cebf 8116465 bfa6fb3 25bd139 bfa6fb3 014e784 25bd139 014e784 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c bfa6fb3 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 afae83c 25bd139 f792a37 1e531a7 8268b44 bfa6fb3 afae83c bfa6fb3 014e784 25bd139 afae83c 25bd139 afae83c bfa6fb3 ec4cebf afae83c 014e784 fe14409 25bd139 fe14409 25bd139 1c74078 fe14409 1c74078 fe14409 ec4cebf 25bd139 afae83c 014e784 afae83c 25bd139 afae83c b1f8aa0 afae83c b1f8aa0 afae83c c68ae83 25bd139 afae83c 014e784 afae83c 25bd139 bfa6fb3 afae83c bfa6fb3 afae83c ec4cebf c68ae83 afae83c 25bd139 c68ae83 afae83c 25bd139 bfa6fb3 afae83c 25bd139 afae83c 25bd139 014e784 afae83c 25bd139 ec4cebf afae83c 014e784 ec4cebf afae83c ec4cebf afae83c ec4cebf 014e784 afae83c ec4cebf afae83c ec4cebf afae83c c68ae83 afae83c 1c74078 afae83c 014e784 afae83c 25bd139 bfa6fb3 5f364b5 afae83c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
# Base MODEL_ID (using original Wan model that's compatible with diffusers)
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
# FusionX enhancement LoRAs (based on FusionX composition)
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
# Additional enhancement LoRAs for FusionX-like quality
ACCVIDEO_LORA_REPO = "alibaba-pai/Wan2.1-Fun-Reward-LoRAs"
MPS_LORA_FILENAME = "Wan2.1-MPS-Reward-LoRA.safetensors"
# Load enhanced model components
print("π Loading FusionX Enhanced Wan2.1 I2V Model...")
image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
# FusionX optimized scheduler settings
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")
# Load FusionX enhancement LoRAs
lora_adapters = []
lora_weights = []
try:
# Load CausVid LoRA (strength 1.0 as per FusionX)
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
lora_adapters.append("causvid_lora")
lora_weights.append(1.0) # FusionX uses 1.0 for CausVid
print("β
CausVid LoRA loaded (strength: 1.0)")
except Exception as e:
print(f"β οΈ CausVid LoRA not loaded: {e}")
try:
# Load MPS Rewards LoRA (strength 0.7 as per FusionX)
mps_path = hf_hub_download(repo_id=ACCVIDEO_LORA_REPO, filename=MPS_LORA_FILENAME)
pipe.load_lora_weights(mps_path, adapter_name="mps_lora")
lora_adapters.append("mps_lora")
lora_weights.append(0.7) # FusionX uses 0.7 for MPS
print("β
MPS Rewards LoRA loaded (strength: 0.7)")
except Exception as e:
print(f"β οΈ MPS LoRA not loaded: {e}")
# Apply LoRA adapters if any were loaded
if lora_adapters:
pipe.set_adapters(lora_adapters, adapter_weights=lora_weights)
pipe.fuse_lora()
print(f"π₯ FusionX Enhancement Applied: {len(lora_adapters)} LoRAs fused")
else:
print("π No LoRAs loaded - using base Wan model")
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 576 # FusionX optimized default
DEFAULT_W_SLIDER_VALUE = 1024 # FusionX optimized default
NEW_FORMULA_MAX_AREA = 576.0 * 1024.0 # Updated for FusionX
SLIDER_MIN_H, SLIDER_MAX_H = 128, 1080
SLIDER_MIN_W, SLIDER_MAX_W = 128, 1920
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121 # FusionX supports up to 121 frames
# Enhanced prompts for FusionX-style output
default_prompt_i2v = "Cinematic motion, smooth animation, detailed textures, dynamic lighting, professional cinematography"
default_negative_prompt = "Static image, no motion, blurred details, overexposed, underexposed, low quality, worst quality, JPEG artifacts, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, watermark, text, signature, three legs, many people in the background, walking backwards"
# Enhanced CSS for FusionX theme
custom_css = """
/* Enhanced FusionX theme with cinematic styling */
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
background: linear-gradient(135deg, #1a1a2e 0%, #16213e 25%, #0f3460 50%, #533a7d 75%, #6a4c93 100%) !important;
background-size: 400% 400% !important;
animation: cinematicShift 20s ease infinite !important;
}
@keyframes cinematicShift {
0% { background-position: 0% 50%; }
25% { background-position: 100% 50%; }
50% { background-position: 100% 100%; }
75% { background-position: 0% 100%; }
100% { background-position: 0% 50%; }
}
/* Main container with cinematic glass effect */
.main-container {
backdrop-filter: blur(15px);
background: rgba(255, 255, 255, 0.08) !important;
border-radius: 25px !important;
padding: 35px !important;
box-shadow: 0 12px 40px 0 rgba(31, 38, 135, 0.4) !important;
border: 1px solid rgba(255, 255, 255, 0.15) !important;
position: relative;
overflow: hidden;
}
.main-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, rgba(255,255,255,0.1) 0%, transparent 50%, rgba(255,255,255,0.05) 100%);
pointer-events: none;
}
/* Enhanced header with FusionX branding */
h1 {
background: linear-gradient(45deg, #ffffff, #f0f8ff, #e6e6fa) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
font-weight: 900 !important;
font-size: 2.8rem !important;
text-align: center !important;
margin-bottom: 2.5rem !important;
text-shadow: 2px 2px 8px rgba(0,0,0,0.3) !important;
position: relative;
}
h1::after {
content: 'π¬ FusionX Enhanced';
display: block;
font-size: 1rem;
color: #6a4c93;
margin-top: 0.5rem;
font-weight: 500;
}
/* Enhanced component containers */
.input-container, .output-container {
background: rgba(255, 255, 255, 0.06) !important;
border-radius: 20px !important;
padding: 25px !important;
margin: 15px 0 !important;
backdrop-filter: blur(10px) !important;
border: 1px solid rgba(255, 255, 255, 0.12) !important;
box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1) !important;
}
/* Cinematic input styling */
input, textarea, .gr-box {
background: rgba(255, 255, 255, 0.95) !important;
border: 1px solid rgba(106, 76, 147, 0.3) !important;
border-radius: 12px !important;
color: #1a1a2e !important;
transition: all 0.4s ease !important;
box-shadow: 0 2px 8px rgba(106, 76, 147, 0.1) !important;
}
input:focus, textarea:focus {
background: rgba(255, 255, 255, 1) !important;
border-color: #6a4c93 !important;
box-shadow: 0 0 0 3px rgba(106, 76, 147, 0.15) !important;
transform: translateY(-1px) !important;
}
/* Enhanced FusionX button */
.generate-btn {
background: linear-gradient(135deg, #6a4c93 0%, #533a7d 50%, #0f3460 100%) !important;
color: white !important;
font-weight: 700 !important;
font-size: 1.2rem !important;
padding: 15px 40px !important;
border-radius: 60px !important;
border: none !important;
cursor: pointer !important;
transition: all 0.4s ease !important;
box-shadow: 0 6px 20px rgba(106, 76, 147, 0.4) !important;
position: relative;
overflow: hidden;
}
.generate-btn::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255,255,255,0.3), transparent);
transition: left 0.5s ease;
}
.generate-btn:hover::before {
left: 100%;
}
.generate-btn:hover {
transform: translateY(-3px) scale(1.02) !important;
box-shadow: 0 8px 25px rgba(106, 76, 147, 0.6) !important;
}
/* Enhanced slider styling */
input[type="range"] {
background: transparent !important;
}
input[type="range"]::-webkit-slider-track {
background: linear-gradient(90deg, rgba(106, 76, 147, 0.3), rgba(83, 58, 125, 0.5)) !important;
border-radius: 8px !important;
height: 8px !important;
}
input[type="range"]::-webkit-slider-thumb {
background: linear-gradient(135deg, #6a4c93, #533a7d) !important;
border: 3px solid white !important;
border-radius: 50% !important;
cursor: pointer !important;
width: 22px !important;
height: 22px !important;
-webkit-appearance: none !important;
box-shadow: 0 2px 8px rgba(106, 76, 147, 0.3) !important;
}
/* Enhanced accordion */
.gr-accordion {
background: rgba(255, 255, 255, 0.04) !important;
border-radius: 15px !important;
border: 1px solid rgba(255, 255, 255, 0.08) !important;
margin: 20px 0 !important;
backdrop-filter: blur(5px) !important;
}
/* Enhanced labels */
label {
color: #ffffff !important;
font-weight: 600 !important;
font-size: 1rem !important;
margin-bottom: 8px !important;
text-shadow: 1px 1px 2px rgba(0,0,0,0.5) !important;
}
/* Enhanced image upload */
.image-upload {
border: 3px dashed rgba(106, 76, 147, 0.4) !important;
border-radius: 20px !important;
background: rgba(255, 255, 255, 0.03) !important;
transition: all 0.4s ease !important;
position: relative;
}
.image-upload:hover {
border-color: rgba(106, 76, 147, 0.7) !important;
background: rgba(255, 255, 255, 0.08) !important;
transform: scale(1.01) !important;
}
/* Enhanced video output */
video {
border-radius: 20px !important;
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.4) !important;
border: 2px solid rgba(106, 76, 147, 0.3) !important;
}
/* Enhanced examples section */
.gr-examples {
background: rgba(255, 255, 255, 0.04) !important;
border-radius: 20px !important;
padding: 25px !important;
margin-top: 25px !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
}
/* Enhanced checkbox */
input[type="checkbox"] {
accent-color: #6a4c93 !important;
transform: scale(1.2) !important;
}
/* Responsive enhancements */
@media (max-width: 768px) {
h1 { font-size: 2.2rem !important; }
.main-container { padding: 25px !important; }
.generate-btn { padding: 12px 30px !important; font-size: 1.1rem !important; }
}
/* Badge container styling */
.badge-container {
display: flex;
justify-content: center;
gap: 15px;
margin: 20px 0;
flex-wrap: wrap;
}
.badge-container img {
border-radius: 8px;
transition: transform 0.3s ease;
}
.badge-container img:hover {
transform: scale(1.05);
}
"""
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
min_slider_h, max_slider_h,
min_slider_w, max_slider_w,
default_h, default_w):
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0:
return default_h, default_w
aspect_ratio = orig_h / orig_w
calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
if uploaded_pil_image is None:
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
gr.Warning("Error attempting to calculate new dimensions")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
def get_duration(input_image, prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress):
# FusionX optimized duration calculation
if steps > 8 and duration_seconds > 3:
return 100
elif steps > 8 or duration_seconds > 3:
return 80
else:
return 65
@spaces.GPU(duration=get_duration)
def generate_video(input_image, prompt, height, width,
negative_prompt=default_negative_prompt, duration_seconds=3,
guidance_scale=1, steps=8, # FusionX optimized default
seed=42, randomize_seed=False,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = input_image.resize((target_w, target_h))
# Enhanced prompt for FusionX-style output
enhanced_prompt = f"{prompt}, cinematic quality, smooth motion, detailed animation, dynamic lighting"
with torch.inference_mode():
output_frames_list = pipe(
image=resized_image,
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
height=target_h,
width=target_w,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_classes=["main-container"]):
gr.Markdown("# β‘ FusionX Enhanced Wan 2.1 I2V (14B)")
# Enhanced badges for FusionX
gr.HTML("""
<div class="badge-container">
<a href="https://huggingface.co/vrgamedevgirl84/Wan14BT2VFusioniX" target="_blank">
<img src="https://img.shields.io/static/v1?label=FusionX&message=ENHANCED%20MODEL&color=%236a4c93&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="FusionX Enhanced">
</a>
<a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX" target="_blank">
<img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-FusioniX&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model">
</a>
<a href="https://huggingface.co/spaces/Heartsync/WAN2-1-fast-T2V-FusioniX2" target="_blank">
<img src="https://img.shields.io/static/v1?label=BASE&message=WAN%202.1%20T2V-Fusioni2X&color=%23008080&labelColor=%23533a7d&logo=huggingface&logoColor=%23ffffff&style=for-the-badge" alt="Base Model">
</a>
<a href="https://huggingface.co/spaces/Heartsync/wan2-1-fast-security" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.1&message=FAST%20%26%20Furios&color=%23008080&labelColor=%230000ff&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
</a>
</div>
""")
with gr.Row():
with gr.Column(elem_classes=["input-container"]):
input_image_component = gr.Image(
type="pil",
label="πΌοΈ Input Image (auto-resized to target H/W)",
elem_classes=["image-upload"]
)
prompt_input = gr.Textbox(
label="βοΈ Enhanced Prompt (FusionX-style enhancements applied)",
value=default_prompt_i2v,
lines=3
)
duration_seconds_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1),
step=0.1,
value=2,
label="β±οΈ Duration (seconds)",
info=f"FusionX Enhanced supports {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps. Recommended: 2-5 seconds"
)
with gr.Accordion("βοΈ Advanced FusionX Settings", open=False):
negative_prompt_input = gr.Textbox(
label="β Negative Prompt (FusionX Enhanced)",
value=default_negative_prompt,
lines=4
)
seed_input = gr.Slider(
label="π² Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
interactive=True
)
randomize_seed_checkbox = gr.Checkbox(
label="π Randomize seed",
value=True,
interactive=True
)
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=DEFAULT_H_SLIDER_VALUE,
label=f"π Output Height (FusionX optimized: {MOD_VALUE} multiples)"
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=DEFAULT_W_SLIDER_VALUE,
label=f"π Output Width (FusionX optimized: {MOD_VALUE} multiples)"
)
steps_slider = gr.Slider(
minimum=1,
maximum=20,
step=1,
value=8, # FusionX optimized
label="π Inference Steps (FusionX Enhanced: 8-10 recommended)",
info="FusionX Enhanced delivers excellent results in just 8-10 steps!"
)
guidance_scale_input = gr.Slider(
minimum=0.0,
maximum=20.0,
step=0.5,
value=1.0,
label="π― Guidance Scale (FusionX optimized)",
visible=False
)
generate_button = gr.Button(
"π¬ Generate FusionX Enhanced Video",
variant="primary",
elem_classes=["generate-btn"]
)
with gr.Column(elem_classes=["output-container"]):
video_output = gr.Video(
label="π₯ FusionX Enhanced Generated Video",
autoplay=True,
interactive=False
)
input_image_component.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
input_image_component.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
ui_inputs = [
input_image_component, prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
with gr.Column():
gr.Examples(
examples=[
["peng.png", "a penguin gracefully dancing in the pristine snow, cinematic motion with detailed feathers", 576, 576],
["frog.jpg", "the frog jumps energetically with smooth, lifelike motion and detailed texture", 576, 576],
],
inputs=[input_image_component, prompt_input, height_input, width_input],
outputs=[video_output, seed_input],
fn=generate_video,
cache_examples="lazy",
label="π FusionX Enhanced Example Gallery"
)
if __name__ == "__main__":
demo.queue().launch() |