Spaces:
Running
Running
File size: 10,983 Bytes
7576661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""
TextLens - AI-Powered OCR Application
Main entry point for the application.
"""
import gradio as gr
import torch
import time
import logging
from threading import Thread
from PIL import Image
from transformers import (
AutoProcessor,
AutoModelForCausalLM,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configurations
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""Returns an HTML snippet for a thin animated progress bar with a label."""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# Load models at startup
logger.info("π Loading OCR models...")
logger.info("This may take a few minutes on first run...")
try:
# Load Qwen2VL OCR model (primary fast model)
logger.info(f"Loading Qwen2VL OCR model: {QV_MODEL_ID}")
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
logger.info("β
Qwen2VL OCR model loaded successfully!")
# Load RolmOCR model (specialized document model)
logger.info(f"Loading RolmOCR model: {ROLMOCR_MODEL_ID}")
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
ROLMOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
logger.info("β
RolmOCR model loaded successfully!")
MODELS_LOADED = True
logger.info("π All models loaded and ready!")
except Exception as e:
logger.error(f"β Failed to load models: {str(e)}")
MODELS_LOADED = False
def extract_text_from_image(image, text_query, use_rolmocr=False):
"""Extract text from image using selected OCR model with streaming response."""
if not MODELS_LOADED:
yield "β Error: OCR models failed to load. Please check your setup and try again."
return
if image is None:
yield "β No image provided. Please upload an image to extract text."
return
try:
# Ensure image is in RGB format
if not isinstance(image, Image.Image):
yield "β Invalid image format. Please upload a valid image file."
return
if image.mode != 'RGB':
image = image.convert('RGB')
# Prepare text query
if not text_query.strip():
text_query = "Extract all text from this image"
# Select model and processor
if use_rolmocr:
processor = rolmocr_processor
model = rolmocr_model
model_name = "RolmOCR"
logger.info("Using RolmOCR for specialized document processing")
else:
processor = qwen_processor
model = qwen_model
model_name = "Qwen2VL OCR"
logger.info("Using Qwen2VL OCR for fast text extraction")
# Build messages for the model
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": text_query},
{"type": "image", "image": image}
]
}
]
# Apply chat template and prepare inputs
prompt_full = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
).to("cuda" if torch.cuda.is_available() else "cpu")
# Set up streaming
streamer = TextIteratorStreamer(
processor,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=False,
temperature=0.1
)
# Start generation in separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Yield progress bar first
yield progress_bar_html(f"π Processing with {model_name}")
# Stream the response
buffer = ""
for new_text in streamer:
buffer += new_text
# Clean up any special tokens that might leak through
clean_buffer = buffer.replace("<|im_end|>", "").replace("<|endoftext|>", "").strip()
if clean_buffer:
time.sleep(0.01) # Small delay for smooth streaming
yield clean_buffer
# Ensure thread completes
thread.join()
# Final clean response
final_response = buffer.replace("<|im_end|>", "").replace("<|endoftext|>", "").strip()
if not final_response:
yield "β οΈ No text was detected in the image. Please try with a clearer image or different model."
else:
logger.info(f"β
Successfully extracted text: {len(final_response)} characters")
yield final_response
except Exception as e:
error_msg = f"β Error processing image: {str(e)}"
logger.error(f"OCR processing failed: {str(e)}")
yield error_msg
def get_model_status():
"""Get current model status information."""
if MODELS_LOADED:
device = "π’ GPU (CUDA)" if torch.cuda.is_available() else "π‘ CPU"
return f"""
**π€ Model Status: β
Ready**
**Primary Model:** Qwen2VL-OCR-2B (Fast general OCR)
**Secondary Model:** RolmOCR (Specialized documents)
**Device:** {device}
**Memory:** Optimized for streaming inference
β¨ Both models loaded and ready for OCR processing!
"""
else:
return """
**π€ Model Status: β Failed to Load**
Please check your internet connection and GPU setup.
Models need to be downloaded on first run.
"""
# Create Gradio Interface
def create_interface():
"""Create the streamlined OCR interface."""
with gr.Blocks(
title="TextLens - Fast AI OCR",
theme=gr.themes.Soft(),
css="""
.container { max-width: 1200px; margin: auto; }
.header { text-align: center; padding: 20px; }
.model-status { background: #f0f0f0; padding: 15px; border-radius: 8px; margin: 10px 0; }
"""
) as interface:
# Header
gr.HTML("""
<div class="header">
<h1>π TextLens - AI-Powered OCR</h1>
<p style="font-size: 16px; color: #666;">
Fast and accurate text extraction using modern AI models
</p>
</div>
""")
# Model Status
with gr.Row():
with gr.Column():
status_display = gr.Markdown(
value=get_model_status(),
elem_classes=["model-status"]
)
refresh_btn = gr.Button("π Refresh Status", size="sm")
# Main Interface
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Upload Image")
image_input = gr.Image(
label="Upload image for OCR",
type="pil",
sources=["upload", "clipboard"]
)
text_query = gr.Textbox(
label="π OCR Instructions (optional)",
placeholder="Extract all text from this image",
value="Extract all text from this image",
lines=2
)
use_rolmocr = gr.Checkbox(
label="π― Use RolmOCR (specialized for documents)",
value=False,
info="Check for complex documents/tables, uncheck for general text"
)
extract_btn = gr.Button(
"π Extract Text",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("### π Extracted Text")
text_output = gr.Textbox(
label="OCR Results",
lines=15,
max_lines=25,
placeholder="Extracted text will appear here...\n\nβ’ Upload an image to get started\nβ’ Choose between fast OCR or specialized document processing\nβ’ Results will stream in real-time",
show_copy_button=True
)
# Event handlers
extract_btn.click(
fn=extract_text_from_image,
inputs=[image_input, text_query, use_rolmocr],
outputs=text_output,
show_progress="hidden" # We handle progress with custom HTML
)
# Auto-extract on image upload
image_input.upload(
fn=extract_text_from_image,
inputs=[image_input, text_query, use_rolmocr],
outputs=text_output,
show_progress="hidden"
)
refresh_btn.click(
fn=get_model_status,
outputs=status_display
)
return interface
if __name__ == "__main__":
logger.info("π Starting TextLens OCR application...")
try:
interface = create_interface()
# Launch configuration
interface.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
debug=False
)
except Exception as e:
logger.error(f"Failed to start application: {str(e)}")
raise |