Spaces:
Running
Running
Upload 2 files
Browse files- app.py +321 -0
- requirements.txt +19 -0
app.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
TextLens - AI-Powered OCR Application
|
3 |
+
|
4 |
+
Main entry point for the application.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import time
|
10 |
+
import logging
|
11 |
+
from threading import Thread
|
12 |
+
from PIL import Image
|
13 |
+
from transformers import (
|
14 |
+
AutoProcessor,
|
15 |
+
AutoModelForCausalLM,
|
16 |
+
TextIteratorStreamer,
|
17 |
+
Qwen2VLForConditionalGeneration,
|
18 |
+
)
|
19 |
+
from transformers import Qwen2_5_VLForConditionalGeneration
|
20 |
+
|
21 |
+
# Configure logging
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
# Model configurations
|
26 |
+
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
27 |
+
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
|
28 |
+
|
29 |
+
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
30 |
+
"""Returns an HTML snippet for a thin animated progress bar with a label."""
|
31 |
+
return f'''
|
32 |
+
<div style="display: flex; align-items: center;">
|
33 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
34 |
+
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
|
35 |
+
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
|
36 |
+
</div>
|
37 |
+
</div>
|
38 |
+
<style>
|
39 |
+
@keyframes loading {{
|
40 |
+
0% {{ transform: translateX(-100%); }}
|
41 |
+
100% {{ transform: translateX(100%); }}
|
42 |
+
}}
|
43 |
+
</style>
|
44 |
+
'''
|
45 |
+
|
46 |
+
# Load models at startup
|
47 |
+
logger.info("π Loading OCR models...")
|
48 |
+
logger.info("This may take a few minutes on first run...")
|
49 |
+
|
50 |
+
try:
|
51 |
+
# Load Qwen2VL OCR model (primary fast model)
|
52 |
+
logger.info(f"Loading Qwen2VL OCR model: {QV_MODEL_ID}")
|
53 |
+
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
54 |
+
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
55 |
+
QV_MODEL_ID,
|
56 |
+
trust_remote_code=True,
|
57 |
+
torch_dtype=torch.float16
|
58 |
+
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
|
59 |
+
logger.info("β
Qwen2VL OCR model loaded successfully!")
|
60 |
+
|
61 |
+
# Load RolmOCR model (specialized document model)
|
62 |
+
logger.info(f"Loading RolmOCR model: {ROLMOCR_MODEL_ID}")
|
63 |
+
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
|
64 |
+
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
65 |
+
ROLMOCR_MODEL_ID,
|
66 |
+
trust_remote_code=True,
|
67 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
68 |
+
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
|
69 |
+
logger.info("β
RolmOCR model loaded successfully!")
|
70 |
+
|
71 |
+
MODELS_LOADED = True
|
72 |
+
logger.info("π All models loaded and ready!")
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
logger.error(f"β Failed to load models: {str(e)}")
|
76 |
+
MODELS_LOADED = False
|
77 |
+
|
78 |
+
def extract_text_from_image(image, text_query, use_rolmocr=False):
|
79 |
+
"""Extract text from image using selected OCR model with streaming response."""
|
80 |
+
|
81 |
+
if not MODELS_LOADED:
|
82 |
+
yield "β Error: OCR models failed to load. Please check your setup and try again."
|
83 |
+
return
|
84 |
+
|
85 |
+
if image is None:
|
86 |
+
yield "β No image provided. Please upload an image to extract text."
|
87 |
+
return
|
88 |
+
|
89 |
+
try:
|
90 |
+
# Ensure image is in RGB format
|
91 |
+
if not isinstance(image, Image.Image):
|
92 |
+
yield "β Invalid image format. Please upload a valid image file."
|
93 |
+
return
|
94 |
+
|
95 |
+
if image.mode != 'RGB':
|
96 |
+
image = image.convert('RGB')
|
97 |
+
|
98 |
+
# Prepare text query
|
99 |
+
if not text_query.strip():
|
100 |
+
text_query = "Extract all text from this image"
|
101 |
+
|
102 |
+
# Select model and processor
|
103 |
+
if use_rolmocr:
|
104 |
+
processor = rolmocr_processor
|
105 |
+
model = rolmocr_model
|
106 |
+
model_name = "RolmOCR"
|
107 |
+
logger.info("Using RolmOCR for specialized document processing")
|
108 |
+
else:
|
109 |
+
processor = qwen_processor
|
110 |
+
model = qwen_model
|
111 |
+
model_name = "Qwen2VL OCR"
|
112 |
+
logger.info("Using Qwen2VL OCR for fast text extraction")
|
113 |
+
|
114 |
+
# Build messages for the model
|
115 |
+
messages = [
|
116 |
+
{
|
117 |
+
"role": "user",
|
118 |
+
"content": [
|
119 |
+
{"type": "text", "text": text_query},
|
120 |
+
{"type": "image", "image": image}
|
121 |
+
]
|
122 |
+
}
|
123 |
+
]
|
124 |
+
|
125 |
+
# Apply chat template and prepare inputs
|
126 |
+
prompt_full = processor.apply_chat_template(
|
127 |
+
messages,
|
128 |
+
tokenize=False,
|
129 |
+
add_generation_prompt=True
|
130 |
+
)
|
131 |
+
|
132 |
+
inputs = processor(
|
133 |
+
text=[prompt_full],
|
134 |
+
images=[image],
|
135 |
+
return_tensors="pt",
|
136 |
+
padding=True,
|
137 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
138 |
+
|
139 |
+
# Set up streaming
|
140 |
+
streamer = TextIteratorStreamer(
|
141 |
+
processor,
|
142 |
+
skip_prompt=True,
|
143 |
+
skip_special_tokens=True
|
144 |
+
)
|
145 |
+
|
146 |
+
generation_kwargs = dict(
|
147 |
+
inputs,
|
148 |
+
streamer=streamer,
|
149 |
+
max_new_tokens=1024,
|
150 |
+
do_sample=False,
|
151 |
+
temperature=0.1
|
152 |
+
)
|
153 |
+
|
154 |
+
# Start generation in separate thread
|
155 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
156 |
+
thread.start()
|
157 |
+
|
158 |
+
# Yield progress bar first
|
159 |
+
yield progress_bar_html(f"π Processing with {model_name}")
|
160 |
+
|
161 |
+
# Stream the response
|
162 |
+
buffer = ""
|
163 |
+
for new_text in streamer:
|
164 |
+
buffer += new_text
|
165 |
+
# Clean up any special tokens that might leak through
|
166 |
+
clean_buffer = buffer.replace("<|im_end|>", "").replace("<|endoftext|>", "").strip()
|
167 |
+
if clean_buffer:
|
168 |
+
time.sleep(0.01) # Small delay for smooth streaming
|
169 |
+
yield clean_buffer
|
170 |
+
|
171 |
+
# Ensure thread completes
|
172 |
+
thread.join()
|
173 |
+
|
174 |
+
# Final clean response
|
175 |
+
final_response = buffer.replace("<|im_end|>", "").replace("<|endoftext|>", "").strip()
|
176 |
+
if not final_response:
|
177 |
+
yield "β οΈ No text was detected in the image. Please try with a clearer image or different model."
|
178 |
+
else:
|
179 |
+
logger.info(f"β
Successfully extracted text: {len(final_response)} characters")
|
180 |
+
yield final_response
|
181 |
+
|
182 |
+
except Exception as e:
|
183 |
+
error_msg = f"β Error processing image: {str(e)}"
|
184 |
+
logger.error(f"OCR processing failed: {str(e)}")
|
185 |
+
yield error_msg
|
186 |
+
|
187 |
+
def get_model_status():
|
188 |
+
"""Get current model status information."""
|
189 |
+
if MODELS_LOADED:
|
190 |
+
device = "π’ GPU (CUDA)" if torch.cuda.is_available() else "π‘ CPU"
|
191 |
+
return f"""
|
192 |
+
**π€ Model Status: β
Ready**
|
193 |
+
|
194 |
+
**Primary Model:** Qwen2VL-OCR-2B (Fast general OCR)
|
195 |
+
**Secondary Model:** RolmOCR (Specialized documents)
|
196 |
+
**Device:** {device}
|
197 |
+
**Memory:** Optimized for streaming inference
|
198 |
+
|
199 |
+
β¨ Both models loaded and ready for OCR processing!
|
200 |
+
"""
|
201 |
+
else:
|
202 |
+
return """
|
203 |
+
**π€ Model Status: β Failed to Load**
|
204 |
+
|
205 |
+
Please check your internet connection and GPU setup.
|
206 |
+
Models need to be downloaded on first run.
|
207 |
+
"""
|
208 |
+
|
209 |
+
# Create Gradio Interface
|
210 |
+
def create_interface():
|
211 |
+
"""Create the streamlined OCR interface."""
|
212 |
+
|
213 |
+
with gr.Blocks(
|
214 |
+
title="TextLens - Fast AI OCR",
|
215 |
+
theme=gr.themes.Soft(),
|
216 |
+
css="""
|
217 |
+
.container { max-width: 1200px; margin: auto; }
|
218 |
+
.header { text-align: center; padding: 20px; }
|
219 |
+
.model-status { background: #f0f0f0; padding: 15px; border-radius: 8px; margin: 10px 0; }
|
220 |
+
"""
|
221 |
+
) as interface:
|
222 |
+
|
223 |
+
# Header
|
224 |
+
gr.HTML("""
|
225 |
+
<div class="header">
|
226 |
+
<h1>π TextLens - AI-Powered OCR</h1>
|
227 |
+
<p style="font-size: 16px; color: #666;">
|
228 |
+
Fast and accurate text extraction using modern AI models
|
229 |
+
</p>
|
230 |
+
</div>
|
231 |
+
""")
|
232 |
+
|
233 |
+
# Model Status
|
234 |
+
with gr.Row():
|
235 |
+
with gr.Column():
|
236 |
+
status_display = gr.Markdown(
|
237 |
+
value=get_model_status(),
|
238 |
+
elem_classes=["model-status"]
|
239 |
+
)
|
240 |
+
refresh_btn = gr.Button("π Refresh Status", size="sm")
|
241 |
+
|
242 |
+
# Main Interface
|
243 |
+
with gr.Row():
|
244 |
+
with gr.Column(scale=1):
|
245 |
+
gr.Markdown("### π Upload Image")
|
246 |
+
image_input = gr.Image(
|
247 |
+
label="Upload image for OCR",
|
248 |
+
type="pil",
|
249 |
+
sources=["upload", "clipboard"]
|
250 |
+
)
|
251 |
+
|
252 |
+
text_query = gr.Textbox(
|
253 |
+
label="π OCR Instructions (optional)",
|
254 |
+
placeholder="Extract all text from this image",
|
255 |
+
value="Extract all text from this image",
|
256 |
+
lines=2
|
257 |
+
)
|
258 |
+
|
259 |
+
use_rolmocr = gr.Checkbox(
|
260 |
+
label="π― Use RolmOCR (specialized for documents)",
|
261 |
+
value=False,
|
262 |
+
info="Check for complex documents/tables, uncheck for general text"
|
263 |
+
)
|
264 |
+
|
265 |
+
extract_btn = gr.Button(
|
266 |
+
"π Extract Text",
|
267 |
+
variant="primary",
|
268 |
+
size="lg"
|
269 |
+
)
|
270 |
+
|
271 |
+
with gr.Column(scale=1):
|
272 |
+
gr.Markdown("### π Extracted Text")
|
273 |
+
text_output = gr.Textbox(
|
274 |
+
label="OCR Results",
|
275 |
+
lines=15,
|
276 |
+
max_lines=25,
|
277 |
+
placeholder="Extracted text will appear here...\n\nβ’ Upload an image to get started\nβ’ Choose between fast OCR or specialized document processing\nβ’ Results will stream in real-time",
|
278 |
+
show_copy_button=True
|
279 |
+
)
|
280 |
+
|
281 |
+
# Event handlers
|
282 |
+
extract_btn.click(
|
283 |
+
fn=extract_text_from_image,
|
284 |
+
inputs=[image_input, text_query, use_rolmocr],
|
285 |
+
outputs=text_output,
|
286 |
+
show_progress="hidden" # We handle progress with custom HTML
|
287 |
+
)
|
288 |
+
|
289 |
+
# Auto-extract on image upload
|
290 |
+
image_input.upload(
|
291 |
+
fn=extract_text_from_image,
|
292 |
+
inputs=[image_input, text_query, use_rolmocr],
|
293 |
+
outputs=text_output,
|
294 |
+
show_progress="hidden"
|
295 |
+
)
|
296 |
+
|
297 |
+
refresh_btn.click(
|
298 |
+
fn=get_model_status,
|
299 |
+
outputs=status_display
|
300 |
+
)
|
301 |
+
|
302 |
+
return interface
|
303 |
+
|
304 |
+
if __name__ == "__main__":
|
305 |
+
logger.info("π Starting TextLens OCR application...")
|
306 |
+
|
307 |
+
try:
|
308 |
+
interface = create_interface()
|
309 |
+
|
310 |
+
# Launch configuration
|
311 |
+
interface.launch(
|
312 |
+
share=False,
|
313 |
+
server_name="0.0.0.0",
|
314 |
+
server_port=7860,
|
315 |
+
show_error=True,
|
316 |
+
debug=False
|
317 |
+
)
|
318 |
+
|
319 |
+
except Exception as e:
|
320 |
+
logger.error(f"Failed to start application: {str(e)}")
|
321 |
+
raise
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core ML dependencies for Qwen2VL and RolmOCR
|
2 |
+
torch>=2.0.0
|
3 |
+
transformers>=4.44.0
|
4 |
+
accelerate>=0.20.0
|
5 |
+
sentencepiece>=0.1.97
|
6 |
+
protobuf>=3.20.0
|
7 |
+
|
8 |
+
# UI framework
|
9 |
+
gradio>=4.44.0
|
10 |
+
|
11 |
+
# Image processing
|
12 |
+
pillow>=9.0.0
|
13 |
+
|
14 |
+
# Essential utilities
|
15 |
+
numpy>=1.21.0
|
16 |
+
requests>=2.25.0
|
17 |
+
|
18 |
+
# Optional: HuggingFace Spaces optimization (if deploying to HF Spaces)
|
19 |
+
spaces>=0.19.0
|