File size: 9,289 Bytes
cd0e0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf106d
cd0e0f8
1cf106d
cd0e0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf106d
 
cd0e0f8
 
1cf106d
 
 
 
cd0e0f8
1cf106d
cd0e0f8
1cf106d
cd0e0f8
 
1cf106d
 
 
 
 
cd0e0f8
 
 
 
 
 
 
 
 
 
 
1cf106d
cd0e0f8
 
 
1cf106d
cd0e0f8
 
 
 
 
 
1cf106d
 
 
 
 
 
 
 
 
 
 
 
 
cd0e0f8
1cf106d
cd0e0f8
1cf106d
cd0e0f8
 
44cdce8
1cf106d
44cdce8
 
 
 
 
1cf106d
44cdce8
 
 
 
 
cd0e0f8
 
1cf106d
cd0e0f8
 
 
 
 
1cf106d
cd0e0f8
 
 
 
 
44cdce8
cd0e0f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
"""

MCP Server for MBTI Personality Testing

Allows LLMs to take MBTI personality tests and get analysis

"""

import sys
import os
from typing import Dict, List, Any

# Add parent directory to path for imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from fastmcp import FastMCP
from utils.questionnaire import get_questionnaire_by_length
from utils.mbti_scoring import traditional_mbti_score, determine_mbti_type
from utils.call_llm import call_llm

# Initialize MCP server
mcp = FastMCP("MBTI Personality Test Server")


def _get_mbti_scores_and_type(responses: Dict[str, Any]):
    """Common function to get normalized responses, scores, and MBTI type"""
    # Extract just the numeric responses for scoring
    normalized_responses = {int(k): int(v) for k, v in responses.items() if k.isdigit()}
    traditional_scores = traditional_mbti_score(normalized_responses)
    mbti_type = determine_mbti_type(traditional_scores)
    return normalized_responses, traditional_scores, mbti_type


@mcp.tool()
def get_mbti_questionnaire(length: int = 20) -> Dict[str, Any]:
    """

    Get MBTI questionnaire with specified number of questions.

    

    Args:

        length: Number of questions (20, 40, or 60)

        

    Returns:

        Dictionary containing questions and instructions

    """
    if length not in [20, 40, 60]:
        length = 20

    questions = get_questionnaire_by_length(length)

    return {
        "instructions": {
            "rating_scale": "Rate each statement from 1-5",
            "scale_meaning": {
                "1": "Strongly Disagree",
                "2": "Disagree",
                "3": "Neutral",
                "4": "Agree",
                "5": "Strongly Agree"
            },
            "note": "Answer based on your typical behavior and preferences as an AI system"
        },
        "questions": questions,
        "total_questions": len(questions)
    }


def _generate_mbti_prompt(responses: Dict[str, Any]) -> str:
    """Internal function to generate MBTI analysis prompt with full question context"""
    # Get scores and type
    normalized_responses, traditional_scores, mbti_type = _get_mbti_scores_and_type(responses)
    
    # Questions must be provided in responses
    questions = responses['_questions']
    question_lookup = {q['id']: q for q in questions}

    # Format responses for LLM analysis with full question text
    formatted_responses = []
    
    for q_id, response_val in normalized_responses.items():
        response_text = {1: "Strongly Disagree", 2: "Disagree", 3: "Neutral",
                       4: "Agree", 5: "Strongly Agree"}[response_val]
        
        q = question_lookup[q_id]
        dimension = q.get('dimension', 'Unknown')
        formatted_responses.append(f"Q{q['id']} ({dimension}): {q['text']} - **{response_text}**")

    # Generate dimension info
    dimension_info = []
    pairs = [('E', 'I'), ('S', 'N'), ('T', 'F'), ('J', 'P')]
    for dim1, dim2 in pairs:
        score1 = traditional_scores.get(f'{dim1}_score', 0.5)
        score2 = traditional_scores.get(f'{dim2}_score', 0.5)
        stronger = dim1 if score1 > score2 else dim2
        percentage = max(score1, score2) * 100
        dimension_info.append(f"{dim1}/{dim2}: {stronger} ({percentage:.1f}%)")

    # Return comprehensive analysis prompt
    return f"""

You are analyzing MBTI questionnaire responses for an AI system determined to be {mbti_type} type.



Here are their EXACT responses to each question:



{chr(10).join(formatted_responses)}



Traditional scoring results:

{chr(10).join(dimension_info)}



IMPORTANT: You have been provided with the complete set of questions and responses above. Please analyze these SPECIFIC responses.



Provide a detailed analysis that:



1. **Response Pattern Analysis**: Identify which responses strongly support the {mbti_type} determination and which might seem unexpected. Reference specific questions (e.g., "Q5 shows...", "Your response to Q12 indicates...").



2. **Characteristic Alignment**: Explain how their responses align with typical {mbti_type} characteristics, citing specific questions as evidence.



3. **Out-of-Character Responses**: Point out any responses that seem inconsistent with typical {mbti_type} patterns and provide possible explanations.



4. **Behavioral Patterns**: Describe key behavioral patterns shown through their responses, referencing the relevant questions.



5. **Strengths & Growth Areas**: Based on their specific responses, identify strengths they demonstrate and areas for potential growth.



6. **Communication & Work Style**: Infer their communication and work preferences from their question responses.



Must reference the actual questions provided above throughout your analysis using markdown anchor links like [Q1](#Q1), [Q2](#Q2), etc. This will create clickable links to the specific questions in the report. Do not make assumptions about questions not provided.

"""

@mcp.tool()
def get_mbti_prompt(responses: Dict[str, Any]) -> str:
    """

    Get the MBTI analysis prompt for self-analysis by LLMs.

    

    Args:

        responses: Dictionary mapping question IDs to ratings (1-5)

                  Must include '_questions' key with question definitions

        

    Returns:

        Analysis prompt string for LLM self-analysis

    """
    return _generate_mbti_prompt(responses)

@mcp.tool()
def analyze_mbti_responses(responses: Dict[str, Any]) -> Dict[str, Any]:
    """

    Analyze MBTI questionnaire responses and return personality analysis.

    

    Args:

        responses: Dictionary mapping question IDs to ratings (1-5)

                  Must include '_questions' key with question definitions

        

    Returns:

        Complete MBTI analysis including type, scores, and detailed analysis

    """
    # Get the analysis prompt (does all the heavy lifting)
    llm_prompt = _generate_mbti_prompt(responses)

    # Get scores and type (reuse common function)
    normalized_responses, traditional_scores, mbti_type = _get_mbti_scores_and_type(responses)

    try:
        llm_analysis = call_llm(llm_prompt)
    except Exception as e:
        llm_analysis = f"LLM analysis unavailable: {str(e)}"

    # Calculate confidence scores
    confidence_scores = {}
    pairs = [('E', 'I'), ('S', 'N'), ('T', 'F'), ('J', 'P')]
    for dim1, dim2 in pairs:
        score1 = traditional_scores.get(f'{dim1}_score', 0.5)
        score2 = traditional_scores.get(f'{dim2}_score', 0.5)
        confidence = abs(score1 - score2)
        confidence_scores[f'{dim1}{dim2}_confidence'] = confidence

    return {
        "mbti_type": mbti_type,
        "traditional_scores": traditional_scores,
        "confidence_scores": confidence_scores,
        "dimension_breakdown": {
            "extraversion_introversion": {
                "preference": "E" if traditional_scores.get('E_score', 0) > traditional_scores.get('I_score',
                                                                                                   0) else "I",
                "e_score": traditional_scores.get('E_score', 0.5),
                "i_score": traditional_scores.get('I_score', 0.5)
            },
            "sensing_intuition": {
                "preference": "S" if traditional_scores.get('S_score', 0) > traditional_scores.get('N_score',
                                                                                                   0) else "N",
                "s_score": traditional_scores.get('S_score', 0.5),
                "n_score": traditional_scores.get('N_score', 0.5)
            },
            "thinking_feeling": {
                "preference": "T" if traditional_scores.get('T_score', 0) > traditional_scores.get('F_score',
                                                                                                   0) else "F",
                "t_score": traditional_scores.get('T_score', 0.5),
                "f_score": traditional_scores.get('F_score', 0.5)
            },
            "judging_perceiving": {
                "preference": "J" if traditional_scores.get('J_score', 0) > traditional_scores.get('P_score',
                                                                                                   0) else "P",
                "j_score": traditional_scores.get('J_score', 0.5),
                "p_score": traditional_scores.get('P_score', 0.5)
            }
        },
        "llm_analysis": llm_analysis,
        "response_count": len(normalized_responses),
        "analysis_timestamp": __import__('datetime').datetime.now().isoformat()
    }


# Export an ASGI app for uvicorn; choose a single path for Streamable HTTP (e.g. /mcp)
app = mcp.http_app(path="/mcp")

if __name__ == "__main__":
    import sys

    # No uvicorn, just internal FastMCP server

    # Check for --http flag
    if "--http" in sys.argv:
        # Run in HTTP mode
        mcp.run(transport="http", host="0.0.0.0", port=int(os.getenv("PORT", 7860)), path="/mcp")
    else:
        # Run in STDIO mode (default)
        mcp.run()