Spaces:
Running
Running
Upload 5 files
Browse filesAdding MCP Server so that LLMs can look into the mirror
- Dockerfile +8 -0
- MCP_README.md +157 -0
- README.md +202 -176
- requirements.txt +6 -5
- server.py +200 -0
Dockerfile
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12-slim
|
2 |
+
WORKDIR /app
|
3 |
+
COPY requirements.txt .
|
4 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
5 |
+
COPY server.py .
|
6 |
+
COPY utils/ ./utils/
|
7 |
+
EXPOSE 7860
|
8 |
+
CMD ["uvicorn", "server:app", "--host", "0.0.0.0", "--port", "7860"]
|
MCP_README.md
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MBTI MCP Server
|
2 |
+
|
3 |
+
An MCP (Model Context Protocol) server that allows LLMs to take MBTI personality tests and get detailed analysis of their responses.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **3 Simple Tools**: Get questionnaire, get analysis prompt, and analyze responses
|
8 |
+
- **Multiple Question Sets**: 20, 40, or 60 questions
|
9 |
+
- **Traditional + LLM Analysis**: Both algorithmic scoring and AI-powered insights
|
10 |
+
- **AI-Focused Analysis**: Tailored for understanding AI personality patterns
|
11 |
+
- **Dual Transport**: STDIO and HTTP support
|
12 |
+
|
13 |
+
## Quick Start
|
14 |
+
|
15 |
+
### Installation
|
16 |
+
|
17 |
+
```bash
|
18 |
+
cd mcp_server
|
19 |
+
pip install -r requirements.txt
|
20 |
+
|
21 |
+
# Set up Gemini API key for LLM analysis
|
22 |
+
export GEMINI_API_KEY="your-api-key-here"
|
23 |
+
```
|
24 |
+
|
25 |
+
### Running the Server
|
26 |
+
|
27 |
+
```bash
|
28 |
+
# STDIO transport (for MCP clients)
|
29 |
+
python server.py
|
30 |
+
|
31 |
+
# HTTP transport (for web clients)
|
32 |
+
python server.py --http
|
33 |
+
|
34 |
+
# Docker (for deployment anywhere, including Hugging Face Spaces)
|
35 |
+
docker build -t mbti-mcp-server .
|
36 |
+
docker run -p 7860:7860 -e GEMINI_API_KEY="your-api-key" mbti-mcp-server
|
37 |
+
```
|
38 |
+
|
39 |
+
## Tools
|
40 |
+
|
41 |
+
### 1. `get_mbti_questionnaire`
|
42 |
+
|
43 |
+
Get an MBTI questionnaire with specified number of questions.
|
44 |
+
|
45 |
+
**Parameters:**
|
46 |
+
- `length` (int, optional): Number of questions (20, 40, or 60). Default: 20
|
47 |
+
|
48 |
+
**Returns:**
|
49 |
+
- Instructions for rating scale
|
50 |
+
- List of questions with IDs and dimensions
|
51 |
+
- Total question count
|
52 |
+
|
53 |
+
### 2. `get_mbti_prompt`
|
54 |
+
|
55 |
+
Get analysis prompt for LLM self-analysis.
|
56 |
+
|
57 |
+
**Parameters:**
|
58 |
+
- `responses` (dict): Question ID to rating mapping (e.g., {"1": 4, "2": 3})
|
59 |
+
|
60 |
+
**Returns:**
|
61 |
+
- Formatted analysis prompt string with responses and scoring results
|
62 |
+
|
63 |
+
### 3. `analyze_mbti_responses`
|
64 |
+
|
65 |
+
Analyze completed questionnaire responses and return complete personality analysis.
|
66 |
+
|
67 |
+
**Parameters:**
|
68 |
+
- `responses` (dict): Question ID to rating mapping (e.g., {"1": 4, "2": 3})
|
69 |
+
|
70 |
+
**Returns:**
|
71 |
+
- MBTI personality type
|
72 |
+
- Traditional scoring breakdown
|
73 |
+
- Confidence scores
|
74 |
+
- Detailed LLM analysis
|
75 |
+
- Dimension preferences
|
76 |
+
|
77 |
+
## Usage Examples
|
78 |
+
|
79 |
+
### For LLM Clients
|
80 |
+
|
81 |
+
1. **Get questionnaire:**
|
82 |
+
```python
|
83 |
+
questionnaire = get_mbti_questionnaire(length=20)
|
84 |
+
```
|
85 |
+
|
86 |
+
2. **Take the test** (LLM responds to each question 1-5)
|
87 |
+
|
88 |
+
3. **Get analysis prompt for self-reflection:**
|
89 |
+
```python
|
90 |
+
responses = {"1": 4, "2": 3, "3": 2, ...}
|
91 |
+
prompt = get_mbti_prompt(responses)
|
92 |
+
# Use this prompt for self-analysis
|
93 |
+
```
|
94 |
+
|
95 |
+
4. **Or get complete analysis:**
|
96 |
+
```python
|
97 |
+
analysis = analyze_mbti_responses(responses)
|
98 |
+
print(f"Your personality type: {analysis['mbti_type']}")
|
99 |
+
```
|
100 |
+
|
101 |
+
## Integration
|
102 |
+
|
103 |
+
### With MCP Clients
|
104 |
+
|
105 |
+
Add to your MCP client configuration:
|
106 |
+
|
107 |
+
```json
|
108 |
+
{
|
109 |
+
"mcpServers": {
|
110 |
+
"mbti": {
|
111 |
+
"command": "python",
|
112 |
+
"args": ["path/to/mcp_server/server.py"],
|
113 |
+
"env": {
|
114 |
+
"GEMINI_API_KEY": "your-api-key"
|
115 |
+
}
|
116 |
+
}
|
117 |
+
}
|
118 |
+
}
|
119 |
+
```
|
120 |
+
|
121 |
+
### With Claude Desktop
|
122 |
+
|
123 |
+
Add to `claude_desktop_config.json`:
|
124 |
+
|
125 |
+
```json
|
126 |
+
{
|
127 |
+
"mcpServers": {
|
128 |
+
"mbti": {
|
129 |
+
"command": "python",
|
130 |
+
"args": ["C:\\path\\to\\mbti-pocketflow\\mcp_server\\server.py"],
|
131 |
+
"env": {
|
132 |
+
"GEMINI_API_KEY": "your-gemini-api-key"
|
133 |
+
}
|
134 |
+
}
|
135 |
+
}
|
136 |
+
}
|
137 |
+
```
|
138 |
+
|
139 |
+
## AI Personality Testing
|
140 |
+
|
141 |
+
This server is specifically designed for LLMs to understand their own personality patterns:
|
142 |
+
|
143 |
+
- **Operational Characteristics**: How the AI makes decisions and processes information
|
144 |
+
- **Interaction Styles**: Preferred communication patterns
|
145 |
+
- **Strengths & Limitations**: Optimal use cases and potential challenges
|
146 |
+
- **Meta-Analysis**: AI analyzing its own responses for self-understanding
|
147 |
+
|
148 |
+
## Development
|
149 |
+
|
150 |
+
The server reuses the existing PocketFlow MBTI utilities:
|
151 |
+
- `utils/questionnaire.py` - Question sets and loading
|
152 |
+
- `utils/mbti_scoring.py` - Traditional MBTI scoring algorithm
|
153 |
+
- `utils/call_llm.py` - LLM integration for analysis
|
154 |
+
|
155 |
+
It does not however use pocketflow nodes or flow
|
156 |
+
|
157 |
+
This ensures consistency with the human-facing Gradio application while providing a clean API for programmatic access.
|
README.md
CHANGED
@@ -1,176 +1,202 @@
|
|
1 |
-
---
|
2 |
-
title: Mbti Pocketflow
|
3 |
-
emoji: 🔥
|
4 |
-
colorFrom: pink
|
5 |
-
colorTo: gray
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.38.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
short_description: PocketFlow application for conducting Myers-Briggs + llm
|
11 |
-
---
|
12 |
-
|
13 |
-
# MBTI Personality Questionnaire
|
14 |
-
|
15 |
-
A PocketFlow-based application for conducting Myers-Briggs Type Indicator (MBTI) personality assessments with both traditional scoring and AI analysis.
|
16 |
-
|
17 |
-
## Features
|
18 |
-
|
19 |
-
- **20/40/60-question MBTI questionnaire** with selectable length for accuracy
|
20 |
-
- **Traditional scoring algorithm** for baseline personality type determination
|
21 |
-
- **AI-powered analysis** using LLM for detailed personality insights with question references
|
22 |
-
- **Interactive Gradio web interface** with auto-save and progress tracking
|
23 |
-
- **HTML report generation** with clickable question references and comprehensive analysis
|
24 |
-
- **Data export/import** for saving and resuming questionnaires
|
25 |
-
- **CLI and test modes** for different use cases
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
│ ├──
|
34 |
-
│ ├──
|
35 |
-
│ ├──
|
36 |
-
│
|
37 |
-
|
38 |
-
├──
|
39 |
-
├──
|
40 |
-
├──
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
```
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
```
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
#
|
73 |
-
python pf_cli.py
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
**
|
121 |
-
**
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
###
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
**
|
155 |
-
|
156 |
-
|
157 |
-
-
|
158 |
-
-
|
159 |
-
-
|
160 |
-
|
161 |
-
**
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Mbti Pocketflow
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.38.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
short_description: PocketFlow application for conducting Myers-Briggs + llm
|
11 |
+
---
|
12 |
+
|
13 |
+
# MBTI Personality Questionnaire
|
14 |
+
|
15 |
+
A PocketFlow-based application for conducting Myers-Briggs Type Indicator (MBTI) personality assessments with both traditional scoring and AI analysis.
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
- **20/40/60-question MBTI questionnaire** with selectable length for accuracy
|
20 |
+
- **Traditional scoring algorithm** for baseline personality type determination
|
21 |
+
- **AI-powered analysis** using LLM for detailed personality insights with question references
|
22 |
+
- **Interactive Gradio web interface** with auto-save and progress tracking
|
23 |
+
- **HTML report generation** with clickable question references and comprehensive analysis
|
24 |
+
- **Data export/import** for saving and resuming questionnaires
|
25 |
+
- **CLI and test modes** for different use cases
|
26 |
+
- **🆕 MCP Server** for LLMs to take MBTI tests themselves via Model Context Protocol
|
27 |
+
|
28 |
+
## Project Structure
|
29 |
+
|
30 |
+
```
|
31 |
+
|
32 |
+
├── utils/
|
33 |
+
│ ├── call_llm.py # LLM integration (Gemini)
|
34 |
+
│ ├── questionnaire.py # Question sets (20/40/60) and loading/saving
|
35 |
+
│ ├── mbti_scoring.py # Traditional MBTI scoring
|
36 |
+
│ ├── report_generator.py # HTML report generation with markdown support
|
37 |
+
│ └── test_data.py # Test data generation
|
38 |
+
├── nodes.py # PocketFlow nodes (LoadQuestionnaire, LLMAnalysis, etc.)
|
39 |
+
├── flow.py # PocketFlow flow definition
|
40 |
+
├── app.py # **Main Gradio web interface with LLM**
|
41 |
+
├── pf_cli.py # PocketFlow CLI interface
|
42 |
+
├── README.md # Main README
|
43 |
+
├── server.py # FastMCP server for LLMs to take MBTI tests
|
44 |
+
├── MCP_README.md # MCP README
|
45 |
+
├── Dockerfile # Dockerfile for MCP server deployment
|
46 |
+
└── requirements.txt # Dependencies
|
47 |
+
|
48 |
+
```
|
49 |
+
|
50 |
+
## Quick Start
|
51 |
+
|
52 |
+
### 1. Web Interface (Recommended)
|
53 |
+
|
54 |
+
```bash
|
55 |
+
# Install dependencies
|
56 |
+
pip install -r requirements.txt
|
57 |
+
|
58 |
+
# Set up Gemini API key
|
59 |
+
export GEMINI_API_KEY="your-api-key-here"
|
60 |
+
# Or on Windows:
|
61 |
+
set GEMINI_API_KEY=your-api-key-here
|
62 |
+
|
63 |
+
# Run Gradio web interface
|
64 |
+
python app.py
|
65 |
+
```
|
66 |
+
|
67 |
+
Then open http://127.0.0.1:7860 in your browser.
|
68 |
+
|
69 |
+
### 2. Command Line Interface
|
70 |
+
|
71 |
+
```bash
|
72 |
+
# Run CLI questionnaire
|
73 |
+
python pf_cli.py
|
74 |
+
|
75 |
+
# Run with test data
|
76 |
+
python pf_cli.py --test --test-type INTJ
|
77 |
+
|
78 |
+
# Import previous questionnaire
|
79 |
+
python pf_cli.py --import-file questionnaire.json
|
80 |
+
```
|
81 |
+
|
82 |
+
### 3. MCP Server (For LLMs)
|
83 |
+
|
84 |
+
```bash
|
85 |
+
# Install MCP server dependencies
|
86 |
+
cd mcp_server
|
87 |
+
pip install -r requirements.txt
|
88 |
+
|
89 |
+
# Set up API key
|
90 |
+
export GEMINI_API_KEY="your-api-key-here"
|
91 |
+
|
92 |
+
# Run MCP server
|
93 |
+
python server.py
|
94 |
+
```
|
95 |
+
|
96 |
+
Allows LLMs to take MBTI tests via Model Context Protocol. See `mcp_server/README.md` for details.
|
97 |
+
|
98 |
+
### 4. Live demo on HF Spaces
|
99 |
+
|
100 |
+
https://huggingface.co/spaces/Fancellu/mbti-pocketflow
|
101 |
+
|
102 |
+
## Usage Examples
|
103 |
+
|
104 |
+
### Gradio Web Interface
|
105 |
+
```bash
|
106 |
+
python app.py
|
107 |
+
```
|
108 |
+
- **Interactive web interface** at http://127.0.0.1:7860
|
109 |
+
- **Question length selection** (20/40/60 questions)
|
110 |
+
- **Auto-save responses** as you navigate
|
111 |
+
- **Progress tracking** and export functionality
|
112 |
+
- **AI analysis** with clickable question references
|
113 |
+
- **HTML report generation** with comprehensive insights
|
114 |
+
- **Load/save questionnaires** for resuming later
|
115 |
+
|
116 |
+
### Command Line Interface
|
117 |
+
```bash
|
118 |
+
python pf_cli.py
|
119 |
+
```
|
120 |
+
- **Complete PocketFlow architecture**
|
121 |
+
- **Traditional scoring** with optional LLM analysis
|
122 |
+
- **Automatic report generation**
|
123 |
+
- **Data import/export** in JSON format
|
124 |
+
|
125 |
+
### Test Modes
|
126 |
+
```bash
|
127 |
+
# CLI test with specific MBTI type
|
128 |
+
python pf_cli.py --test --test-type ENFP
|
129 |
+
```
|
130 |
+
|
131 |
+
### Import/Export
|
132 |
+
```bash
|
133 |
+
# Export: Questionnaire data automatically saved as:
|
134 |
+
# mbti_questionnaire_pf_partial_[COUNT]q_[TIMESTAMP].json
|
135 |
+
|
136 |
+
# Import: Load previous questionnaire
|
137 |
+
python pf_cli.py --import-file questionnaire.json
|
138 |
+
```
|
139 |
+
|
140 |
+
## MBTI Types Supported
|
141 |
+
|
142 |
+
The application recognizes all 16 MBTI personality types:
|
143 |
+
|
144 |
+
**Analysts:** INTJ, INTP, ENTJ, ENTP
|
145 |
+
**Diplomats:** INFJ, INFP, ENFJ, ENFP
|
146 |
+
**Sentinels:** ISTJ, ISFJ, ESTJ, ESFJ
|
147 |
+
**Explorers:** ISTP, ISFP, ESTP, ESFP
|
148 |
+
|
149 |
+
## Key Features
|
150 |
+
|
151 |
+
### Question Sets
|
152 |
+
- **20 questions:** Quick assessment (5 per dimension)
|
153 |
+
- **40 questions:** Balanced assessment (10 per dimension)
|
154 |
+
- **60 questions:** Comprehensive assessment (15 per dimension)
|
155 |
+
|
156 |
+
### AI Analysis
|
157 |
+
- **Question-specific insights** with clickable references like [Q1](#Q1)
|
158 |
+
- **Out-of-character response detection** and explanations
|
159 |
+
- **Evidence-based analysis** citing specific question responses
|
160 |
+
- **Behavioral pattern identification**
|
161 |
+
- **Strengths and growth areas** based on actual responses
|
162 |
+
|
163 |
+
### Web Interface Features
|
164 |
+
- **Auto-save** responses on navigation
|
165 |
+
- **Progress tracking** with completion indicators
|
166 |
+
- **Export progress** at any time (partial questionnaires)
|
167 |
+
- **Load previous sessions** to continue where you left off
|
168 |
+
- **Immediate download** of reports and data
|
169 |
+
|
170 |
+
## Development
|
171 |
+
|
172 |
+
### Adding New Features
|
173 |
+
2. Implement utility functions in `utils/`
|
174 |
+
3. Create or modify nodes in `nodes.py`
|
175 |
+
4. Update flow in `flow.py`
|
176 |
+
5. Test with CLI and web interface
|
177 |
+
|
178 |
+
## Dependencies
|
179 |
+
|
180 |
+
**Required:**
|
181 |
+
- Python 3.8+
|
182 |
+
- gradio>=4.0.0 (web interface)
|
183 |
+
- google-genai>=0.3.0 (LLM analysis)
|
184 |
+
- beautifulsoup4 (HTML parsing)
|
185 |
+
- markdown (report generation)
|
186 |
+
|
187 |
+
**Optional:**
|
188 |
+
- pydantic (enhanced data validation)
|
189 |
+
|
190 |
+
See `requirements.txt` for complete list.
|
191 |
+
|
192 |
+
## File Overview
|
193 |
+
|
194 |
+
- **`gradio_pf_llm.py`** - Main web interface with full LLM analysis
|
195 |
+
- **`pf_cli.py`** - Command line interface using PocketFlow architecture
|
196 |
+
- **`nodes.py`** - PocketFlow node implementations
|
197 |
+
- **`flow.py`** - PocketFlow pipeline definition
|
198 |
+
- **`utils/`** - Core utility functions (questionnaire, scoring, reports, LLM)
|
199 |
+
|
200 |
+
## License
|
201 |
+
|
202 |
+
This project follows PocketFlow's open-source approach for educational and research purposes.
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
google-genai>=1.25.0
|
2 |
-
pydantic>=2.0.0
|
3 |
-
markdown~=3.8.2
|
4 |
-
beautifulsoup4
|
5 |
-
pocketflow
|
|
|
|
1 |
+
google-genai>=1.25.0
|
2 |
+
pydantic>=2.0.0
|
3 |
+
markdown~=3.8.2
|
4 |
+
beautifulsoup4
|
5 |
+
pocketflow
|
6 |
+
fastmcp
|
server.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
MCP Server for MBTI Personality Testing
|
4 |
+
Allows LLMs to take MBTI personality tests and get analysis
|
5 |
+
"""
|
6 |
+
|
7 |
+
import sys
|
8 |
+
import os
|
9 |
+
from typing import Dict, List, Any
|
10 |
+
|
11 |
+
# Add parent directory to path for imports
|
12 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
13 |
+
|
14 |
+
from fastmcp import FastMCP
|
15 |
+
from utils.questionnaire import get_questionnaire_by_length
|
16 |
+
from utils.mbti_scoring import traditional_mbti_score, determine_mbti_type
|
17 |
+
from utils.call_llm import call_llm
|
18 |
+
|
19 |
+
# Initialize MCP server
|
20 |
+
mcp = FastMCP("MBTI Personality Test Server")
|
21 |
+
|
22 |
+
|
23 |
+
def _get_mbti_scores_and_type(responses: Dict[str, int]):
|
24 |
+
"""Common function to get normalized responses, scores, and MBTI type"""
|
25 |
+
normalized_responses = {int(k): int(v) for k, v in responses.items() if k.isdigit()}
|
26 |
+
traditional_scores = traditional_mbti_score(normalized_responses)
|
27 |
+
mbti_type = determine_mbti_type(traditional_scores)
|
28 |
+
return normalized_responses, traditional_scores, mbti_type
|
29 |
+
|
30 |
+
|
31 |
+
@mcp.tool()
|
32 |
+
def get_mbti_questionnaire(length: int = 20) -> Dict[str, Any]:
|
33 |
+
"""
|
34 |
+
Get MBTI questionnaire with specified number of questions.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
length: Number of questions (20, 40, or 60)
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
Dictionary containing questions and instructions
|
41 |
+
"""
|
42 |
+
if length not in [20, 40, 60]:
|
43 |
+
length = 20
|
44 |
+
|
45 |
+
questions = get_questionnaire_by_length(length)
|
46 |
+
|
47 |
+
return {
|
48 |
+
"instructions": {
|
49 |
+
"rating_scale": "Rate each statement from 1-5",
|
50 |
+
"scale_meaning": {
|
51 |
+
"1": "Strongly Disagree",
|
52 |
+
"2": "Disagree",
|
53 |
+
"3": "Neutral",
|
54 |
+
"4": "Agree",
|
55 |
+
"5": "Strongly Agree"
|
56 |
+
},
|
57 |
+
"note": "Answer based on your typical behavior and preferences as an AI system"
|
58 |
+
},
|
59 |
+
"questions": questions,
|
60 |
+
"total_questions": len(questions)
|
61 |
+
}
|
62 |
+
|
63 |
+
|
64 |
+
@mcp.tool()
|
65 |
+
def get_mbti_prompt(responses: Dict[str, int]) -> str:
|
66 |
+
"""
|
67 |
+
Get the MBTI analysis prompt for self-analysis by LLMs.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
responses: Dictionary mapping question IDs to ratings (1-5)
|
71 |
+
|
72 |
+
Returns:
|
73 |
+
Analysis prompt string for LLM self-analysis
|
74 |
+
"""
|
75 |
+
# Get scores and type
|
76 |
+
normalized_responses, traditional_scores, mbti_type = _get_mbti_scores_and_type(responses)
|
77 |
+
|
78 |
+
# Format responses for LLM analysis
|
79 |
+
formatted_responses = []
|
80 |
+
for q_id, response_val in normalized_responses.items():
|
81 |
+
response_text = {1: "Strongly Disagree", 2: "Disagree", 3: "Neutral",
|
82 |
+
4: "Agree", 5: "Strongly Agree"}[response_val]
|
83 |
+
formatted_responses.append(f"Q{q_id}: Response - **{response_text}**")
|
84 |
+
|
85 |
+
# Generate dimension info
|
86 |
+
dimension_info = []
|
87 |
+
pairs = [('E', 'I'), ('S', 'N'), ('T', 'F'), ('J', 'P')]
|
88 |
+
for dim1, dim2 in pairs:
|
89 |
+
score1 = traditional_scores.get(f'{dim1}_score', 0.5)
|
90 |
+
score2 = traditional_scores.get(f'{dim2}_score', 0.5)
|
91 |
+
stronger = dim1 if score1 > score2 else dim2
|
92 |
+
percentage = max(score1, score2) * 100
|
93 |
+
dimension_info.append(f"{dim1}/{dim2}: {stronger} ({percentage:.1f}%)")
|
94 |
+
|
95 |
+
# Return the analysis prompt
|
96 |
+
return f"""
|
97 |
+
You are analyzing MBTI questionnaire responses for an AI system determined to be {mbti_type} type.
|
98 |
+
|
99 |
+
Here are the responses:
|
100 |
+
|
101 |
+
{chr(10).join(formatted_responses)}
|
102 |
+
|
103 |
+
Traditional scoring results:
|
104 |
+
{chr(10).join(dimension_info)}
|
105 |
+
|
106 |
+
Provide a detailed analysis of this {mbti_type} personality type based on the response patterns shown above.
|
107 |
+
|
108 |
+
Analyze:
|
109 |
+
1. **Response Pattern Analysis**: How the responses support the {mbti_type} determination
|
110 |
+
2. **Characteristic Alignment**: How responses align with typical {mbti_type} traits
|
111 |
+
3. **Behavioral Patterns**: Key patterns shown in the responses
|
112 |
+
4. **Strengths & Growth Areas**: Based on the response patterns
|
113 |
+
5. **Communication & Work Style**: Inferred from the responses
|
114 |
+
|
115 |
+
Reference specific questions in your analysis (e.g., "Q5 shows...", "Response to Q12 indicates...").
|
116 |
+
"""
|
117 |
+
|
118 |
+
|
119 |
+
@mcp.tool()
|
120 |
+
def analyze_mbti_responses(responses: Dict[str, int]) -> Dict[str, Any]:
|
121 |
+
"""
|
122 |
+
Analyze MBTI questionnaire responses and return personality analysis.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
responses: Dictionary mapping question IDs to ratings (1-5)
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
Complete MBTI analysis including type, scores, and detailed analysis
|
129 |
+
"""
|
130 |
+
# Get the analysis prompt (does all the heavy lifting)
|
131 |
+
llm_prompt = get_mbti_prompt(responses)
|
132 |
+
|
133 |
+
# Get scores and type (reuse common function)
|
134 |
+
normalized_responses, traditional_scores, mbti_type = _get_mbti_scores_and_type(responses)
|
135 |
+
|
136 |
+
try:
|
137 |
+
llm_analysis = call_llm(llm_prompt)
|
138 |
+
except Exception as e:
|
139 |
+
llm_analysis = f"LLM analysis unavailable: {str(e)}"
|
140 |
+
|
141 |
+
# Calculate confidence scores
|
142 |
+
confidence_scores = {}
|
143 |
+
pairs = [('E', 'I'), ('S', 'N'), ('T', 'F'), ('J', 'P')]
|
144 |
+
for dim1, dim2 in pairs:
|
145 |
+
score1 = traditional_scores.get(f'{dim1}_score', 0.5)
|
146 |
+
score2 = traditional_scores.get(f'{dim2}_score', 0.5)
|
147 |
+
confidence = abs(score1 - score2)
|
148 |
+
confidence_scores[f'{dim1}{dim2}_confidence'] = confidence
|
149 |
+
|
150 |
+
return {
|
151 |
+
"mbti_type": mbti_type,
|
152 |
+
"traditional_scores": traditional_scores,
|
153 |
+
"confidence_scores": confidence_scores,
|
154 |
+
"dimension_breakdown": {
|
155 |
+
"extraversion_introversion": {
|
156 |
+
"preference": "E" if traditional_scores.get('E_score', 0) > traditional_scores.get('I_score',
|
157 |
+
0) else "I",
|
158 |
+
"e_score": traditional_scores.get('E_score', 0.5),
|
159 |
+
"i_score": traditional_scores.get('I_score', 0.5)
|
160 |
+
},
|
161 |
+
"sensing_intuition": {
|
162 |
+
"preference": "S" if traditional_scores.get('S_score', 0) > traditional_scores.get('N_score',
|
163 |
+
0) else "N",
|
164 |
+
"s_score": traditional_scores.get('S_score', 0.5),
|
165 |
+
"n_score": traditional_scores.get('N_score', 0.5)
|
166 |
+
},
|
167 |
+
"thinking_feeling": {
|
168 |
+
"preference": "T" if traditional_scores.get('T_score', 0) > traditional_scores.get('F_score',
|
169 |
+
0) else "F",
|
170 |
+
"t_score": traditional_scores.get('T_score', 0.5),
|
171 |
+
"f_score": traditional_scores.get('F_score', 0.5)
|
172 |
+
},
|
173 |
+
"judging_perceiving": {
|
174 |
+
"preference": "J" if traditional_scores.get('J_score', 0) > traditional_scores.get('P_score',
|
175 |
+
0) else "P",
|
176 |
+
"j_score": traditional_scores.get('J_score', 0.5),
|
177 |
+
"p_score": traditional_scores.get('P_score', 0.5)
|
178 |
+
}
|
179 |
+
},
|
180 |
+
"llm_analysis": llm_analysis,
|
181 |
+
"response_count": len(normalized_responses),
|
182 |
+
"analysis_timestamp": __import__('datetime').datetime.now().isoformat()
|
183 |
+
}
|
184 |
+
|
185 |
+
|
186 |
+
# Export an ASGI app for uvicorn; choose a single path for Streamable HTTP (e.g. /mcp)
|
187 |
+
app = mcp.http_app(path="/mcp")
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
import sys
|
191 |
+
|
192 |
+
# No uvicorn, just internal FastMCP server
|
193 |
+
|
194 |
+
# Check for --http flag
|
195 |
+
if "--http" in sys.argv:
|
196 |
+
# Run in HTTP mode
|
197 |
+
mcp.run(transport="http", host="0.0.0.0", port=int(os.getenv("PORT", 7860)), path="/mcp")
|
198 |
+
else:
|
199 |
+
# Run in STDIO mode (default)
|
200 |
+
mcp.run()
|