|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import shutil |
|
import sys |
|
import tempfile |
|
import unittest |
|
from contextlib import contextmanager |
|
from pathlib import Path |
|
|
|
|
|
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) |
|
sys.path.append(os.path.join(git_repo_path, "utils")) |
|
|
|
import check_copies |
|
from check_copies import convert_to_localized_md, find_code_in_transformers, is_copy_consistent |
|
|
|
|
|
|
|
|
|
REFERENCE_CODE = """ def __init__(self, config): |
|
super().__init__() |
|
self.transform = BertPredictionHeadTransform(config) |
|
|
|
# The output weights are the same as the input embeddings, but there is |
|
# an output-only bias for each token. |
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) |
|
|
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` |
|
self.decoder.bias = self.bias |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.transform(hidden_states) |
|
hidden_states = self.decoder(hidden_states) |
|
return hidden_states |
|
""" |
|
|
|
MOCK_BERT_CODE = """from ...modeling_utils import PreTrainedModel |
|
|
|
def bert_function(x): |
|
return x |
|
|
|
|
|
class BertAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
|
|
class BertModel(BertPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.bert = BertEncoder(config) |
|
|
|
@add_docstring(BERT_DOCSTRING) |
|
def forward(self, x): |
|
return self.bert(x) |
|
""" |
|
|
|
MOCK_BERT_COPY_CODE = """from ...modeling_utils import PreTrainedModel |
|
|
|
# Copied from transformers.models.bert.modeling_bert.bert_function |
|
def bert_copy_function(x): |
|
return x |
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertAttention |
|
class BertCopyAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
|
|
# Copied from transformers.models.bert.modeling_bert.BertModel with Bert->BertCopy all-casing |
|
class BertCopyModel(BertCopyPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.bertcopy = BertCopyEncoder(config) |
|
|
|
@add_docstring(BERTCOPY_DOCSTRING) |
|
def forward(self, x): |
|
return self.bertcopy(x) |
|
""" |
|
|
|
|
|
MOCK_DUMMY_BERT_CODE_MATCH = """ |
|
class BertDummyModel: |
|
attr_1 = 1 |
|
attr_2 = 2 |
|
|
|
def __init__(self, a=1, b=2): |
|
self.a = a |
|
self.b = b |
|
|
|
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward |
|
def forward(self, c): |
|
return 1 |
|
|
|
def existing_common(self, c): |
|
return 4 |
|
|
|
def existing_diff_to_be_ignored(self, c): |
|
return 9 |
|
""" |
|
|
|
|
|
MOCK_DUMMY_ROBERTA_CODE_MATCH = """ |
|
# Copied from transformers.models.dummy_bert_match.modeling_dummy_bert_match.BertDummyModel with BertDummy->RobertaBertDummy |
|
class RobertaBertDummyModel: |
|
|
|
attr_1 = 1 |
|
attr_2 = 2 |
|
|
|
def __init__(self, a=1, b=2): |
|
self.a = a |
|
self.b = b |
|
|
|
# Ignore copy |
|
def only_in_roberta_to_be_ignored(self, c): |
|
return 3 |
|
|
|
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward |
|
def forward(self, c): |
|
return 1 |
|
|
|
def existing_common(self, c): |
|
return 4 |
|
|
|
# Ignore copy |
|
def existing_diff_to_be_ignored(self, c): |
|
return 6 |
|
""" |
|
|
|
|
|
MOCK_DUMMY_BERT_CODE_NO_MATCH = """ |
|
class BertDummyModel: |
|
attr_1 = 1 |
|
attr_2 = 2 |
|
|
|
def __init__(self, a=1, b=2): |
|
self.a = a |
|
self.b = b |
|
|
|
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward |
|
def forward(self, c): |
|
return 1 |
|
|
|
def only_in_bert(self, c): |
|
return 7 |
|
|
|
def existing_common(self, c): |
|
return 4 |
|
|
|
def existing_diff_not_ignored(self, c): |
|
return 8 |
|
|
|
def existing_diff_to_be_ignored(self, c): |
|
return 9 |
|
""" |
|
|
|
|
|
MOCK_DUMMY_ROBERTA_CODE_NO_MATCH = """ |
|
# Copied from transformers.models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel with BertDummy->RobertaBertDummy |
|
class RobertaBertDummyModel: |
|
|
|
attr_1 = 1 |
|
attr_2 = 3 |
|
|
|
def __init__(self, a=1, b=2): |
|
self.a = a |
|
self.b = b |
|
|
|
# Ignore copy |
|
def only_in_roberta_to_be_ignored(self, c): |
|
return 3 |
|
|
|
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward |
|
def forward(self, c): |
|
return 1 |
|
|
|
def only_in_roberta_not_ignored(self, c): |
|
return 2 |
|
|
|
def existing_common(self, c): |
|
return 4 |
|
|
|
def existing_diff_not_ignored(self, c): |
|
return 5 |
|
|
|
# Ignore copy |
|
def existing_diff_to_be_ignored(self, c): |
|
return 6 |
|
""" |
|
|
|
|
|
EXPECTED_REPLACED_CODE = """ |
|
# Copied from transformers.models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel with BertDummy->RobertaBertDummy |
|
class RobertaBertDummyModel: |
|
attr_1 = 1 |
|
attr_2 = 2 |
|
|
|
def __init__(self, a=1, b=2): |
|
self.a = a |
|
self.b = b |
|
|
|
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward |
|
def forward(self, c): |
|
return 1 |
|
|
|
def only_in_bert(self, c): |
|
return 7 |
|
|
|
def existing_common(self, c): |
|
return 4 |
|
|
|
def existing_diff_not_ignored(self, c): |
|
return 8 |
|
|
|
# Ignore copy |
|
def existing_diff_to_be_ignored(self, c): |
|
return 6 |
|
|
|
# Ignore copy |
|
def only_in_roberta_to_be_ignored(self, c): |
|
return 3 |
|
""" |
|
|
|
|
|
def replace_in_file(filename, old, new): |
|
with open(filename, encoding="utf-8") as f: |
|
content = f.read() |
|
|
|
content = content.replace(old, new) |
|
|
|
with open(filename, "w", encoding="utf-8", newline="\n") as f: |
|
f.write(content) |
|
|
|
|
|
def create_tmp_repo(tmp_dir): |
|
""" |
|
Creates a mock repository in a temporary folder for testing. |
|
""" |
|
tmp_dir = Path(tmp_dir) |
|
if tmp_dir.exists(): |
|
shutil.rmtree(tmp_dir) |
|
tmp_dir.mkdir(exist_ok=True) |
|
|
|
model_dir = tmp_dir / "src" / "transformers" / "models" |
|
model_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
models = { |
|
"bert": MOCK_BERT_CODE, |
|
"bertcopy": MOCK_BERT_COPY_CODE, |
|
"dummy_bert_match": MOCK_DUMMY_BERT_CODE_MATCH, |
|
"dummy_roberta_match": MOCK_DUMMY_ROBERTA_CODE_MATCH, |
|
"dummy_bert_no_match": MOCK_DUMMY_BERT_CODE_NO_MATCH, |
|
"dummy_roberta_no_match": MOCK_DUMMY_ROBERTA_CODE_NO_MATCH, |
|
} |
|
for model, code in models.items(): |
|
model_subdir = model_dir / model |
|
model_subdir.mkdir(exist_ok=True) |
|
with open(model_subdir / f"modeling_{model}.py", "w", encoding="utf-8", newline="\n") as f: |
|
f.write(code) |
|
|
|
|
|
@contextmanager |
|
def patch_transformer_repo_path(new_folder): |
|
""" |
|
Temporarily patches the variables defines in `check_copies` to use a different location for the repo. |
|
""" |
|
old_repo_path = check_copies.REPO_PATH |
|
old_doc_path = check_copies.PATH_TO_DOCS |
|
old_transformer_path = check_copies.TRANSFORMERS_PATH |
|
repo_path = Path(new_folder).resolve() |
|
check_copies.REPO_PATH = str(repo_path) |
|
check_copies.PATH_TO_DOCS = str(repo_path / "docs" / "source" / "en") |
|
check_copies.TRANSFORMERS_PATH = str(repo_path / "src" / "transformers") |
|
try: |
|
yield |
|
finally: |
|
check_copies.REPO_PATH = old_repo_path |
|
check_copies.PATH_TO_DOCS = old_doc_path |
|
check_copies.TRANSFORMERS_PATH = old_transformer_path |
|
|
|
|
|
class CopyCheckTester(unittest.TestCase): |
|
def test_find_code_in_transformers(self): |
|
with tempfile.TemporaryDirectory() as tmp_folder: |
|
create_tmp_repo(tmp_folder) |
|
with patch_transformer_repo_path(tmp_folder): |
|
code = find_code_in_transformers("models.bert.modeling_bert.BertAttention") |
|
|
|
reference_code = ( |
|
"class BertAttention(nn.Module):\n def __init__(self, config):\n super().__init__()\n" |
|
) |
|
self.assertEqual(code, reference_code) |
|
|
|
def test_is_copy_consistent(self): |
|
path_to_check = ["src", "transformers", "models", "bertcopy", "modeling_bertcopy.py"] |
|
with tempfile.TemporaryDirectory() as tmp_folder: |
|
|
|
create_tmp_repo(tmp_folder) |
|
with patch_transformer_repo_path(tmp_folder): |
|
file_to_check = os.path.join(tmp_folder, *path_to_check) |
|
diffs = is_copy_consistent(file_to_check) |
|
self.assertEqual(diffs, []) |
|
|
|
|
|
create_tmp_repo(tmp_folder) |
|
with patch_transformer_repo_path(tmp_folder): |
|
file_to_check = os.path.join(tmp_folder, *path_to_check) |
|
|
|
replace_in_file(file_to_check, "self.bertcopy(x)", "self.bert(x)") |
|
diffs = is_copy_consistent(file_to_check) |
|
self.assertEqual(diffs, [["models.bert.modeling_bert.BertModel", 22]]) |
|
|
|
_ = is_copy_consistent(file_to_check, overwrite=True) |
|
|
|
with open(file_to_check, encoding="utf-8") as f: |
|
self.assertEqual(f.read(), MOCK_BERT_COPY_CODE) |
|
|
|
def test_is_copy_consistent_with_ignored_match(self): |
|
path_to_check = ["src", "transformers", "models", "dummy_roberta_match", "modeling_dummy_roberta_match.py"] |
|
with tempfile.TemporaryDirectory() as tmp_folder: |
|
|
|
create_tmp_repo(tmp_folder) |
|
with patch_transformer_repo_path(tmp_folder): |
|
file_to_check = os.path.join(tmp_folder, *path_to_check) |
|
diffs = is_copy_consistent(file_to_check) |
|
self.assertEqual(diffs, []) |
|
|
|
def test_is_copy_consistent_with_ignored_no_match(self): |
|
path_to_check = [ |
|
"src", |
|
"transformers", |
|
"models", |
|
"dummy_roberta_no_match", |
|
"modeling_dummy_roberta_no_match.py", |
|
] |
|
with tempfile.TemporaryDirectory() as tmp_folder: |
|
|
|
create_tmp_repo(tmp_folder) |
|
with patch_transformer_repo_path(tmp_folder): |
|
file_to_check = os.path.join(tmp_folder, *path_to_check) |
|
|
|
diffs = is_copy_consistent(file_to_check) |
|
|
|
|
|
self.assertEqual( |
|
diffs, [["models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel", 6]] |
|
) |
|
|
|
_ = is_copy_consistent(file_to_check, overwrite=True) |
|
|
|
with open(file_to_check, encoding="utf-8") as f: |
|
self.assertEqual(f.read(), EXPECTED_REPLACED_CODE) |
|
|
|
def test_convert_to_localized_md(self): |
|
localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"] |
|
|
|
md_list = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" |
|
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" |
|
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" |
|
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." |
|
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," |
|
" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" |
|
" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" |
|
" method has been applied to compress GPT2 into" |
|
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" |
|
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," |
|
" Multilingual BERT into" |
|
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" |
|
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" |
|
" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" |
|
" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" |
|
" Luong, Quoc V. Le, Christopher D. Manning." |
|
) |
|
localized_md_list = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" |
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" |
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" |
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" |
|
) |
|
converted_md_list_sample = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" |
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" |
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" |
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." |
|
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" |
|
" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" |
|
" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" |
|
" method has been applied to compress GPT2 into" |
|
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" |
|
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," |
|
" Multilingual BERT into" |
|
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" |
|
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" |
|
" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" |
|
" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," |
|
" Christopher D. Manning 发布。\n" |
|
) |
|
|
|
num_models_equal, converted_md_list = convert_to_localized_md( |
|
md_list, localized_md_list, localized_readme["format_model_list"] |
|
) |
|
|
|
self.assertFalse(num_models_equal) |
|
self.assertEqual(converted_md_list, converted_md_list_sample) |
|
|
|
num_models_equal, converted_md_list = convert_to_localized_md( |
|
md_list, converted_md_list, localized_readme["format_model_list"] |
|
) |
|
|
|
|
|
self.assertTrue(num_models_equal) |
|
|
|
link_changed_md_list = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" |
|
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" |
|
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" |
|
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." |
|
) |
|
link_unchanged_md_list = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" |
|
" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" |
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" |
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" |
|
) |
|
converted_md_list_sample = ( |
|
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" |
|
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" |
|
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" |
|
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" |
|
) |
|
|
|
num_models_equal, converted_md_list = convert_to_localized_md( |
|
link_changed_md_list, link_unchanged_md_list, localized_readme["format_model_list"] |
|
) |
|
|
|
|
|
self.assertEqual(converted_md_list, converted_md_list_sample) |
|
|