File size: 17,749 Bytes
e0be88b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import sys
import tempfile
import unittest
from contextlib import contextmanager
from pathlib import Path
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
from check_copies import convert_to_localized_md, find_code_in_transformers, is_copy_consistent # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
REFERENCE_CODE = """ def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
"""
MOCK_BERT_CODE = """from ...modeling_utils import PreTrainedModel
def bert_function(x):
return x
class BertAttention(nn.Module):
def __init__(self, config):
super().__init__()
class BertModel(BertPreTrainedModel):
def __init__(self, config):
super().__init__()
self.bert = BertEncoder(config)
@add_docstring(BERT_DOCSTRING)
def forward(self, x):
return self.bert(x)
"""
MOCK_BERT_COPY_CODE = """from ...modeling_utils import PreTrainedModel
# Copied from transformers.models.bert.modeling_bert.bert_function
def bert_copy_function(x):
return x
# Copied from transformers.models.bert.modeling_bert.BertAttention
class BertCopyAttention(nn.Module):
def __init__(self, config):
super().__init__()
# Copied from transformers.models.bert.modeling_bert.BertModel with Bert->BertCopy all-casing
class BertCopyModel(BertCopyPreTrainedModel):
def __init__(self, config):
super().__init__()
self.bertcopy = BertCopyEncoder(config)
@add_docstring(BERTCOPY_DOCSTRING)
def forward(self, x):
return self.bertcopy(x)
"""
MOCK_DUMMY_BERT_CODE_MATCH = """
class BertDummyModel:
attr_1 = 1
attr_2 = 2
def __init__(self, a=1, b=2):
self.a = a
self.b = b
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward
def forward(self, c):
return 1
def existing_common(self, c):
return 4
def existing_diff_to_be_ignored(self, c):
return 9
"""
MOCK_DUMMY_ROBERTA_CODE_MATCH = """
# Copied from transformers.models.dummy_bert_match.modeling_dummy_bert_match.BertDummyModel with BertDummy->RobertaBertDummy
class RobertaBertDummyModel:
attr_1 = 1
attr_2 = 2
def __init__(self, a=1, b=2):
self.a = a
self.b = b
# Ignore copy
def only_in_roberta_to_be_ignored(self, c):
return 3
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward
def forward(self, c):
return 1
def existing_common(self, c):
return 4
# Ignore copy
def existing_diff_to_be_ignored(self, c):
return 6
"""
MOCK_DUMMY_BERT_CODE_NO_MATCH = """
class BertDummyModel:
attr_1 = 1
attr_2 = 2
def __init__(self, a=1, b=2):
self.a = a
self.b = b
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward
def forward(self, c):
return 1
def only_in_bert(self, c):
return 7
def existing_common(self, c):
return 4
def existing_diff_not_ignored(self, c):
return 8
def existing_diff_to_be_ignored(self, c):
return 9
"""
MOCK_DUMMY_ROBERTA_CODE_NO_MATCH = """
# Copied from transformers.models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel with BertDummy->RobertaBertDummy
class RobertaBertDummyModel:
attr_1 = 1
attr_2 = 3
def __init__(self, a=1, b=2):
self.a = a
self.b = b
# Ignore copy
def only_in_roberta_to_be_ignored(self, c):
return 3
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward
def forward(self, c):
return 1
def only_in_roberta_not_ignored(self, c):
return 2
def existing_common(self, c):
return 4
def existing_diff_not_ignored(self, c):
return 5
# Ignore copy
def existing_diff_to_be_ignored(self, c):
return 6
"""
EXPECTED_REPLACED_CODE = """
# Copied from transformers.models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel with BertDummy->RobertaBertDummy
class RobertaBertDummyModel:
attr_1 = 1
attr_2 = 2
def __init__(self, a=1, b=2):
self.a = a
self.b = b
# Copied from transformers.models.dummy_gpt2.modeling_dummy_gpt2.GPT2DummyModel.forward
def forward(self, c):
return 1
def only_in_bert(self, c):
return 7
def existing_common(self, c):
return 4
def existing_diff_not_ignored(self, c):
return 8
# Ignore copy
def existing_diff_to_be_ignored(self, c):
return 6
# Ignore copy
def only_in_roberta_to_be_ignored(self, c):
return 3
"""
def replace_in_file(filename, old, new):
with open(filename, encoding="utf-8") as f:
content = f.read()
content = content.replace(old, new)
with open(filename, "w", encoding="utf-8", newline="\n") as f:
f.write(content)
def create_tmp_repo(tmp_dir):
"""
Creates a mock repository in a temporary folder for testing.
"""
tmp_dir = Path(tmp_dir)
if tmp_dir.exists():
shutil.rmtree(tmp_dir)
tmp_dir.mkdir(exist_ok=True)
model_dir = tmp_dir / "src" / "transformers" / "models"
model_dir.mkdir(parents=True, exist_ok=True)
models = {
"bert": MOCK_BERT_CODE,
"bertcopy": MOCK_BERT_COPY_CODE,
"dummy_bert_match": MOCK_DUMMY_BERT_CODE_MATCH,
"dummy_roberta_match": MOCK_DUMMY_ROBERTA_CODE_MATCH,
"dummy_bert_no_match": MOCK_DUMMY_BERT_CODE_NO_MATCH,
"dummy_roberta_no_match": MOCK_DUMMY_ROBERTA_CODE_NO_MATCH,
}
for model, code in models.items():
model_subdir = model_dir / model
model_subdir.mkdir(exist_ok=True)
with open(model_subdir / f"modeling_{model}.py", "w", encoding="utf-8", newline="\n") as f:
f.write(code)
@contextmanager
def patch_transformer_repo_path(new_folder):
"""
Temporarily patches the variables defines in `check_copies` to use a different location for the repo.
"""
old_repo_path = check_copies.REPO_PATH
old_doc_path = check_copies.PATH_TO_DOCS
old_transformer_path = check_copies.TRANSFORMERS_PATH
repo_path = Path(new_folder).resolve()
check_copies.REPO_PATH = str(repo_path)
check_copies.PATH_TO_DOCS = str(repo_path / "docs" / "source" / "en")
check_copies.TRANSFORMERS_PATH = str(repo_path / "src" / "transformers")
try:
yield
finally:
check_copies.REPO_PATH = old_repo_path
check_copies.PATH_TO_DOCS = old_doc_path
check_copies.TRANSFORMERS_PATH = old_transformer_path
class CopyCheckTester(unittest.TestCase):
def test_find_code_in_transformers(self):
with tempfile.TemporaryDirectory() as tmp_folder:
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
code = find_code_in_transformers("models.bert.modeling_bert.BertAttention")
reference_code = (
"class BertAttention(nn.Module):\n def __init__(self, config):\n super().__init__()\n"
)
self.assertEqual(code, reference_code)
def test_is_copy_consistent(self):
path_to_check = ["src", "transformers", "models", "bertcopy", "modeling_bertcopy.py"]
with tempfile.TemporaryDirectory() as tmp_folder:
# Base check
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
file_to_check = os.path.join(tmp_folder, *path_to_check)
diffs = is_copy_consistent(file_to_check)
self.assertEqual(diffs, [])
# Base check with an inconsistency
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
file_to_check = os.path.join(tmp_folder, *path_to_check)
replace_in_file(file_to_check, "self.bertcopy(x)", "self.bert(x)")
diffs = is_copy_consistent(file_to_check)
self.assertEqual(diffs, [["models.bert.modeling_bert.BertModel", 22]])
_ = is_copy_consistent(file_to_check, overwrite=True)
with open(file_to_check, encoding="utf-8") as f:
self.assertEqual(f.read(), MOCK_BERT_COPY_CODE)
def test_is_copy_consistent_with_ignored_match(self):
path_to_check = ["src", "transformers", "models", "dummy_roberta_match", "modeling_dummy_roberta_match.py"]
with tempfile.TemporaryDirectory() as tmp_folder:
# Base check
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
file_to_check = os.path.join(tmp_folder, *path_to_check)
diffs = is_copy_consistent(file_to_check)
self.assertEqual(diffs, [])
def test_is_copy_consistent_with_ignored_no_match(self):
path_to_check = [
"src",
"transformers",
"models",
"dummy_roberta_no_match",
"modeling_dummy_roberta_no_match.py",
]
with tempfile.TemporaryDirectory() as tmp_folder:
# Base check with an inconsistency
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
file_to_check = os.path.join(tmp_folder, *path_to_check)
diffs = is_copy_consistent(file_to_check)
# line 6: `attr_2 = 3` in `MOCK_DUMMY_ROBERTA_CODE_NO_MATCH`.
# (which has a leading `\n`.)
self.assertEqual(
diffs, [["models.dummy_bert_no_match.modeling_dummy_bert_no_match.BertDummyModel", 6]]
)
_ = is_copy_consistent(file_to_check, overwrite=True)
with open(file_to_check, encoding="utf-8") as f:
self.assertEqual(f.read(), EXPECTED_REPLACED_CODE)
def test_convert_to_localized_md(self):
localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"]
md_list = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1."
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),"
" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"
" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same"
" method has been applied to compress GPT2 into"
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"
" Multilingual BERT into"
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**"
" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders"
" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang"
" Luong, Quoc V. Le, Christopher D. Manning."
)
localized_md_list = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
converted_md_list_sample = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1."
" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文"
" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"
" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same"
" method has been applied to compress GPT2 into"
" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"
" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"
" Multilingual BERT into"
" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"
" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自"
" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather"
" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,"
" Christopher D. Manning 发布。\n"
)
num_models_equal, converted_md_list = convert_to_localized_md(
md_list, localized_md_list, localized_readme["format_model_list"]
)
self.assertFalse(num_models_equal)
self.assertEqual(converted_md_list, converted_md_list_sample)
num_models_equal, converted_md_list = convert_to_localized_md(
md_list, converted_md_list, localized_readme["format_model_list"]
)
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(num_models_equal)
link_changed_md_list = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"
" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"
" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"
" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut."
)
link_unchanged_md_list = (
"1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and"
" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
converted_md_list_sample = (
"1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"
" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"
" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"
" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"
)
num_models_equal, converted_md_list = convert_to_localized_md(
link_changed_md_list, link_unchanged_md_list, localized_readme["format_model_list"]
)
# Check if the model link is synchronized.
self.assertEqual(converted_md_list, converted_md_list_sample)
|