Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,21 +3,23 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from transformers import pipeline
|
|
|
6 |
from pyannote.audio import Pipeline as PyannotePipeline
|
7 |
from dia.model import Dia
|
8 |
from dac.utils import load_model as load_dac_model
|
9 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
10 |
|
11 |
-
#
|
12 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
13 |
|
14 |
-
#
|
15 |
device_map = "auto"
|
16 |
|
17 |
-
# 1.
|
18 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
19 |
rvq.eval()
|
20 |
-
if torch.cuda.is_available():
|
|
|
21 |
|
22 |
# 2. Voice Activity Detection via Pyannote
|
23 |
vad_pipe = PyannotePipeline.from_pretrained(
|
@@ -25,7 +27,7 @@ vad_pipe = PyannotePipeline.from_pretrained(
|
|
25 |
use_auth_token=HF_TOKEN
|
26 |
)
|
27 |
|
28 |
-
# 3. Ultravox
|
29 |
ultravox_pipe = pipeline(
|
30 |
model="fixie-ai/ultravox-v0_4",
|
31 |
trust_remote_code=True,
|
@@ -33,16 +35,13 @@ ultravox_pipe = pipeline(
|
|
33 |
torch_dtype=torch.float16
|
34 |
)
|
35 |
|
36 |
-
# 4. Diffusion
|
37 |
-
diff_pipe =
|
38 |
-
"audio-
|
39 |
-
model="teticio/audio-diffusion-instrumental-hiphop-256",
|
40 |
-
trust_remote_code=True,
|
41 |
-
device_map=device_map,
|
42 |
torch_dtype=torch.float16
|
43 |
-
)
|
44 |
|
45 |
-
# 5. Dia TTS
|
46 |
with init_empty_weights():
|
47 |
dia = Dia.from_pretrained(
|
48 |
"nari-labs/Dia-1.6B",
|
@@ -56,42 +55,40 @@ dia = load_checkpoint_and_dispatch(
|
|
56 |
dtype=torch.float16
|
57 |
)
|
58 |
|
59 |
-
# Inference
|
60 |
def process_audio(audio):
|
61 |
sr, array = audio
|
62 |
-
|
63 |
-
if torch.is_tensor(array): array = array.numpy()
|
64 |
|
65 |
-
# VAD
|
66 |
-
|
67 |
|
68 |
# RVQ encode/decode
|
69 |
-
|
70 |
-
codes = rvq.encode(
|
71 |
decoded = rvq.decode(codes).squeeze().cpu().numpy()
|
72 |
|
73 |
-
# Ultravox
|
74 |
-
|
75 |
-
text =
|
76 |
|
77 |
-
# Diffusion
|
78 |
-
|
79 |
|
80 |
-
# Dia TTS
|
81 |
-
tts = dia.generate(f"[emotion:neutral] {text}")
|
82 |
-
|
83 |
-
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95
|
84 |
|
85 |
-
return (sr,
|
86 |
|
87 |
-
# Gradio UI
|
88 |
-
with gr.Blocks(title="Maya AI 📈"
|
89 |
gr.Markdown("## Maya-AI: Supernatural Conversational Agent")
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from transformers import pipeline
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
from pyannote.audio import Pipeline as PyannotePipeline
|
8 |
from dia.model import Dia
|
9 |
from dac.utils import load_model as load_dac_model
|
10 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
11 |
|
12 |
+
# Retrieve HF token from Secrets
|
13 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
14 |
|
15 |
+
# Automatic multi-GPU sharding across 4× L4 GPUs
|
16 |
device_map = "auto"
|
17 |
|
18 |
+
# 1. Descript Audio Codec (RVQ)
|
19 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
20 |
rvq.eval()
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
rvq = rvq.to("cuda")
|
23 |
|
24 |
# 2. Voice Activity Detection via Pyannote
|
25 |
vad_pipe = PyannotePipeline.from_pretrained(
|
|
|
27 |
use_auth_token=HF_TOKEN
|
28 |
)
|
29 |
|
30 |
+
# 3. Ultravox ASR+LLM
|
31 |
ultravox_pipe = pipeline(
|
32 |
model="fixie-ai/ultravox-v0_4",
|
33 |
trust_remote_code=True,
|
|
|
35 |
torch_dtype=torch.float16
|
36 |
)
|
37 |
|
38 |
+
# 4. Audio Diffusion (direct load via Diffusers)
|
39 |
+
diff_pipe = DiffusionPipeline.from_pretrained(
|
40 |
+
"teticio/audio-diffusion-instrumental-hiphop-256",
|
|
|
|
|
|
|
41 |
torch_dtype=torch.float16
|
42 |
+
).to("cuda")
|
43 |
|
44 |
+
# 5. Dia TTS (multi-GPU dispatch)
|
45 |
with init_empty_weights():
|
46 |
dia = Dia.from_pretrained(
|
47 |
"nari-labs/Dia-1.6B",
|
|
|
55 |
dtype=torch.float16
|
56 |
)
|
57 |
|
58 |
+
# 6. Inference Function
|
59 |
def process_audio(audio):
|
60 |
sr, array = audio
|
61 |
+
array = array.numpy() if torch.is_tensor(array) else array
|
|
|
62 |
|
63 |
+
# VAD
|
64 |
+
_ = vad_pipe(array, sampling_rate=sr)
|
65 |
|
66 |
# RVQ encode/decode
|
67 |
+
tensor = torch.tensor(array).unsqueeze(0).to("cuda")
|
68 |
+
codes = rvq.encode(tensor)
|
69 |
decoded = rvq.decode(codes).squeeze().cpu().numpy()
|
70 |
|
71 |
+
# Ultravox inference
|
72 |
+
ultra_out = ultravox_pipe({"array": decoded, "sampling_rate": sr})
|
73 |
+
text = ultra_out.get("text", "")
|
74 |
|
75 |
+
# Diffusion enhancement
|
76 |
+
pros = diff_pipe(raw_audio=decoded)["audios"][0]
|
77 |
|
78 |
+
# Dia TTS
|
79 |
+
tts = dia.generate(f"[emotion:neutral] {text}").squeeze().cpu().numpy()
|
80 |
+
tts = tts / np.max(np.abs(tts)) * 0.95
|
|
|
81 |
|
82 |
+
return (sr, tts), text
|
83 |
|
84 |
+
# 7. Gradio UI
|
85 |
+
with gr.Blocks(title="Maya AI 📈") as demo:
|
86 |
gr.Markdown("## Maya-AI: Supernatural Conversational Agent")
|
87 |
+
audio_input = gr.Audio(source="microphone", type="numpy", label="Your Voice")
|
88 |
+
send_button = gr.Button("Send")
|
89 |
+
audio_output = gr.Audio(label="AI’s Response")
|
90 |
+
text_output = gr.Textbox(label="Generated Text")
|
91 |
+
send_button.click(process_audio, inputs=audio_input, outputs=[audio_output, text_output])
|
92 |
|
93 |
if __name__ == "__main__":
|
94 |
demo.launch()
|