Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,31 +3,29 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from transformers import pipeline
|
|
|
6 |
from dia.model import Dia
|
7 |
from dac.utils import load_model as load_dac_model
|
8 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
9 |
|
10 |
-
#
|
11 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
12 |
|
13 |
-
#
|
14 |
device_map = "auto"
|
15 |
|
16 |
-
# 1.
|
17 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
18 |
rvq.eval()
|
19 |
-
if torch.cuda.is_available():
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
model="pyannote/voice-activity-detection",
|
26 |
-
use_auth_token=HF_TOKEN,
|
27 |
-
device=0 if torch.cuda.is_available() else -1
|
28 |
)
|
29 |
|
30 |
-
# 3.
|
31 |
ultravox_pipe = pipeline(
|
32 |
model="fixie-ai/ultravox-v0_4",
|
33 |
trust_remote_code=True,
|
@@ -35,7 +33,7 @@ ultravox_pipe = pipeline(
|
|
35 |
torch_dtype=torch.float16
|
36 |
)
|
37 |
|
38 |
-
# 4.
|
39 |
diff_pipe = pipeline(
|
40 |
"audio-to-audio",
|
41 |
model="teticio/audio-diffusion-instrumental-hiphop-256",
|
@@ -44,7 +42,7 @@ diff_pipe = pipeline(
|
|
44 |
torch_dtype=torch.float16
|
45 |
)
|
46 |
|
47 |
-
# 5.
|
48 |
with init_empty_weights():
|
49 |
dia = Dia.from_pretrained(
|
50 |
"nari-labs/Dia-1.6B",
|
@@ -58,40 +56,42 @@ dia = load_checkpoint_and_dispatch(
|
|
58 |
dtype=torch.float16
|
59 |
)
|
60 |
|
61 |
-
#
|
62 |
def process_audio(audio):
|
63 |
sr, array = audio
|
64 |
-
|
|
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
|
69 |
# RVQ encode/decode
|
70 |
x = torch.tensor(array).unsqueeze(0).to("cuda")
|
71 |
codes = rvq.encode(x)
|
72 |
decoded = rvq.decode(codes).squeeze().cpu().numpy()
|
73 |
|
74 |
-
# Ultravox ASR
|
75 |
out = ultravox_pipe({"array": decoded, "sampling_rate": sr})
|
76 |
text = out.get("text", "")
|
77 |
|
78 |
-
# Diffusion
|
79 |
-
|
80 |
|
81 |
-
# Dia TTS
|
82 |
-
tts = dia.generate(f"[emotion:neutral] {text}")
|
83 |
-
|
|
|
84 |
|
85 |
-
return (sr,
|
86 |
|
87 |
-
#
|
88 |
-
with gr.Blocks() as demo:
|
89 |
gr.Markdown("## Maya-AI: Supernatural Conversational Agent")
|
90 |
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice")
|
91 |
-
|
92 |
audio_out = gr.Audio(label="AI’s Response")
|
93 |
text_out = gr.Textbox(label="Generated Text")
|
94 |
-
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from transformers import pipeline
|
6 |
+
from pyannote.audio import Pipeline as PyannotePipeline
|
7 |
from dia.model import Dia
|
8 |
from dac.utils import load_model as load_dac_model
|
9 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
10 |
|
11 |
+
# Environment token
|
12 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
13 |
|
14 |
+
# Shard large models across 4× L4 GPUs
|
15 |
device_map = "auto"
|
16 |
|
17 |
+
# 1. RVQ codec (Descript Audio Codec)
|
18 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
19 |
rvq.eval()
|
20 |
+
if torch.cuda.is_available(): rvq = rvq.to("cuda")
|
21 |
+
|
22 |
+
# 2. Voice Activity Detection via Pyannote
|
23 |
+
vad_pipe = PyannotePipeline.from_pretrained(
|
24 |
+
"pyannote/voice-activity-detection",
|
25 |
+
use_auth_token=HF_TOKEN
|
|
|
|
|
|
|
26 |
)
|
27 |
|
28 |
+
# 3. Ultravox pipeline (speech → text + LLM)
|
29 |
ultravox_pipe = pipeline(
|
30 |
model="fixie-ai/ultravox-v0_4",
|
31 |
trust_remote_code=True,
|
|
|
33 |
torch_dtype=torch.float16
|
34 |
)
|
35 |
|
36 |
+
# 4. Diffusion-based prosody model
|
37 |
diff_pipe = pipeline(
|
38 |
"audio-to-audio",
|
39 |
model="teticio/audio-diffusion-instrumental-hiphop-256",
|
|
|
42 |
torch_dtype=torch.float16
|
43 |
)
|
44 |
|
45 |
+
# 5. Dia TTS loaded with multi-GPU dispatch
|
46 |
with init_empty_weights():
|
47 |
dia = Dia.from_pretrained(
|
48 |
"nari-labs/Dia-1.6B",
|
|
|
56 |
dtype=torch.float16
|
57 |
)
|
58 |
|
59 |
+
# Inference function
|
60 |
def process_audio(audio):
|
61 |
sr, array = audio
|
62 |
+
# Ensure numpy
|
63 |
+
if torch.is_tensor(array): array = array.numpy()
|
64 |
|
65 |
+
# VAD: extract speech regions
|
66 |
+
chunks = vad_pipe(array, sampling_rate=sr)
|
67 |
|
68 |
# RVQ encode/decode
|
69 |
x = torch.tensor(array).unsqueeze(0).to("cuda")
|
70 |
codes = rvq.encode(x)
|
71 |
decoded = rvq.decode(codes).squeeze().cpu().numpy()
|
72 |
|
73 |
+
# Ultravox ASR + LLM
|
74 |
out = ultravox_pipe({"array": decoded, "sampling_rate": sr})
|
75 |
text = out.get("text", "")
|
76 |
|
77 |
+
# Diffusion prosody enhancement
|
78 |
+
pros_audio = diff_pipe({"array": decoded, "sampling_rate": sr})["array"][0]
|
79 |
|
80 |
+
# Dia TTS synthesis
|
81 |
+
tts = dia.generate(f"[emotion:neutral] {text}")
|
82 |
+
tts_np = tts.squeeze().cpu().numpy()
|
83 |
+
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95
|
84 |
|
85 |
+
return (sr, tts_np), text
|
86 |
|
87 |
+
# Gradio UI
|
88 |
+
with gr.Blocks(title="Maya AI 📈", theme=None) as demo:
|
89 |
gr.Markdown("## Maya-AI: Supernatural Conversational Agent")
|
90 |
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice")
|
91 |
+
send_btn = gr.Button("Send")
|
92 |
audio_out = gr.Audio(label="AI’s Response")
|
93 |
text_out = gr.Textbox(label="Generated Text")
|
94 |
+
send_btn.click(process_audio, inputs=audio_in, outputs=[audio_out, text_out])
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
demo.launch()
|