Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,33 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
-
from transformers import pipeline, AutoProcessor, CsmForConditionalGeneration
|
6 |
-
from pyannote.audio import Model, Inference
|
7 |
from dia.model import Dia
|
8 |
from dac.utils import load_model as load_dac_model
|
9 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
10 |
|
11 |
-
#
|
12 |
-
HF_TOKEN = os.environ
|
13 |
|
14 |
-
#
|
15 |
device_map = "auto"
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
# Load Descript Audio Codec (RVQ) at startup
|
20 |
-
print("Loading RVQ Codec...")
|
21 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
22 |
rvq.eval()
|
23 |
if torch.cuda.is_available():
|
24 |
rvq = rvq.to("cuda")
|
25 |
|
26 |
-
# Load
|
27 |
-
|
28 |
-
|
29 |
-
"pyannote/
|
30 |
-
use_auth_token=HF_TOKEN
|
|
|
31 |
)
|
32 |
-
seg_inference = Inference(seg_model, device=0 if torch.cuda.is_available() else -1)
|
33 |
|
34 |
-
#
|
35 |
-
vad = seg_inference
|
36 |
-
|
37 |
-
# Load Ultravox via generic pipeline (without specifying task)
|
38 |
-
print("Loading Ultravox...")
|
39 |
ultravox_pipe = pipeline(
|
40 |
model="fixie-ai/ultravox-v0_4",
|
41 |
trust_remote_code=True,
|
@@ -43,8 +35,7 @@ ultravox_pipe = pipeline(
|
|
43 |
torch_dtype=torch.float16
|
44 |
)
|
45 |
|
46 |
-
# Load
|
47 |
-
print("Loading Diffusion Model...")
|
48 |
diff_pipe = pipeline(
|
49 |
"audio-to-audio",
|
50 |
model="teticio/audio-diffusion-instrumental-hiphop-256",
|
@@ -53,8 +44,7 @@ diff_pipe = pipeline(
|
|
53 |
torch_dtype=torch.float16
|
54 |
)
|
55 |
|
56 |
-
# Load Dia TTS with multi-GPU dispatch
|
57 |
-
print("Loading Dia TTS...")
|
58 |
with init_empty_weights():
|
59 |
dia = Dia.from_pretrained(
|
60 |
"nari-labs/Dia-1.6B",
|
@@ -68,66 +58,40 @@ dia = load_checkpoint_and_dispatch(
|
|
68 |
dtype=torch.float16
|
69 |
)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
# Gradio inference function
|
74 |
def process_audio(audio):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
# Normalize
|
108 |
-
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95
|
109 |
-
|
110 |
-
return (sr, tts_np), text
|
111 |
-
|
112 |
-
except Exception as e:
|
113 |
-
print(f"Error in process_audio: {e}")
|
114 |
-
return None, f"Processing error: {str(e)}"
|
115 |
-
|
116 |
-
# Gradio UI
|
117 |
-
with gr.Blocks(title="Maya-AI: Supernatural Speech Agent") as demo:
|
118 |
-
gr.Markdown("# Maya-AI: Supernatural Speech Agent")
|
119 |
-
gr.Markdown("Record audio to interact with the AI agent that understands emotions and responds naturally.")
|
120 |
-
|
121 |
-
with gr.Row():
|
122 |
-
with gr.Column():
|
123 |
-
audio_in = gr.Audio(source="microphone", type="numpy", label="Record Your Voice")
|
124 |
-
btn = gr.Button("Send", variant="primary")
|
125 |
-
|
126 |
-
with gr.Column():
|
127 |
-
audio_out = gr.Audio(label="AI Response")
|
128 |
-
txt_out = gr.Textbox(label="Transcribed & Generated Text", lines=3)
|
129 |
-
|
130 |
-
btn.click(fn=process_audio, inputs=audio_in, outputs=[audio_out, txt_out])
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
+
from transformers import pipeline
|
|
|
|
|
6 |
from dia.model import Dia
|
7 |
from dac.utils import load_model as load_dac_model
|
8 |
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
9 |
|
10 |
+
# Retrieve your HF token from the Space secrets
|
11 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
12 |
|
13 |
+
# Automatically shard across 4× L4 GPUs
|
14 |
device_map = "auto"
|
15 |
|
16 |
+
# 1. Load RVQ codec
|
|
|
|
|
|
|
17 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
18 |
rvq.eval()
|
19 |
if torch.cuda.is_available():
|
20 |
rvq = rvq.to("cuda")
|
21 |
|
22 |
+
# 2. Load VAD via Hugging Face pipeline (no segmentation mismatch)
|
23 |
+
vad_pipe = pipeline(
|
24 |
+
"voice-activity-detection",
|
25 |
+
model="pyannote/voice-activity-detection",
|
26 |
+
use_auth_token=HF_TOKEN,
|
27 |
+
device=0 if torch.cuda.is_available() else -1
|
28 |
)
|
|
|
29 |
|
30 |
+
# 3. Load Ultravox (speech-in → text+LLM)
|
|
|
|
|
|
|
|
|
31 |
ultravox_pipe = pipeline(
|
32 |
model="fixie-ai/ultravox-v0_4",
|
33 |
trust_remote_code=True,
|
|
|
35 |
torch_dtype=torch.float16
|
36 |
)
|
37 |
|
38 |
+
# 4. Load diffusion prosody model
|
|
|
39 |
diff_pipe = pipeline(
|
40 |
"audio-to-audio",
|
41 |
model="teticio/audio-diffusion-instrumental-hiphop-256",
|
|
|
44 |
torch_dtype=torch.float16
|
45 |
)
|
46 |
|
47 |
+
# 5. Load Dia TTS with multi-GPU dispatch
|
|
|
48 |
with init_empty_weights():
|
49 |
dia = Dia.from_pretrained(
|
50 |
"nari-labs/Dia-1.6B",
|
|
|
58 |
dtype=torch.float16
|
59 |
)
|
60 |
|
61 |
+
# 6. Inference function
|
|
|
|
|
62 |
def process_audio(audio):
|
63 |
+
sr, array = audio
|
64 |
+
array = array.numpy() if torch.is_tensor(array) else array
|
65 |
+
|
66 |
+
# Voice activity detection
|
67 |
+
speech = vad_pipe(array, sampling_rate=sr)[0]["chunks"]
|
68 |
+
|
69 |
+
# RVQ encode/decode
|
70 |
+
x = torch.tensor(array).unsqueeze(0).to("cuda")
|
71 |
+
codes = rvq.encode(x)
|
72 |
+
decoded = rvq.decode(codes).squeeze().cpu().numpy()
|
73 |
+
|
74 |
+
# Ultravox ASR → LLM
|
75 |
+
out = ultravox_pipe({"array": decoded, "sampling_rate": sr})
|
76 |
+
text = out.get("text", "")
|
77 |
+
|
78 |
+
# Diffusion-based prosody
|
79 |
+
pros = diff_pipe({"array": decoded, "sampling_rate": sr})["array"][0]
|
80 |
+
|
81 |
+
# Dia TTS synth
|
82 |
+
tts = dia.generate(f"[emotion:neutral] {text}").squeeze().cpu().numpy()
|
83 |
+
tts = tts / np.max(np.abs(tts)) * 0.95
|
84 |
+
|
85 |
+
return (sr, tts), text
|
86 |
+
|
87 |
+
# 7. Gradio UI
|
88 |
+
with gr.Blocks() as demo:
|
89 |
+
gr.Markdown("## Maya-AI: Supernatural Conversational Agent")
|
90 |
+
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice")
|
91 |
+
send = gr.Button("Send")
|
92 |
+
audio_out = gr.Audio(label="AI’s Response")
|
93 |
+
text_out = gr.Textbox(label="Generated Text")
|
94 |
+
send.click(process_audio, inputs=audio_in, outputs=[audio_out, text_out])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
demo.launch()
|