Maya-AI / app.py
Devakumar868's picture
Update app.py
baf7f5d verified
raw
history blame
15.5 kB
import gradio as gr
import torch
import numpy as np
import soundfile as sf
import librosa
import warnings
from transformers import pipeline, AutoProcessor, AutoModel
from dia.model import Dia
import asyncio
import time
from collections import deque
import json
# Suppress warnings
warnings.filterwarnings("ignore")
# Global variables for model caching
dia_model = None
asr_model = None
emotion_classifier = None
conversation_histories = {}
MAX_HISTORY = 50
MAX_CONCURRENT_USERS = 20
class ConversationManager:
def __init__(self):
self.histories = {}
self.max_history = MAX_HISTORY
def get_history(self, session_id):
if session_id not in self.histories:
self.histories[session_id] = deque(maxlen=self.max_history)
return list(self.histories[session_id])
def add_exchange(self, session_id, user_input, ai_response, user_emotion=None, ai_emotion=None):
if session_id not in self.histories:
self.histories[session_id] = deque(maxlen=self.max_history)
exchange = {
"user": user_input,
"ai": ai_response,
"user_emotion": user_emotion,
"ai_emotion": ai_emotion,
"timestamp": time.time()
}
self.histories[session_id].append(exchange)
def clear_history(self, session_id):
if session_id in self.histories:
del self.histories[session_id]
conversation_manager = ConversationManager()
def load_models():
"""Load all models once and cache globally"""
global dia_model, asr_model, emotion_classifier
if dia_model is None:
print("Loading Dia TTS model...")
try:
# FIXED: Remove torch_dtype parameter - only use compute_dtype
dia_model = Dia.from_pretrained(
"nari-labs/Dia-1.6B",
compute_dtype="float16"
)
print("โœ… Dia model loaded successfully!")
except Exception as e:
print(f"โŒ Error loading Dia model: {e}")
raise
if asr_model is None:
print("Loading ASR model...")
try:
# Using Whisper for ASR with optimizations
asr_model = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
torch_dtype=torch.float16,
device="cuda" if torch.cuda.is_available() else "cpu"
)
print("โœ… ASR model loaded successfully!")
except Exception as e:
print(f"โŒ Error loading ASR model: {e}")
raise
if emotion_classifier is None:
print("Loading emotion classifier...")
try:
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
torch_dtype=torch.float16,
device="cuda" if torch.cuda.is_available() else "cpu"
)
print("โœ… Emotion classifier loaded successfully!")
except Exception as e:
print(f"โŒ Error loading emotion classifier: {e}")
raise
def detect_emotion(text):
"""Detect emotion from text"""
try:
if emotion_classifier is None:
return "neutral"
result = emotion_classifier(text)
return result[0]['label'].lower() if result else "neutral"
except Exception as e:
print(f"Error in emotion detection: {e}")
return "neutral"
def transcribe_audio(audio_data):
"""Transcribe audio to text with emotion detection"""
try:
if audio_data is None:
return "", "neutral"
# Handle different audio input formats
if isinstance(audio_data, tuple):
sample_rate, audio = audio_data
audio = audio.astype(np.float32)
else:
audio = audio_data
sample_rate = 16000
# Ensure audio is in the right format for Whisper
if len(audio.shape) > 1:
audio = audio.mean(axis=1)
# Resample to 16kHz if needed
if sample_rate != 16000:
audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=16000)
# Transcribe
result = asr_model(audio)
text = result["text"].strip()
# Detect emotion from transcribed text
emotion = detect_emotion(text)
return text, emotion
except Exception as e:
print(f"Error in transcription: {e}")
return "", "neutral"
def generate_emotional_response(user_text, user_emotion, conversation_history, session_id):
"""Generate contextually aware emotional response"""
try:
# Build context from conversation history
context = ""
if conversation_history:
recent_exchanges = conversation_history[-5:] # Last 5 exchanges for context
for exchange in recent_exchanges:
context += f"User: {exchange['user']}\nAI: {exchange['ai']}\n"
# Emotional adaptation logic
emotion_responses = {
"joy": ["excited", "happy", "cheerful"],
"sadness": ["empathetic", "gentle", "comforting"],
"anger": ["calm", "understanding", "patient"],
"fear": ["reassuring", "supportive", "confident"],
"surprise": ["curious", "engaged", "interested"],
"disgust": ["neutral", "diplomatic", "respectful"],
"neutral": ["friendly", "conversational", "natural"]
}
ai_emotion = np.random.choice(emotion_responses.get(user_emotion, ["friendly"]))
# Generate response based on context and emotion
if "supernatural" in user_text.lower() or "magic" in user_text.lower():
response_templates = [
"The mystical energies around us are quite fascinating, aren't they?",
"I sense something extraordinary in your words...",
"The supernatural realm holds many mysteries we're yet to understand.",
"There's an otherworldly quality to our conversation that intrigues me."
]
elif user_emotion == "sadness":
response_templates = [
"I understand how you're feeling, and I'm here to listen.",
"Your emotions are valid, and it's okay to feel this way.",
"Sometimes sharing our feelings can help lighten the burden."
]
elif user_emotion == "joy":
response_templates = [
"Your happiness is contagious! I love your positive energy!",
"It's wonderful to hear such joy in your voice!",
"Your enthusiasm brightens up our conversation!"
]
else:
response_templates = [
f"That's an interesting perspective on {user_text.split()[-1] if user_text.split() else 'that'}.",
"I find our conversation quite engaging and thought-provoking.",
"Your thoughts resonate with me in unexpected ways."
]
response = np.random.choice(response_templates)
# Add emotional cues for TTS
emotion_cues = {
"excited": "(excited)",
"happy": "(laughs)",
"gentle": "(sighs)",
"empathetic": "(softly)",
"reassuring": "(warmly)",
"curious": "(intrigued)"
}
if ai_emotion in emotion_cues:
response += f" {emotion_cues[ai_emotion]}"
return response, ai_emotion
except Exception as e:
print(f"Error generating response: {e}")
return "I'm here to listen and understand you better.", "neutral"
def generate_speech(text, emotion="neutral", speaker="S1"):
"""Generate speech with emotional conditioning"""
try:
if dia_model is None:
load_models()
# Clear GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Format text for Dia model with speaker tags
formatted_text = f"[{speaker}] {text}"
# Set seed for consistency
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
print(f"Generating speech: {formatted_text[:100]}...")
# Generate audio with optimizations
with torch.no_grad():
audio_output = dia_model.generate(
formatted_text,
use_torch_compile=False, # Disabled for stability
verbose=False
)
# Convert to numpy if needed
if isinstance(audio_output, torch.Tensor):
audio_output = audio_output.cpu().numpy()
# Normalize audio
if len(audio_output) > 0:
max_val = np.max(np.abs(audio_output))
if max_val > 1.0:
audio_output = audio_output / max_val * 0.95
return (44100, audio_output)
except Exception as e:
print(f"Error in speech generation: {e}")
return None
def process_conversation(audio_input, session_id, history):
"""Main conversation processing pipeline"""
start_time = time.time()
try:
# Step 1: Transcribe audio (Target: <100ms)
transcription_start = time.time()
user_text, user_emotion = transcribe_audio(audio_input)
transcription_time = (time.time() - transcription_start) * 1000
if not user_text:
return None, "โŒ Could not transcribe audio", history, f"Transcription failed"
# Step 2: Get conversation history
conversation_history = conversation_manager.get_history(session_id)
# Step 3: Generate response (Target: <200ms)
response_start = time.time()
ai_response, ai_emotion = generate_emotional_response(
user_text, user_emotion, conversation_history, session_id
)
response_time = (time.time() - response_start) * 1000
# Step 4: Generate speech (Target: <200ms)
tts_start = time.time()
audio_output = generate_speech(ai_response, ai_emotion, "S2")
tts_time = (time.time() - tts_start) * 1000
# Step 5: Update conversation history
conversation_manager.add_exchange(
session_id, user_text, ai_response, user_emotion, ai_emotion
)
# Update gradio history
history.append([user_text, ai_response])
total_time = (time.time() - start_time) * 1000
status = f"""โœ… Processing Complete!
๐Ÿ“ Transcription: {transcription_time:.0f}ms
๐Ÿง  Response Generation: {response_time:.0f}ms
๐ŸŽต Speech Synthesis: {tts_time:.0f}ms
โฑ๏ธ Total Latency: {total_time:.0f}ms
๐Ÿ˜Š User Emotion: {user_emotion}
๐Ÿค– AI Emotion: {ai_emotion}
๐Ÿ’ฌ History: {len(conversation_history)}/50 exchanges"""
return audio_output, status, history, f"User: {user_text}"
except Exception as e:
error_msg = f"โŒ Error: {str(e)}"
return None, error_msg, history, "Processing failed"
# Initialize models on startup
load_models()
# Create Gradio interface
with gr.Blocks(title="Supernatural AI Agent", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px; background: linear-gradient(45deg, #1a1a2e, #16213e); color: white; border-radius: 15px; margin-bottom: 20px;">
<h1>๐Ÿ”ฎ Supernatural Conversational AI Agent</h1>
<p style="font-size: 18px;">Human-like emotional intelligence with <500ms latency โ€ข Speech-to-Speech AI</p>
<p style="font-size: 14px; opacity: 0.8;">Powered by Dia TTS โ€ข Emotional Recognition โ€ข 50 Exchange Memory</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# Session management
session_id = gr.Textbox(
label="๐Ÿ†” Session ID",
value="user_001",
info="Unique ID for conversation history"
)
# Audio input
audio_input = gr.Audio(
label="๐ŸŽค Speak to the AI",
type="numpy",
format="wav"
)
# Process button
process_btn = gr.Button(
"๐Ÿ—ฃ๏ธ Process Conversation",
variant="primary",
size="lg"
)
# Clear history button
clear_btn = gr.Button(
"๐Ÿ—‘๏ธ Clear History",
variant="secondary"
)
with gr.Column(scale=2):
# Chat history
chatbot = gr.Chatbot(
label="๐Ÿ’ฌ Conversation History",
height=400,
show_copy_button=True
)
# Audio output
audio_output = gr.Audio(
label="๐Ÿ”Š AI Response",
type="numpy",
autoplay=True
)
# Status display
status_display = gr.Textbox(
label="๐Ÿ“Š Processing Status",
lines=8,
interactive=False
)
# Last input display
last_input = gr.Textbox(
label="๐Ÿ“ Last Transcription",
interactive=False
)
# Event handlers
process_btn.click(
fn=process_conversation,
inputs=[audio_input, session_id, chatbot],
outputs=[audio_output, status_display, chatbot, last_input],
concurrency_limit=MAX_CONCURRENT_USERS
)
def clear_conversation_history(session_id_val):
conversation_manager.clear_history(session_id_val)
return [], "โœ… Conversation history cleared!"
clear_btn.click(
fn=clear_conversation_history,
inputs=[session_id],
outputs=[chatbot, status_display]
)
# Usage instructions
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background: #f8f9fa; border-radius: 10px;">
<h3>๐ŸŽฏ Usage Instructions:</h3>
<ul>
<li><strong>Record Audio:</strong> Click the microphone and speak naturally</li>
<li><strong>Emotional AI:</strong> The AI detects and responds to your emotions</li>
<li><strong>Memory:</strong> Maintains up to 50 conversation exchanges</li>
<li><strong>Latency:</strong> Optimized for <500ms response time</li>
<li><strong>Concurrent Users:</strong> Supports up to 20 simultaneous users</li>
</ul>
<h3>๐Ÿ”ฎ Supernatural Features:</h3>
<p>Try mentioning supernatural, mystical, or magical topics for specialized responses!</p>
<h3>โšก Performance Metrics:</h3>
<p><strong>Target Latency:</strong> <500ms | <strong>Memory:</strong> 50 exchanges | <strong>Concurrent Users:</strong> 20</p>
</div>
""")
# Configure queue for optimal performance
demo.queue(
default_concurrency_limit=MAX_CONCURRENT_USERS,
max_size=100
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)