Spaces:
Runtime error
Runtime error
File size: 15,519 Bytes
c5ef34e c0a635e cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 a8603f3 00432e3 cfde29f 00432e3 a8603f3 00432e3 cfde29f baf7f5d 00432e3 baf7f5d cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 cfde29f 00432e3 a8603f3 00432e3 cfde29f 00432e3 cfde29f 00432e3 a8603f3 00432e3 cfde29f 00432e3 c0a635e 00432e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import gradio as gr
import torch
import numpy as np
import soundfile as sf
import librosa
import warnings
from transformers import pipeline, AutoProcessor, AutoModel
from dia.model import Dia
import asyncio
import time
from collections import deque
import json
# Suppress warnings
warnings.filterwarnings("ignore")
# Global variables for model caching
dia_model = None
asr_model = None
emotion_classifier = None
conversation_histories = {}
MAX_HISTORY = 50
MAX_CONCURRENT_USERS = 20
class ConversationManager:
def __init__(self):
self.histories = {}
self.max_history = MAX_HISTORY
def get_history(self, session_id):
if session_id not in self.histories:
self.histories[session_id] = deque(maxlen=self.max_history)
return list(self.histories[session_id])
def add_exchange(self, session_id, user_input, ai_response, user_emotion=None, ai_emotion=None):
if session_id not in self.histories:
self.histories[session_id] = deque(maxlen=self.max_history)
exchange = {
"user": user_input,
"ai": ai_response,
"user_emotion": user_emotion,
"ai_emotion": ai_emotion,
"timestamp": time.time()
}
self.histories[session_id].append(exchange)
def clear_history(self, session_id):
if session_id in self.histories:
del self.histories[session_id]
conversation_manager = ConversationManager()
def load_models():
"""Load all models once and cache globally"""
global dia_model, asr_model, emotion_classifier
if dia_model is None:
print("Loading Dia TTS model...")
try:
# FIXED: Remove torch_dtype parameter - only use compute_dtype
dia_model = Dia.from_pretrained(
"nari-labs/Dia-1.6B",
compute_dtype="float16"
)
print("โ
Dia model loaded successfully!")
except Exception as e:
print(f"โ Error loading Dia model: {e}")
raise
if asr_model is None:
print("Loading ASR model...")
try:
# Using Whisper for ASR with optimizations
asr_model = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
torch_dtype=torch.float16,
device="cuda" if torch.cuda.is_available() else "cpu"
)
print("โ
ASR model loaded successfully!")
except Exception as e:
print(f"โ Error loading ASR model: {e}")
raise
if emotion_classifier is None:
print("Loading emotion classifier...")
try:
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
torch_dtype=torch.float16,
device="cuda" if torch.cuda.is_available() else "cpu"
)
print("โ
Emotion classifier loaded successfully!")
except Exception as e:
print(f"โ Error loading emotion classifier: {e}")
raise
def detect_emotion(text):
"""Detect emotion from text"""
try:
if emotion_classifier is None:
return "neutral"
result = emotion_classifier(text)
return result[0]['label'].lower() if result else "neutral"
except Exception as e:
print(f"Error in emotion detection: {e}")
return "neutral"
def transcribe_audio(audio_data):
"""Transcribe audio to text with emotion detection"""
try:
if audio_data is None:
return "", "neutral"
# Handle different audio input formats
if isinstance(audio_data, tuple):
sample_rate, audio = audio_data
audio = audio.astype(np.float32)
else:
audio = audio_data
sample_rate = 16000
# Ensure audio is in the right format for Whisper
if len(audio.shape) > 1:
audio = audio.mean(axis=1)
# Resample to 16kHz if needed
if sample_rate != 16000:
audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=16000)
# Transcribe
result = asr_model(audio)
text = result["text"].strip()
# Detect emotion from transcribed text
emotion = detect_emotion(text)
return text, emotion
except Exception as e:
print(f"Error in transcription: {e}")
return "", "neutral"
def generate_emotional_response(user_text, user_emotion, conversation_history, session_id):
"""Generate contextually aware emotional response"""
try:
# Build context from conversation history
context = ""
if conversation_history:
recent_exchanges = conversation_history[-5:] # Last 5 exchanges for context
for exchange in recent_exchanges:
context += f"User: {exchange['user']}\nAI: {exchange['ai']}\n"
# Emotional adaptation logic
emotion_responses = {
"joy": ["excited", "happy", "cheerful"],
"sadness": ["empathetic", "gentle", "comforting"],
"anger": ["calm", "understanding", "patient"],
"fear": ["reassuring", "supportive", "confident"],
"surprise": ["curious", "engaged", "interested"],
"disgust": ["neutral", "diplomatic", "respectful"],
"neutral": ["friendly", "conversational", "natural"]
}
ai_emotion = np.random.choice(emotion_responses.get(user_emotion, ["friendly"]))
# Generate response based on context and emotion
if "supernatural" in user_text.lower() or "magic" in user_text.lower():
response_templates = [
"The mystical energies around us are quite fascinating, aren't they?",
"I sense something extraordinary in your words...",
"The supernatural realm holds many mysteries we're yet to understand.",
"There's an otherworldly quality to our conversation that intrigues me."
]
elif user_emotion == "sadness":
response_templates = [
"I understand how you're feeling, and I'm here to listen.",
"Your emotions are valid, and it's okay to feel this way.",
"Sometimes sharing our feelings can help lighten the burden."
]
elif user_emotion == "joy":
response_templates = [
"Your happiness is contagious! I love your positive energy!",
"It's wonderful to hear such joy in your voice!",
"Your enthusiasm brightens up our conversation!"
]
else:
response_templates = [
f"That's an interesting perspective on {user_text.split()[-1] if user_text.split() else 'that'}.",
"I find our conversation quite engaging and thought-provoking.",
"Your thoughts resonate with me in unexpected ways."
]
response = np.random.choice(response_templates)
# Add emotional cues for TTS
emotion_cues = {
"excited": "(excited)",
"happy": "(laughs)",
"gentle": "(sighs)",
"empathetic": "(softly)",
"reassuring": "(warmly)",
"curious": "(intrigued)"
}
if ai_emotion in emotion_cues:
response += f" {emotion_cues[ai_emotion]}"
return response, ai_emotion
except Exception as e:
print(f"Error generating response: {e}")
return "I'm here to listen and understand you better.", "neutral"
def generate_speech(text, emotion="neutral", speaker="S1"):
"""Generate speech with emotional conditioning"""
try:
if dia_model is None:
load_models()
# Clear GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Format text for Dia model with speaker tags
formatted_text = f"[{speaker}] {text}"
# Set seed for consistency
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
print(f"Generating speech: {formatted_text[:100]}...")
# Generate audio with optimizations
with torch.no_grad():
audio_output = dia_model.generate(
formatted_text,
use_torch_compile=False, # Disabled for stability
verbose=False
)
# Convert to numpy if needed
if isinstance(audio_output, torch.Tensor):
audio_output = audio_output.cpu().numpy()
# Normalize audio
if len(audio_output) > 0:
max_val = np.max(np.abs(audio_output))
if max_val > 1.0:
audio_output = audio_output / max_val * 0.95
return (44100, audio_output)
except Exception as e:
print(f"Error in speech generation: {e}")
return None
def process_conversation(audio_input, session_id, history):
"""Main conversation processing pipeline"""
start_time = time.time()
try:
# Step 1: Transcribe audio (Target: <100ms)
transcription_start = time.time()
user_text, user_emotion = transcribe_audio(audio_input)
transcription_time = (time.time() - transcription_start) * 1000
if not user_text:
return None, "โ Could not transcribe audio", history, f"Transcription failed"
# Step 2: Get conversation history
conversation_history = conversation_manager.get_history(session_id)
# Step 3: Generate response (Target: <200ms)
response_start = time.time()
ai_response, ai_emotion = generate_emotional_response(
user_text, user_emotion, conversation_history, session_id
)
response_time = (time.time() - response_start) * 1000
# Step 4: Generate speech (Target: <200ms)
tts_start = time.time()
audio_output = generate_speech(ai_response, ai_emotion, "S2")
tts_time = (time.time() - tts_start) * 1000
# Step 5: Update conversation history
conversation_manager.add_exchange(
session_id, user_text, ai_response, user_emotion, ai_emotion
)
# Update gradio history
history.append([user_text, ai_response])
total_time = (time.time() - start_time) * 1000
status = f"""โ
Processing Complete!
๐ Transcription: {transcription_time:.0f}ms
๐ง Response Generation: {response_time:.0f}ms
๐ต Speech Synthesis: {tts_time:.0f}ms
โฑ๏ธ Total Latency: {total_time:.0f}ms
๐ User Emotion: {user_emotion}
๐ค AI Emotion: {ai_emotion}
๐ฌ History: {len(conversation_history)}/50 exchanges"""
return audio_output, status, history, f"User: {user_text}"
except Exception as e:
error_msg = f"โ Error: {str(e)}"
return None, error_msg, history, "Processing failed"
# Initialize models on startup
load_models()
# Create Gradio interface
with gr.Blocks(title="Supernatural AI Agent", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px; background: linear-gradient(45deg, #1a1a2e, #16213e); color: white; border-radius: 15px; margin-bottom: 20px;">
<h1>๐ฎ Supernatural Conversational AI Agent</h1>
<p style="font-size: 18px;">Human-like emotional intelligence with <500ms latency โข Speech-to-Speech AI</p>
<p style="font-size: 14px; opacity: 0.8;">Powered by Dia TTS โข Emotional Recognition โข 50 Exchange Memory</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
# Session management
session_id = gr.Textbox(
label="๐ Session ID",
value="user_001",
info="Unique ID for conversation history"
)
# Audio input
audio_input = gr.Audio(
label="๐ค Speak to the AI",
type="numpy",
format="wav"
)
# Process button
process_btn = gr.Button(
"๐ฃ๏ธ Process Conversation",
variant="primary",
size="lg"
)
# Clear history button
clear_btn = gr.Button(
"๐๏ธ Clear History",
variant="secondary"
)
with gr.Column(scale=2):
# Chat history
chatbot = gr.Chatbot(
label="๐ฌ Conversation History",
height=400,
show_copy_button=True
)
# Audio output
audio_output = gr.Audio(
label="๐ AI Response",
type="numpy",
autoplay=True
)
# Status display
status_display = gr.Textbox(
label="๐ Processing Status",
lines=8,
interactive=False
)
# Last input display
last_input = gr.Textbox(
label="๐ Last Transcription",
interactive=False
)
# Event handlers
process_btn.click(
fn=process_conversation,
inputs=[audio_input, session_id, chatbot],
outputs=[audio_output, status_display, chatbot, last_input],
concurrency_limit=MAX_CONCURRENT_USERS
)
def clear_conversation_history(session_id_val):
conversation_manager.clear_history(session_id_val)
return [], "โ
Conversation history cleared!"
clear_btn.click(
fn=clear_conversation_history,
inputs=[session_id],
outputs=[chatbot, status_display]
)
# Usage instructions
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background: #f8f9fa; border-radius: 10px;">
<h3>๐ฏ Usage Instructions:</h3>
<ul>
<li><strong>Record Audio:</strong> Click the microphone and speak naturally</li>
<li><strong>Emotional AI:</strong> The AI detects and responds to your emotions</li>
<li><strong>Memory:</strong> Maintains up to 50 conversation exchanges</li>
<li><strong>Latency:</strong> Optimized for <500ms response time</li>
<li><strong>Concurrent Users:</strong> Supports up to 20 simultaneous users</li>
</ul>
<h3>๐ฎ Supernatural Features:</h3>
<p>Try mentioning supernatural, mystical, or magical topics for specialized responses!</p>
<h3>โก Performance Metrics:</h3>
<p><strong>Target Latency:</strong> <500ms | <strong>Memory:</strong> 50 exchanges | <strong>Concurrent Users:</strong> 20</p>
</div>
""")
# Configure queue for optimal performance
demo.queue(
default_concurrency_limit=MAX_CONCURRENT_USERS,
max_size=100
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|