Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,508 @@
|
|
1 |
-
import os, tempfile, uuid
|
2 |
-
from fastapi import FastAPI
|
3 |
import gradio as gr
|
4 |
-
import soundfile as sf
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
def
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import soundfile as sf
|
6 |
+
import threading
|
7 |
+
import time
|
8 |
+
import queue
|
9 |
+
import warnings
|
10 |
+
from typing import Optional, List, Dict, Tuple
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from collections import deque
|
13 |
+
import psutil
|
14 |
+
import gc
|
15 |
+
|
16 |
+
# Import models
|
17 |
+
from dia.model import Dia
|
18 |
+
from transformers import pipeline
|
19 |
+
import webrtcvad
|
20 |
+
|
21 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
22 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class ConversationTurn:
|
26 |
+
user_audio: np.ndarray
|
27 |
+
user_text: str
|
28 |
+
ai_response_text: str
|
29 |
+
ai_response_audio: np.ndarray
|
30 |
+
timestamp: float
|
31 |
+
emotion: str
|
32 |
+
speaker_id: str
|
33 |
+
|
34 |
+
class EmotionRecognizer:
|
35 |
+
def __init__(self):
|
36 |
+
self.emotion_pipeline = pipeline(
|
37 |
+
"audio-classification",
|
38 |
+
model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition",
|
39 |
+
device=0 if torch.cuda.is_available() else -1
|
40 |
+
)
|
41 |
+
|
42 |
+
def detect_emotion(self, audio: np.ndarray, sample_rate: int = 16000) -> str:
|
43 |
+
try:
|
44 |
+
result = self.emotion_pipeline({"array": audio, "sampling_rate": sample_rate})
|
45 |
+
return result[0]["label"] if result else "neutral"
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Emotion detection error: {e}")
|
48 |
+
return "neutral"
|
49 |
+
|
50 |
+
class VADProcessor:
|
51 |
+
def __init__(self, aggressiveness: int = 2):
|
52 |
+
self.vad = webrtcvad.Vad(aggressiveness)
|
53 |
+
self.sample_rate = 16000
|
54 |
+
self.frame_duration = 30 # ms
|
55 |
+
self.frame_size = int(self.sample_rate * self.frame_duration / 1000)
|
56 |
+
|
57 |
+
def is_speech(self, audio: np.ndarray) -> bool:
|
58 |
+
try:
|
59 |
+
# Convert to 16-bit PCM
|
60 |
+
audio_int16 = (audio * 32767).astype(np.int16)
|
61 |
+
|
62 |
+
# Process in frames
|
63 |
+
frames = []
|
64 |
+
for i in range(0, len(audio_int16) - self.frame_size, self.frame_size):
|
65 |
+
frame = audio_int16[i:i + self.frame_size].tobytes()
|
66 |
+
frames.append(self.vad.is_speech(frame, self.sample_rate))
|
67 |
+
|
68 |
+
# Return True if majority of frames contain speech
|
69 |
+
return sum(frames) > len(frames) * 0.3
|
70 |
+
except Exception:
|
71 |
+
return True # Default to treating as speech
|
72 |
+
|
73 |
+
class ConversationManager:
|
74 |
+
def __init__(self, max_exchanges: int = 50):
|
75 |
+
self.conversations: Dict[str, deque] = {}
|
76 |
+
self.max_exchanges = max_exchanges
|
77 |
+
self.lock = threading.RLock()
|
78 |
+
|
79 |
+
def add_turn(self, session_id: str, turn: ConversationTurn):
|
80 |
+
with self.lock:
|
81 |
+
if session_id not in self.conversations:
|
82 |
+
self.conversations[session_id] = deque(maxlen=self.max_exchanges)
|
83 |
+
self.conversations[session_id].append(turn)
|
84 |
+
|
85 |
+
def get_context(self, session_id: str, last_n: int = 5) -> List[ConversationTurn]:
|
86 |
+
with self.lock:
|
87 |
+
if session_id not in self.conversations:
|
88 |
+
return []
|
89 |
+
return list(self.conversations[session_id])[-last_n:]
|
90 |
+
|
91 |
+
def clear_session(self, session_id: str):
|
92 |
+
with self.lock:
|
93 |
+
if session_id in self.conversations:
|
94 |
+
del self.conversations[session_id]
|
95 |
+
|
96 |
+
class SupernaturalAI:
|
97 |
+
def __init__(self):
|
98 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
99 |
+
self.models_loaded = False
|
100 |
+
self.processing_queue = queue.Queue()
|
101 |
+
self.conversation_manager = ConversationManager()
|
102 |
+
self.emotion_recognizer = None
|
103 |
+
self.vad_processor = VADProcessor()
|
104 |
+
|
105 |
+
# Models
|
106 |
+
self.ultravox_model = None
|
107 |
+
self.dia_model = None
|
108 |
+
|
109 |
+
# Performance tracking
|
110 |
+
self.active_sessions = set()
|
111 |
+
self.processing_times = deque(maxlen=100)
|
112 |
+
|
113 |
+
print("Initializing Supernatural AI...")
|
114 |
+
self._initialize_models()
|
115 |
+
|
116 |
+
def _initialize_models(self):
|
117 |
+
try:
|
118 |
+
print("Loading Ultravox model...")
|
119 |
+
self.ultravox_model = pipeline(
|
120 |
+
'automatic-speech-recognition',
|
121 |
+
model='fixie-ai/ultravox-v0_2',
|
122 |
+
trust_remote_code=True,
|
123 |
+
device=0 if torch.cuda.is_available() else -1,
|
124 |
+
torch_dtype=torch.float16
|
125 |
+
)
|
126 |
+
|
127 |
+
print("Loading Dia TTS model...")
|
128 |
+
self.dia_model = Dia.from_pretrained(
|
129 |
+
"nari-labs/Dia-1.6B",
|
130 |
+
compute_dtype="float16"
|
131 |
+
)
|
132 |
+
|
133 |
+
print("Loading emotion recognition...")
|
134 |
+
self.emotion_recognizer = EmotionRecognizer()
|
135 |
+
|
136 |
+
self.models_loaded = True
|
137 |
+
print("β
All models loaded successfully!")
|
138 |
+
|
139 |
+
# Memory cleanup
|
140 |
+
if torch.cuda.is_available():
|
141 |
+
torch.cuda.empty_cache()
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
print(f"β Error loading models: {e}")
|
145 |
+
self.models_loaded = False
|
146 |
+
|
147 |
+
def _get_memory_usage(self) -> Dict[str, float]:
|
148 |
+
"""Get current memory usage statistics"""
|
149 |
+
memory = psutil.virtual_memory()
|
150 |
+
gpu_memory = {}
|
151 |
+
|
152 |
+
if torch.cuda.is_available():
|
153 |
+
for i in range(torch.cuda.device_count()):
|
154 |
+
gpu_memory[f"GPU_{i}"] = {
|
155 |
+
"allocated": torch.cuda.memory_allocated(i) / 1024**3,
|
156 |
+
"cached": torch.cuda.memory_reserved(i) / 1024**3
|
157 |
+
}
|
158 |
+
|
159 |
+
return {
|
160 |
+
"RAM": memory.percent,
|
161 |
+
"GPU": gpu_memory
|
162 |
+
}
|
163 |
+
|
164 |
+
def _generate_contextual_prompt(self,
|
165 |
+
user_text: str,
|
166 |
+
emotion: str,
|
167 |
+
context: List[ConversationTurn]) -> str:
|
168 |
+
"""Generate contextual prompt with emotion and conversation history"""
|
169 |
+
|
170 |
+
# Build context from previous turns
|
171 |
+
context_text = ""
|
172 |
+
if context:
|
173 |
+
for turn in context[-3:]: # Last 3 exchanges
|
174 |
+
context_text += f"[S1] {turn.user_text} [S2] {turn.ai_response_text} "
|
175 |
+
|
176 |
+
# Emotion-aware response generation
|
177 |
+
emotion_modifiers = {
|
178 |
+
"happy": "(cheerful)",
|
179 |
+
"sad": "(sympathetic)",
|
180 |
+
"angry": "(calming)",
|
181 |
+
"fear": "(reassuring)",
|
182 |
+
"surprise": "(excited)",
|
183 |
+
"neutral": ""
|
184 |
+
}
|
185 |
+
|
186 |
+
modifier = emotion_modifiers.get(emotion.lower(), "")
|
187 |
+
|
188 |
+
# Create supernatural AI personality
|
189 |
+
prompt = f"{context_text}[S1] {user_text} [S2] {modifier} As a supernatural AI with deep emotional understanding, I sense your {emotion} energy. "
|
190 |
+
|
191 |
+
return prompt
|
192 |
+
|
193 |
+
def process_audio_input(self,
|
194 |
+
audio_data: Tuple[int, np.ndarray],
|
195 |
+
session_id: str) -> Tuple[Optional[Tuple[int, np.ndarray]], str, str]:
|
196 |
+
"""Main processing pipeline for audio input"""
|
197 |
+
|
198 |
+
if not self.models_loaded:
|
199 |
+
return None, "β Models not loaded", "Please wait for initialization"
|
200 |
+
|
201 |
+
if audio_data is None:
|
202 |
+
return None, "β No audio received", "Please record some audio"
|
203 |
+
|
204 |
+
start_time = time.time()
|
205 |
+
|
206 |
+
try:
|
207 |
+
sample_rate, audio = audio_data
|
208 |
+
|
209 |
+
# Ensure audio is mono and proper format
|
210 |
+
if len(audio.shape) > 1:
|
211 |
+
audio = np.mean(audio, axis=1)
|
212 |
+
|
213 |
+
# Normalize audio
|
214 |
+
audio = audio.astype(np.float32)
|
215 |
+
if np.max(np.abs(audio)) > 0:
|
216 |
+
audio = audio / np.max(np.abs(audio)) * 0.95
|
217 |
+
|
218 |
+
# Voice Activity Detection
|
219 |
+
if not self.vad_processor.is_speech(audio):
|
220 |
+
return None, "π No speech detected", "Please speak clearly"
|
221 |
+
|
222 |
+
# Resample if needed
|
223 |
+
if sample_rate != 16000:
|
224 |
+
audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=16000)
|
225 |
+
sample_rate = 16000
|
226 |
+
|
227 |
+
# Speech Recognition with Ultravox
|
228 |
+
try:
|
229 |
+
speech_result = self.ultravox_model({
|
230 |
+
'array': audio,
|
231 |
+
'sampling_rate': sample_rate
|
232 |
+
})
|
233 |
+
user_text = speech_result.get('text', '').strip()
|
234 |
+
|
235 |
+
if not user_text:
|
236 |
+
return None, "β Could not understand speech", "Please speak more clearly"
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
print(f"ASR Error: {e}")
|
240 |
+
return None, f"β Speech recognition failed: {str(e)}", "Please try again"
|
241 |
+
|
242 |
+
# Emotion Recognition
|
243 |
+
emotion = self.emotion_recognizer.detect_emotion(audio, sample_rate)
|
244 |
+
|
245 |
+
# Get conversation context
|
246 |
+
context = self.conversation_manager.get_context(session_id)
|
247 |
+
|
248 |
+
# Generate contextual response
|
249 |
+
prompt = self._generate_contextual_prompt(user_text, emotion, context)
|
250 |
+
|
251 |
+
# Generate speech with Dia TTS
|
252 |
+
try:
|
253 |
+
with torch.no_grad():
|
254 |
+
audio_output = self.dia_model.generate(
|
255 |
+
prompt,
|
256 |
+
use_torch_compile=False, # Better stability
|
257 |
+
verbose=False
|
258 |
+
)
|
259 |
+
|
260 |
+
# Ensure audio output is proper format
|
261 |
+
if isinstance(audio_output, torch.Tensor):
|
262 |
+
audio_output = audio_output.cpu().numpy()
|
263 |
+
|
264 |
+
# Normalize output
|
265 |
+
if len(audio_output) > 0:
|
266 |
+
max_val = np.max(np.abs(audio_output))
|
267 |
+
if max_val > 1.0:
|
268 |
+
audio_output = audio_output / max_val * 0.95
|
269 |
+
|
270 |
+
except Exception as e:
|
271 |
+
print(f"TTS Error: {e}")
|
272 |
+
return None, f"β Speech generation failed: {str(e)}", "Please try again"
|
273 |
+
|
274 |
+
# Extract AI response text (remove speaker tags and modifiers)
|
275 |
+
ai_response = prompt.split('[S2]')[-1].strip()
|
276 |
+
ai_response = ai_response.replace('(cheerful)', '').replace('(sympathetic)', '')
|
277 |
+
ai_response = ai_response.replace('(calming)', '').replace('(reassuring)', '')
|
278 |
+
ai_response = ai_response.replace('(excited)', '').strip()
|
279 |
+
|
280 |
+
# Store conversation turn
|
281 |
+
turn = ConversationTurn(
|
282 |
+
user_audio=audio,
|
283 |
+
user_text=user_text,
|
284 |
+
ai_response_text=ai_response,
|
285 |
+
ai_response_audio=audio_output,
|
286 |
+
timestamp=time.time(),
|
287 |
+
emotion=emotion,
|
288 |
+
speaker_id=session_id
|
289 |
+
)
|
290 |
+
|
291 |
+
self.conversation_manager.add_turn(session_id, turn)
|
292 |
+
|
293 |
+
# Track performance
|
294 |
+
processing_time = time.time() - start_time
|
295 |
+
self.processing_times.append(processing_time)
|
296 |
+
|
297 |
+
# Memory cleanup
|
298 |
+
if torch.cuda.is_available():
|
299 |
+
torch.cuda.empty_cache()
|
300 |
+
gc.collect()
|
301 |
+
|
302 |
+
status = f"β
Processed in {processing_time:.2f}s | Emotion: {emotion} | Users: {len(self.active_sessions)}"
|
303 |
+
|
304 |
+
return (44100, audio_output), status, f"**You said:** {user_text}\n\n**AI Response:** {ai_response}"
|
305 |
+
|
306 |
+
except Exception as e:
|
307 |
+
print(f"Processing error: {e}")
|
308 |
+
return None, f"β Processing failed: {str(e)}", "Please try again"
|
309 |
+
|
310 |
+
def get_conversation_history(self, session_id: str) -> str:
|
311 |
+
"""Get formatted conversation history"""
|
312 |
+
context = self.conversation_manager.get_context(session_id, last_n=10)
|
313 |
+
if not context:
|
314 |
+
return "No conversation history yet."
|
315 |
+
|
316 |
+
history = "## Conversation History\n\n"
|
317 |
+
for i, turn in enumerate(context, 1):
|
318 |
+
history += f"**Turn {i}:**\n"
|
319 |
+
history += f"- **You:** {turn.user_text}\n"
|
320 |
+
history += f"- **AI:** {turn.ai_response_text}\n"
|
321 |
+
history += f"- **Emotion Detected:** {turn.emotion}\n\n"
|
322 |
+
|
323 |
+
return history
|
324 |
+
|
325 |
+
def clear_conversation(self, session_id: str) -> str:
|
326 |
+
"""Clear conversation history for session"""
|
327 |
+
self.conversation_manager.clear_session(session_id)
|
328 |
+
return "Conversation history cleared."
|
329 |
+
|
330 |
+
def get_system_status(self) -> str:
|
331 |
+
"""Get system status information"""
|
332 |
+
memory = self._get_memory_usage()
|
333 |
+
avg_processing = np.mean(self.processing_times) if self.processing_times else 0
|
334 |
+
|
335 |
+
status = f"""## System Status
|
336 |
+
|
337 |
+
**Performance:**
|
338 |
+
- Average Processing Time: {avg_processing:.2f}s
|
339 |
+
- Active Sessions: {len(self.active_sessions)}
|
340 |
+
- Total Conversations: {len(self.conversation_manager.conversations)}
|
341 |
+
|
342 |
+
**Memory Usage:**
|
343 |
+
- RAM: {memory['RAM']:.1f}%
|
344 |
+
- GPU Memory: {memory.get('GPU', {})}
|
345 |
+
|
346 |
+
**Models Status:**
|
347 |
+
- Models Loaded: {"β
" if self.models_loaded else "β"}
|
348 |
+
- Device: {self.device}
|
349 |
+
"""
|
350 |
+
return status
|
351 |
+
|
352 |
+
# Initialize the AI system
|
353 |
+
print("Starting Supernatural AI system...")
|
354 |
+
ai_system = SupernaturalAI()
|
355 |
+
|
356 |
+
# Gradio Interface
|
357 |
+
def process_audio_interface(audio, session_id):
|
358 |
+
"""Interface function for Gradio"""
|
359 |
+
if not session_id:
|
360 |
+
session_id = f"user_{int(time.time())}"
|
361 |
+
|
362 |
+
ai_system.active_sessions.add(session_id)
|
363 |
+
result = ai_system.process_audio_input(audio, session_id)
|
364 |
+
return result + (session_id,)
|
365 |
+
|
366 |
+
def get_history_interface(session_id):
|
367 |
+
"""Get conversation history interface"""
|
368 |
+
if not session_id:
|
369 |
+
return "No session ID provided"
|
370 |
+
return ai_system.get_conversation_history(session_id)
|
371 |
+
|
372 |
+
def clear_history_interface(session_id):
|
373 |
+
"""Clear history interface"""
|
374 |
+
if not session_id:
|
375 |
+
return "No session ID provided"
|
376 |
+
return ai_system.clear_conversation(session_id)
|
377 |
+
|
378 |
+
# Create Gradio interface
|
379 |
+
with gr.Blocks(title="Supernatural Conversational AI", theme=gr.themes.Soft()) as demo:
|
380 |
+
gr.HTML("""
|
381 |
+
<div style="text-align: center; padding: 20px;">
|
382 |
+
<h1>π§ββοΈ Supernatural Conversational AI</h1>
|
383 |
+
<p style="font-size: 18px; color: #666;">
|
384 |
+
Advanced Speech-to-Speech AI with Emotional Intelligence
|
385 |
+
</p>
|
386 |
+
<p style="color: #888;">
|
387 |
+
Powered by Ultravox + Dia TTS | Optimized for 4x L4 GPUs
|
388 |
+
</p>
|
389 |
+
</div>
|
390 |
+
""")
|
391 |
+
|
392 |
+
with gr.Row():
|
393 |
+
with gr.Column(scale=2):
|
394 |
+
# Audio input/output
|
395 |
+
audio_input = gr.Audio(
|
396 |
+
label="π€ Speak to the AI",
|
397 |
+
sources=["microphone"],
|
398 |
+
type="numpy",
|
399 |
+
streaming=False
|
400 |
+
)
|
401 |
+
|
402 |
+
audio_output = gr.Audio(
|
403 |
+
label="π AI Response",
|
404 |
+
type="numpy",
|
405 |
+
autoplay=True
|
406 |
+
)
|
407 |
+
|
408 |
+
# Session management
|
409 |
+
session_id = gr.Textbox(
|
410 |
+
label="Session ID",
|
411 |
+
placeholder="Auto-generated if empty",
|
412 |
+
value="",
|
413 |
+
interactive=True
|
414 |
+
)
|
415 |
+
|
416 |
+
# Process button
|
417 |
+
process_btn = gr.Button("π― Process Audio", variant="primary", size="lg")
|
418 |
+
|
419 |
+
with gr.Column(scale=1):
|
420 |
+
# Status and conversation
|
421 |
+
status_display = gr.Textbox(
|
422 |
+
label="π Status",
|
423 |
+
interactive=False,
|
424 |
+
lines=3
|
425 |
+
)
|
426 |
+
|
427 |
+
conversation_display = gr.Markdown(
|
428 |
+
label="π¬ Conversation",
|
429 |
+
value="Start speaking to begin..."
|
430 |
+
)
|
431 |
+
|
432 |
+
# History management
|
433 |
+
with gr.Row():
|
434 |
+
history_btn = gr.Button("π Show History", size="sm")
|
435 |
+
clear_btn = gr.Button("ποΈ Clear History", size="sm")
|
436 |
+
status_btn = gr.Button("β‘ System Status", size="sm")
|
437 |
+
|
438 |
+
# History and status display
|
439 |
+
history_display = gr.Markdown(
|
440 |
+
label="π Conversation History",
|
441 |
+
value="No history yet."
|
442 |
+
)
|
443 |
+
|
444 |
+
# Event handlers
|
445 |
+
process_btn.click(
|
446 |
+
fn=process_audio_interface,
|
447 |
+
inputs=[audio_input, session_id],
|
448 |
+
outputs=[audio_output, status_display, conversation_display, session_id]
|
449 |
+
)
|
450 |
+
|
451 |
+
history_btn.click(
|
452 |
+
fn=get_history_interface,
|
453 |
+
inputs=[session_id],
|
454 |
+
outputs=[history_display]
|
455 |
+
)
|
456 |
+
|
457 |
+
clear_btn.click(
|
458 |
+
fn=clear_history_interface,
|
459 |
+
inputs=[session_id],
|
460 |
+
outputs=[history_display]
|
461 |
+
)
|
462 |
+
|
463 |
+
status_btn.click(
|
464 |
+
fn=lambda: ai_system.get_system_status(),
|
465 |
+
outputs=[history_display]
|
466 |
+
)
|
467 |
+
|
468 |
+
# Auto-process on audio input
|
469 |
+
audio_input.change(
|
470 |
+
fn=process_audio_interface,
|
471 |
+
inputs=[audio_input, session_id],
|
472 |
+
outputs=[audio_output, status_display, conversation_display, session_id]
|
473 |
+
)
|
474 |
+
|
475 |
+
# Usage instructions
|
476 |
+
gr.HTML("""
|
477 |
+
<div style="margin-top: 20px; padding: 15px; background: #f0f8ff; border-radius: 8px;">
|
478 |
+
<h3>π‘ Usage Instructions:</h3>
|
479 |
+
<ul>
|
480 |
+
<li><strong>Record Audio:</strong> Click the microphone and speak naturally</li>
|
481 |
+
<li><strong>Emotional AI:</strong> The AI detects and responds to your emotions</li>
|
482 |
+
<li><strong>Conversation Memory:</strong> Up to 50 exchanges are remembered</li>
|
483 |
+
<li><strong>Session Management:</strong> Use Session ID to maintain separate conversations</li>
|
484 |
+
<li><strong>Performance:</strong> Optimized for sub-500ms latency</li>
|
485 |
+
</ul>
|
486 |
+
|
487 |
+
<p><strong>Supported Features:</strong> Emotion recognition, voice activity detection,
|
488 |
+
contextual responses, conversation history, concurrent users (15-20), memory management</p>
|
489 |
+
</div>
|
490 |
+
""")
|
491 |
+
|
492 |
+
# Configure for optimal performance
|
493 |
+
demo.queue(
|
494 |
+
concurrency_count=20, # Support 20 concurrent users
|
495 |
+
max_size=100,
|
496 |
+
api_open=False
|
497 |
+
)
|
498 |
|
499 |
if __name__ == "__main__":
|
500 |
+
demo.launch(
|
501 |
+
server_name="0.0.0.0",
|
502 |
+
server_port=7860,
|
503 |
+
share=False,
|
504 |
+
show_error=True,
|
505 |
+
quiet=False,
|
506 |
+
enable_queue=True,
|
507 |
+
max_threads=40
|
508 |
+
)
|