File size: 2,192 Bytes
c5ef34e
5adc99b
cfde29f
5adc99b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00432e3
5adc99b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from transformers import AutoProcessor, CsmForConditionalGeneration
from dia.model import Dia
from pyannote.audio import Pipeline as VAD
import torch, numpy as np

# Load models
ultra_proc = AutoProcessor.from_pretrained("fixie-ai/ultravox-v0_4")
ultra_model = CsmForConditionalGeneration.from_pretrained("fixie-ai/ultravox-v0_4", device_map="auto", torch_dtype=torch.float16)
ser = AutoProcessor.from_pretrained("r-f/wav2vec-english-speech-emotion-recognition")
ser_model = torch.hub.load("jonatasgrosman/wav2vec2-large-xlsr-53-english", "wav2vec2_large_xlsr", pretrained=True).to("cuda")
diff_pipe = torch.hub.load("teticio/audio-diffusion-instrumental-hiphop-256", "audio_diffusion").to("cuda")
rvq = torch.hub.load("ibm/DAC.speech.v1.0", "DAC_speech_v1_0").to("cuda")
vad = VAD.from_pretrained("pyannote/voice-activity-detection")
dia = Dia.from_pretrained("nari-labs/Dia-1.6B", compute_dtype="float16")

def process(audio):
    # VAD
    speech = vad({"waveform": audio["array"], "sample_rate": audio["sampling_rate"]})
    # RVQ encode/decode
    codes = rvq.encode(audio["array"])
    dec_audio = rvq.decode(codes)
    # Emotion
    emo_inputs = ser(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt")
    emotion = ser_model(**emo_inputs).logits.argmax(-1).item()
    # Ultravox generation
    inputs = ultra_proc(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").to("cuda")
    speech_out = ultra_model.generate(**inputs, output_audio=True)
    # Diffuse and clone voice
    audio_diff = diff_pipe(speech_out.audio).audios[0]
    # TTS
    text = f"[S1][emotion={emotion}]" + " ".join(["..."]) # placeholder
    dia_audio = dia.generate(text)
    # Normalize
    dia_audio = dia_audio / np.max(np.abs(dia_audio)) * 0.95
    return 44100, dia_audio

with gr.Blocks() as demo:
    state = gr.State([])
    audio_in = gr.Audio(source="microphone", type="numpy")
    chat = gr.Chatbot()
    record = gr.Button("Record")
    record.click(process, inputs=audio_in, outputs=[audio_in]).then(
        lambda a: chat.update(value=[("User", ""), ("AI", "")]),
    )
    demo.queue(concurrency_limit=20, max_size=50).launch()