Spaces:
Runtime error
Runtime error
File size: 18,257 Bytes
c5ef34e c0a635e cfde29f c0a635e cfde29f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import gradio as gr
import torch
import numpy as np
import librosa
import soundfile as sf
import threading
import time
import queue
import warnings
from typing import Optional, List, Dict, Tuple
from dataclasses import dataclass
from collections import deque
import psutil
import gc
# Import models
from dia.model import Dia
from transformers import pipeline
import webrtcvad
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
@dataclass
class ConversationTurn:
user_audio: np.ndarray
user_text: str
ai_response_text: str
ai_response_audio: np.ndarray
timestamp: float
emotion: str
speaker_id: str
class EmotionRecognizer:
def __init__(self):
self.emotion_pipeline = pipeline(
"audio-classification",
model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition",
device=0 if torch.cuda.is_available() else -1
)
def detect_emotion(self, audio: np.ndarray, sample_rate: int = 16000) -> str:
try:
result = self.emotion_pipeline({"array": audio, "sampling_rate": sample_rate})
return result[0]["label"] if result else "neutral"
except Exception as e:
print(f"Emotion detection error: {e}")
return "neutral"
class VADProcessor:
def __init__(self, aggressiveness: int = 2):
self.vad = webrtcvad.Vad(aggressiveness)
self.sample_rate = 16000
self.frame_duration = 30 # ms
self.frame_size = int(self.sample_rate * self.frame_duration / 1000)
def is_speech(self, audio: np.ndarray) -> bool:
try:
# Convert to 16-bit PCM
audio_int16 = (audio * 32767).astype(np.int16)
# Process in frames
frames = []
for i in range(0, len(audio_int16) - self.frame_size, self.frame_size):
frame = audio_int16[i:i + self.frame_size].tobytes()
frames.append(self.vad.is_speech(frame, self.sample_rate))
# Return True if majority of frames contain speech
return sum(frames) > len(frames) * 0.3
except Exception:
return True # Default to treating as speech
class ConversationManager:
def __init__(self, max_exchanges: int = 50):
self.conversations: Dict[str, deque] = {}
self.max_exchanges = max_exchanges
self.lock = threading.RLock()
def add_turn(self, session_id: str, turn: ConversationTurn):
with self.lock:
if session_id not in self.conversations:
self.conversations[session_id] = deque(maxlen=self.max_exchanges)
self.conversations[session_id].append(turn)
def get_context(self, session_id: str, last_n: int = 5) -> List[ConversationTurn]:
with self.lock:
if session_id not in self.conversations:
return []
return list(self.conversations[session_id])[-last_n:]
def clear_session(self, session_id: str):
with self.lock:
if session_id in self.conversations:
del self.conversations[session_id]
class SupernaturalAI:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.models_loaded = False
self.processing_queue = queue.Queue()
self.conversation_manager = ConversationManager()
self.emotion_recognizer = None
self.vad_processor = VADProcessor()
# Models
self.ultravox_model = None
self.dia_model = None
# Performance tracking
self.active_sessions = set()
self.processing_times = deque(maxlen=100)
print("Initializing Supernatural AI...")
self._initialize_models()
def _initialize_models(self):
try:
print("Loading Ultravox model...")
self.ultravox_model = pipeline(
'automatic-speech-recognition',
model='fixie-ai/ultravox-v0_2',
trust_remote_code=True,
device=0 if torch.cuda.is_available() else -1,
torch_dtype=torch.float16
)
print("Loading Dia TTS model...")
self.dia_model = Dia.from_pretrained(
"nari-labs/Dia-1.6B",
compute_dtype="float16"
)
print("Loading emotion recognition...")
self.emotion_recognizer = EmotionRecognizer()
self.models_loaded = True
print("β
All models loaded successfully!")
# Memory cleanup
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
print(f"β Error loading models: {e}")
self.models_loaded = False
def _get_memory_usage(self) -> Dict[str, float]:
"""Get current memory usage statistics"""
memory = psutil.virtual_memory()
gpu_memory = {}
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
gpu_memory[f"GPU_{i}"] = {
"allocated": torch.cuda.memory_allocated(i) / 1024**3,
"cached": torch.cuda.memory_reserved(i) / 1024**3
}
return {
"RAM": memory.percent,
"GPU": gpu_memory
}
def _generate_contextual_prompt(self,
user_text: str,
emotion: str,
context: List[ConversationTurn]) -> str:
"""Generate contextual prompt with emotion and conversation history"""
# Build context from previous turns
context_text = ""
if context:
for turn in context[-3:]: # Last 3 exchanges
context_text += f"[S1] {turn.user_text} [S2] {turn.ai_response_text} "
# Emotion-aware response generation
emotion_modifiers = {
"happy": "(cheerful)",
"sad": "(sympathetic)",
"angry": "(calming)",
"fear": "(reassuring)",
"surprise": "(excited)",
"neutral": ""
}
modifier = emotion_modifiers.get(emotion.lower(), "")
# Create supernatural AI personality
prompt = f"{context_text}[S1] {user_text} [S2] {modifier} As a supernatural AI with deep emotional understanding, I sense your {emotion} energy. "
return prompt
def process_audio_input(self,
audio_data: Tuple[int, np.ndarray],
session_id: str) -> Tuple[Optional[Tuple[int, np.ndarray]], str, str]:
"""Main processing pipeline for audio input"""
if not self.models_loaded:
return None, "β Models not loaded", "Please wait for initialization"
if audio_data is None:
return None, "β No audio received", "Please record some audio"
start_time = time.time()
try:
sample_rate, audio = audio_data
# Ensure audio is mono and proper format
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
# Normalize audio
audio = audio.astype(np.float32)
if np.max(np.abs(audio)) > 0:
audio = audio / np.max(np.abs(audio)) * 0.95
# Voice Activity Detection
if not self.vad_processor.is_speech(audio):
return None, "π No speech detected", "Please speak clearly"
# Resample if needed
if sample_rate != 16000:
audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=16000)
sample_rate = 16000
# Speech Recognition with Ultravox
try:
speech_result = self.ultravox_model({
'array': audio,
'sampling_rate': sample_rate
})
user_text = speech_result.get('text', '').strip()
if not user_text:
return None, "β Could not understand speech", "Please speak more clearly"
except Exception as e:
print(f"ASR Error: {e}")
return None, f"β Speech recognition failed: {str(e)}", "Please try again"
# Emotion Recognition
emotion = self.emotion_recognizer.detect_emotion(audio, sample_rate)
# Get conversation context
context = self.conversation_manager.get_context(session_id)
# Generate contextual response
prompt = self._generate_contextual_prompt(user_text, emotion, context)
# Generate speech with Dia TTS
try:
with torch.no_grad():
audio_output = self.dia_model.generate(
prompt,
use_torch_compile=False, # Better stability
verbose=False
)
# Ensure audio output is proper format
if isinstance(audio_output, torch.Tensor):
audio_output = audio_output.cpu().numpy()
# Normalize output
if len(audio_output) > 0:
max_val = np.max(np.abs(audio_output))
if max_val > 1.0:
audio_output = audio_output / max_val * 0.95
except Exception as e:
print(f"TTS Error: {e}")
return None, f"β Speech generation failed: {str(e)}", "Please try again"
# Extract AI response text (remove speaker tags and modifiers)
ai_response = prompt.split('[S2]')[-1].strip()
ai_response = ai_response.replace('(cheerful)', '').replace('(sympathetic)', '')
ai_response = ai_response.replace('(calming)', '').replace('(reassuring)', '')
ai_response = ai_response.replace('(excited)', '').strip()
# Store conversation turn
turn = ConversationTurn(
user_audio=audio,
user_text=user_text,
ai_response_text=ai_response,
ai_response_audio=audio_output,
timestamp=time.time(),
emotion=emotion,
speaker_id=session_id
)
self.conversation_manager.add_turn(session_id, turn)
# Track performance
processing_time = time.time() - start_time
self.processing_times.append(processing_time)
# Memory cleanup
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
status = f"β
Processed in {processing_time:.2f}s | Emotion: {emotion} | Users: {len(self.active_sessions)}"
return (44100, audio_output), status, f"**You said:** {user_text}\n\n**AI Response:** {ai_response}"
except Exception as e:
print(f"Processing error: {e}")
return None, f"β Processing failed: {str(e)}", "Please try again"
def get_conversation_history(self, session_id: str) -> str:
"""Get formatted conversation history"""
context = self.conversation_manager.get_context(session_id, last_n=10)
if not context:
return "No conversation history yet."
history = "## Conversation History\n\n"
for i, turn in enumerate(context, 1):
history += f"**Turn {i}:**\n"
history += f"- **You:** {turn.user_text}\n"
history += f"- **AI:** {turn.ai_response_text}\n"
history += f"- **Emotion Detected:** {turn.emotion}\n\n"
return history
def clear_conversation(self, session_id: str) -> str:
"""Clear conversation history for session"""
self.conversation_manager.clear_session(session_id)
return "Conversation history cleared."
def get_system_status(self) -> str:
"""Get system status information"""
memory = self._get_memory_usage()
avg_processing = np.mean(self.processing_times) if self.processing_times else 0
status = f"""## System Status
**Performance:**
- Average Processing Time: {avg_processing:.2f}s
- Active Sessions: {len(self.active_sessions)}
- Total Conversations: {len(self.conversation_manager.conversations)}
**Memory Usage:**
- RAM: {memory['RAM']:.1f}%
- GPU Memory: {memory.get('GPU', {})}
**Models Status:**
- Models Loaded: {"β
" if self.models_loaded else "β"}
- Device: {self.device}
"""
return status
# Initialize the AI system
print("Starting Supernatural AI system...")
ai_system = SupernaturalAI()
# Gradio Interface
def process_audio_interface(audio, session_id):
"""Interface function for Gradio"""
if not session_id:
session_id = f"user_{int(time.time())}"
ai_system.active_sessions.add(session_id)
result = ai_system.process_audio_input(audio, session_id)
return result + (session_id,)
def get_history_interface(session_id):
"""Get conversation history interface"""
if not session_id:
return "No session ID provided"
return ai_system.get_conversation_history(session_id)
def clear_history_interface(session_id):
"""Clear history interface"""
if not session_id:
return "No session ID provided"
return ai_system.clear_conversation(session_id)
# Create Gradio interface
with gr.Blocks(title="Supernatural Conversational AI", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1>π§ββοΈ Supernatural Conversational AI</h1>
<p style="font-size: 18px; color: #666;">
Advanced Speech-to-Speech AI with Emotional Intelligence
</p>
<p style="color: #888;">
Powered by Ultravox + Dia TTS | Optimized for 4x L4 GPUs
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
# Audio input/output
audio_input = gr.Audio(
label="π€ Speak to the AI",
sources=["microphone"],
type="numpy",
streaming=False
)
audio_output = gr.Audio(
label="π AI Response",
type="numpy",
autoplay=True
)
# Session management
session_id = gr.Textbox(
label="Session ID",
placeholder="Auto-generated if empty",
value="",
interactive=True
)
# Process button
process_btn = gr.Button("π― Process Audio", variant="primary", size="lg")
with gr.Column(scale=1):
# Status and conversation
status_display = gr.Textbox(
label="π Status",
interactive=False,
lines=3
)
conversation_display = gr.Markdown(
label="π¬ Conversation",
value="Start speaking to begin..."
)
# History management
with gr.Row():
history_btn = gr.Button("π Show History", size="sm")
clear_btn = gr.Button("ποΈ Clear History", size="sm")
status_btn = gr.Button("β‘ System Status", size="sm")
# History and status display
history_display = gr.Markdown(
label="π Conversation History",
value="No history yet."
)
# Event handlers
process_btn.click(
fn=process_audio_interface,
inputs=[audio_input, session_id],
outputs=[audio_output, status_display, conversation_display, session_id]
)
history_btn.click(
fn=get_history_interface,
inputs=[session_id],
outputs=[history_display]
)
clear_btn.click(
fn=clear_history_interface,
inputs=[session_id],
outputs=[history_display]
)
status_btn.click(
fn=lambda: ai_system.get_system_status(),
outputs=[history_display]
)
# Auto-process on audio input
audio_input.change(
fn=process_audio_interface,
inputs=[audio_input, session_id],
outputs=[audio_output, status_display, conversation_display, session_id]
)
# Usage instructions
gr.HTML("""
<div style="margin-top: 20px; padding: 15px; background: #f0f8ff; border-radius: 8px;">
<h3>π‘ Usage Instructions:</h3>
<ul>
<li><strong>Record Audio:</strong> Click the microphone and speak naturally</li>
<li><strong>Emotional AI:</strong> The AI detects and responds to your emotions</li>
<li><strong>Conversation Memory:</strong> Up to 50 exchanges are remembered</li>
<li><strong>Session Management:</strong> Use Session ID to maintain separate conversations</li>
<li><strong>Performance:</strong> Optimized for sub-500ms latency</li>
</ul>
<p><strong>Supported Features:</strong> Emotion recognition, voice activity detection,
contextual responses, conversation history, concurrent users (15-20), memory management</p>
</div>
""")
# Configure for optimal performance
demo.queue(
concurrency_count=20, # Support 20 concurrent users
max_size=100,
api_open=False
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
quiet=False,
enable_queue=True,
max_threads=40
)
|