Spaces:
Configuration error
Configuration error
import json | |
import os | |
import sys | |
from datetime import datetime | |
sys.path.insert( | |
0, os.path.abspath("../../") | |
) # Adds the parent directory to the system path | |
import litellm | |
import pytest | |
from datetime import timedelta | |
from litellm.types.utils import ImageResponse, ImageObject | |
from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import ( | |
LiteLLMResponseObjectHandler, | |
) | |
def test_convert_to_image_response_basic(): | |
# Test basic conversion with minimal input | |
response_dict = { | |
"created": 1234567890, | |
"data": [{"url": "http://example.com/image.jpg"}], | |
} | |
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict) | |
assert isinstance(result, ImageResponse) | |
assert result.created == 1234567890 | |
assert result.data[0].url == "http://example.com/image.jpg" | |
def test_convert_to_image_response_with_hidden_params(): | |
# Test with hidden params | |
response_dict = { | |
"created": 1234567890, | |
"data": [{"url": "http://example.com/image.jpg"}], | |
} | |
hidden_params = {"api_key": "test_key"} | |
result = LiteLLMResponseObjectHandler.convert_to_image_response( | |
response_dict, hidden_params=hidden_params | |
) | |
assert result._hidden_params == {"api_key": "test_key"} | |
def test_convert_to_image_response_multiple_images(): | |
# Test handling multiple images in response | |
response_dict = { | |
"created": 1234567890, | |
"data": [ | |
{"url": "http://example.com/image1.jpg"}, | |
{"url": "http://example.com/image2.jpg"}, | |
], | |
} | |
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict) | |
assert len(result.data) == 2 | |
assert result.data[0].url == "http://example.com/image1.jpg" | |
assert result.data[1].url == "http://example.com/image2.jpg" | |
def test_convert_to_image_response_with_b64_json(): | |
# Test handling b64_json in response | |
response_dict = { | |
"created": 1234567890, | |
"data": [{"b64_json": "base64encodedstring"}], | |
} | |
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict) | |
assert result.data[0].b64_json == "base64encodedstring" | |
def test_convert_to_image_response_with_extra_fields(): | |
response_dict = { | |
"created": 1234567890, | |
"data": [ | |
{ | |
"url": "http://example.com/image1.jpg", | |
"content_filter_results": {"category": "violence", "flagged": True}, | |
}, | |
{ | |
"url": "http://example.com/image2.jpg", | |
"content_filter_results": {"category": "violence", "flagged": True}, | |
}, | |
], | |
} | |
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict) | |
assert result.data[0].url == "http://example.com/image1.jpg" | |
assert result.data[1].url == "http://example.com/image2.jpg" | |
def test_convert_to_image_response_with_extra_fields_2(): | |
""" | |
Date from a non-OpenAI API could have some obscure field in addition to the expected ones. This should not break the conversion. | |
""" | |
response_dict = { | |
"created": 1234567890, | |
"data": [ | |
{ | |
"url": "http://example.com/image1.jpg", | |
"very_obscure_field": "some_value", | |
}, | |
{ | |
"url": "http://example.com/image2.jpg", | |
"very_obscure_field2": "some_other_value", | |
}, | |
], | |
} | |
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict) | |
assert result.data[0].url == "http://example.com/image1.jpg" | |
assert result.data[1].url == "http://example.com/image2.jpg" | |
def test_convert_to_image_response_with_none_usage_fields(): | |
""" | |
Test handling of None values in usage fields, specifically for gpt-image-1 responses. | |
This test verifies the fix for the bug where gpt-image-1 returns None values | |
for usage statistics fields, which caused Pydantic validation errors. | |
The fix should clean these None values and let ImageResponse constructor | |
handle the default values. | |
""" | |
response_dict = { | |
"created": 1234567890, | |
"data": [{"b64_json": "base64encodedstring"}], | |
"usage": { | |
"input_tokens": None, # gpt-image-1 returns None instead of integer | |
"input_tokens_details": None, # gpt-image-1 returns None instead of object | |
"output_tokens": None, # gpt-image-1 returns None instead of integer | |
"total_tokens": None, # gpt-image-1 returns None instead of integer | |
} | |
} | |
# This should not raise a ValidationError | |
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict) | |
assert isinstance(result, ImageResponse) | |
assert result.created == 1234567890 | |
assert result.data[0].b64_json == "base64encodedstring" | |
# Usage should be properly initialized with default values | |
assert result.usage is not None | |
assert result.usage.input_tokens == 0 | |
assert result.usage.output_tokens == 0 | |
assert result.usage.total_tokens == 0 | |
assert result.usage.input_tokens_details is not None | |
assert result.usage.input_tokens_details.image_tokens == 0 | |
assert result.usage.input_tokens_details.text_tokens == 0 | |
def test_convert_to_image_response_with_partial_none_usage_fields(): | |
""" | |
Test handling of mixed None and valid values in usage fields. | |
""" | |
response_dict = { | |
"created": 1234567890, | |
"data": [{"b64_json": "base64encodedstring"}], | |
"usage": { | |
"input_tokens": 10, # Valid value | |
"input_tokens_details": None, # None value (should be cleaned) | |
"output_tokens": None, # None value (should be cleaned) | |
"total_tokens": 10, # Valid value | |
} | |
} | |
# This should not raise a ValidationError | |
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict) | |
assert isinstance(result, ImageResponse) | |
assert result.created == 1234567890 | |
assert result.data[0].b64_json == "base64encodedstring" | |
# Usage should be properly initialized with defaults where needed | |
# Valid values should be preserved, None values should be cleaned and use defaults | |
assert result.usage is not None | |
assert result.usage.input_tokens == 10 # Valid value should be preserved | |
assert result.usage.output_tokens == 0 # None value should become 0 | |
assert result.usage.total_tokens == 10 # Calculated as input_tokens + output_tokens (10 + 0) | |
assert result.usage.input_tokens_details is not None | |
assert result.usage.input_tokens_details.image_tokens == 0 | |
assert result.usage.input_tokens_details.text_tokens == 0 | |
def test_convert_to_image_response_with_valid_usage_fields(): | |
""" | |
Test that valid usage fields are preserved correctly. | |
""" | |
response_dict = { | |
"created": 1234567890, | |
"data": [{"b64_json": "base64encodedstring"}], | |
"usage": { | |
"input_tokens": 50, | |
"input_tokens_details": { | |
"image_tokens": 30, | |
"text_tokens": 20, | |
}, | |
"output_tokens": 10, | |
"total_tokens": 60, | |
} | |
} | |
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict) | |
assert isinstance(result, ImageResponse) | |
assert result.created == 1234567890 | |
assert result.data[0].b64_json == "base64encodedstring" | |
# Valid usage fields should be preserved | |
assert result.usage is not None | |
assert result.usage.input_tokens == 50 | |
assert result.usage.output_tokens == 10 | |
assert result.usage.total_tokens == 60 | |
assert result.usage.input_tokens_details is not None | |
assert result.usage.input_tokens_details.image_tokens == 30 | |
assert result.usage.input_tokens_details.text_tokens == 20 | |