test3 / tests /llm_translation /test_convert_dict_to_image.py
DesertWolf's picture
Upload folder using huggingface_hub
447ebeb verified
import json
import os
import sys
from datetime import datetime
sys.path.insert(
0, os.path.abspath("../../")
) # Adds the parent directory to the system path
import litellm
import pytest
from datetime import timedelta
from litellm.types.utils import ImageResponse, ImageObject
from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import (
LiteLLMResponseObjectHandler,
)
def test_convert_to_image_response_basic():
# Test basic conversion with minimal input
response_dict = {
"created": 1234567890,
"data": [{"url": "http://example.com/image.jpg"}],
}
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)
assert isinstance(result, ImageResponse)
assert result.created == 1234567890
assert result.data[0].url == "http://example.com/image.jpg"
def test_convert_to_image_response_with_hidden_params():
# Test with hidden params
response_dict = {
"created": 1234567890,
"data": [{"url": "http://example.com/image.jpg"}],
}
hidden_params = {"api_key": "test_key"}
result = LiteLLMResponseObjectHandler.convert_to_image_response(
response_dict, hidden_params=hidden_params
)
assert result._hidden_params == {"api_key": "test_key"}
def test_convert_to_image_response_multiple_images():
# Test handling multiple images in response
response_dict = {
"created": 1234567890,
"data": [
{"url": "http://example.com/image1.jpg"},
{"url": "http://example.com/image2.jpg"},
],
}
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)
assert len(result.data) == 2
assert result.data[0].url == "http://example.com/image1.jpg"
assert result.data[1].url == "http://example.com/image2.jpg"
def test_convert_to_image_response_with_b64_json():
# Test handling b64_json in response
response_dict = {
"created": 1234567890,
"data": [{"b64_json": "base64encodedstring"}],
}
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)
assert result.data[0].b64_json == "base64encodedstring"
def test_convert_to_image_response_with_extra_fields():
response_dict = {
"created": 1234567890,
"data": [
{
"url": "http://example.com/image1.jpg",
"content_filter_results": {"category": "violence", "flagged": True},
},
{
"url": "http://example.com/image2.jpg",
"content_filter_results": {"category": "violence", "flagged": True},
},
],
}
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)
assert result.data[0].url == "http://example.com/image1.jpg"
assert result.data[1].url == "http://example.com/image2.jpg"
def test_convert_to_image_response_with_extra_fields_2():
"""
Date from a non-OpenAI API could have some obscure field in addition to the expected ones. This should not break the conversion.
"""
response_dict = {
"created": 1234567890,
"data": [
{
"url": "http://example.com/image1.jpg",
"very_obscure_field": "some_value",
},
{
"url": "http://example.com/image2.jpg",
"very_obscure_field2": "some_other_value",
},
],
}
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)
assert result.data[0].url == "http://example.com/image1.jpg"
assert result.data[1].url == "http://example.com/image2.jpg"
def test_convert_to_image_response_with_none_usage_fields():
"""
Test handling of None values in usage fields, specifically for gpt-image-1 responses.
This test verifies the fix for the bug where gpt-image-1 returns None values
for usage statistics fields, which caused Pydantic validation errors.
The fix should clean these None values and let ImageResponse constructor
handle the default values.
"""
response_dict = {
"created": 1234567890,
"data": [{"b64_json": "base64encodedstring"}],
"usage": {
"input_tokens": None, # gpt-image-1 returns None instead of integer
"input_tokens_details": None, # gpt-image-1 returns None instead of object
"output_tokens": None, # gpt-image-1 returns None instead of integer
"total_tokens": None, # gpt-image-1 returns None instead of integer
}
}
# This should not raise a ValidationError
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)
assert isinstance(result, ImageResponse)
assert result.created == 1234567890
assert result.data[0].b64_json == "base64encodedstring"
# Usage should be properly initialized with default values
assert result.usage is not None
assert result.usage.input_tokens == 0
assert result.usage.output_tokens == 0
assert result.usage.total_tokens == 0
assert result.usage.input_tokens_details is not None
assert result.usage.input_tokens_details.image_tokens == 0
assert result.usage.input_tokens_details.text_tokens == 0
def test_convert_to_image_response_with_partial_none_usage_fields():
"""
Test handling of mixed None and valid values in usage fields.
"""
response_dict = {
"created": 1234567890,
"data": [{"b64_json": "base64encodedstring"}],
"usage": {
"input_tokens": 10, # Valid value
"input_tokens_details": None, # None value (should be cleaned)
"output_tokens": None, # None value (should be cleaned)
"total_tokens": 10, # Valid value
}
}
# This should not raise a ValidationError
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)
assert isinstance(result, ImageResponse)
assert result.created == 1234567890
assert result.data[0].b64_json == "base64encodedstring"
# Usage should be properly initialized with defaults where needed
# Valid values should be preserved, None values should be cleaned and use defaults
assert result.usage is not None
assert result.usage.input_tokens == 10 # Valid value should be preserved
assert result.usage.output_tokens == 0 # None value should become 0
assert result.usage.total_tokens == 10 # Calculated as input_tokens + output_tokens (10 + 0)
assert result.usage.input_tokens_details is not None
assert result.usage.input_tokens_details.image_tokens == 0
assert result.usage.input_tokens_details.text_tokens == 0
def test_convert_to_image_response_with_valid_usage_fields():
"""
Test that valid usage fields are preserved correctly.
"""
response_dict = {
"created": 1234567890,
"data": [{"b64_json": "base64encodedstring"}],
"usage": {
"input_tokens": 50,
"input_tokens_details": {
"image_tokens": 30,
"text_tokens": 20,
},
"output_tokens": 10,
"total_tokens": 60,
}
}
result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)
assert isinstance(result, ImageResponse)
assert result.created == 1234567890
assert result.data[0].b64_json == "base64encodedstring"
# Valid usage fields should be preserved
assert result.usage is not None
assert result.usage.input_tokens == 50
assert result.usage.output_tokens == 10
assert result.usage.total_tokens == 60
assert result.usage.input_tokens_details is not None
assert result.usage.input_tokens_details.image_tokens == 30
assert result.usage.input_tokens_details.text_tokens == 20