File size: 7,858 Bytes
447ebeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import json
import os
import sys
from datetime import datetime

sys.path.insert(
    0, os.path.abspath("../../")
)  # Adds the parent directory to the system path

import litellm
import pytest
from datetime import timedelta
from litellm.types.utils import ImageResponse, ImageObject
from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import (
    LiteLLMResponseObjectHandler,
)


def test_convert_to_image_response_basic():
    # Test basic conversion with minimal input
    response_dict = {
        "created": 1234567890,
        "data": [{"url": "http://example.com/image.jpg"}],
    }

    result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)

    assert isinstance(result, ImageResponse)
    assert result.created == 1234567890
    assert result.data[0].url == "http://example.com/image.jpg"


def test_convert_to_image_response_with_hidden_params():
    # Test with hidden params
    response_dict = {
        "created": 1234567890,
        "data": [{"url": "http://example.com/image.jpg"}],
    }
    hidden_params = {"api_key": "test_key"}

    result = LiteLLMResponseObjectHandler.convert_to_image_response(
        response_dict, hidden_params=hidden_params
    )

    assert result._hidden_params == {"api_key": "test_key"}


def test_convert_to_image_response_multiple_images():
    # Test handling multiple images in response
    response_dict = {
        "created": 1234567890,
        "data": [
            {"url": "http://example.com/image1.jpg"},
            {"url": "http://example.com/image2.jpg"},
        ],
    }

    result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)

    assert len(result.data) == 2
    assert result.data[0].url == "http://example.com/image1.jpg"
    assert result.data[1].url == "http://example.com/image2.jpg"


def test_convert_to_image_response_with_b64_json():
    # Test handling b64_json in response
    response_dict = {
        "created": 1234567890,
        "data": [{"b64_json": "base64encodedstring"}],
    }

    result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)

    assert result.data[0].b64_json == "base64encodedstring"


def test_convert_to_image_response_with_extra_fields():
    response_dict = {
        "created": 1234567890,
        "data": [
            {
                "url": "http://example.com/image1.jpg",
                "content_filter_results": {"category": "violence", "flagged": True},
            },
            {
                "url": "http://example.com/image2.jpg",
                "content_filter_results": {"category": "violence", "flagged": True},
            },
        ],
    }

    result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)

    assert result.data[0].url == "http://example.com/image1.jpg"
    assert result.data[1].url == "http://example.com/image2.jpg"


def test_convert_to_image_response_with_extra_fields_2():
    """
    Date from a non-OpenAI API could have some obscure field in addition to the expected ones. This should not break the conversion.
    """
    response_dict = {
        "created": 1234567890,
        "data": [
            {
                "url": "http://example.com/image1.jpg",
                "very_obscure_field": "some_value",
            },
            {
                "url": "http://example.com/image2.jpg",
                "very_obscure_field2": "some_other_value",
            },
        ],
    }

    result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)

    assert result.data[0].url == "http://example.com/image1.jpg"
    assert result.data[1].url == "http://example.com/image2.jpg"


def test_convert_to_image_response_with_none_usage_fields():
    """
    Test handling of None values in usage fields, specifically for gpt-image-1 responses.
    
    This test verifies the fix for the bug where gpt-image-1 returns None values
    for usage statistics fields, which caused Pydantic validation errors.
    The fix should clean these None values and let ImageResponse constructor
    handle the default values.
    """
    response_dict = {
        "created": 1234567890,
        "data": [{"b64_json": "base64encodedstring"}],
        "usage": {
            "input_tokens": None,  # gpt-image-1 returns None instead of integer
            "input_tokens_details": None,  # gpt-image-1 returns None instead of object
            "output_tokens": None,  # gpt-image-1 returns None instead of integer
            "total_tokens": None,  # gpt-image-1 returns None instead of integer
        }
    }

    # This should not raise a ValidationError
    result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)

    assert isinstance(result, ImageResponse)
    assert result.created == 1234567890
    assert result.data[0].b64_json == "base64encodedstring"
    
    # Usage should be properly initialized with default values
    assert result.usage is not None
    assert result.usage.input_tokens == 0
    assert result.usage.output_tokens == 0
    assert result.usage.total_tokens == 0
    assert result.usage.input_tokens_details is not None
    assert result.usage.input_tokens_details.image_tokens == 0
    assert result.usage.input_tokens_details.text_tokens == 0


def test_convert_to_image_response_with_partial_none_usage_fields():
    """
    Test handling of mixed None and valid values in usage fields.
    """
    response_dict = {
        "created": 1234567890,
        "data": [{"b64_json": "base64encodedstring"}],
        "usage": {
            "input_tokens": 10,  # Valid value
            "input_tokens_details": None,  # None value (should be cleaned)
            "output_tokens": None,  # None value (should be cleaned)
            "total_tokens": 10,  # Valid value
        }
    }

    # This should not raise a ValidationError
    result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)

    assert isinstance(result, ImageResponse)
    assert result.created == 1234567890
    assert result.data[0].b64_json == "base64encodedstring"
    
    # Usage should be properly initialized with defaults where needed
    # Valid values should be preserved, None values should be cleaned and use defaults
    assert result.usage is not None
    assert result.usage.input_tokens == 10  # Valid value should be preserved
    assert result.usage.output_tokens == 0  # None value should become 0
    assert result.usage.total_tokens == 10  # Calculated as input_tokens + output_tokens (10 + 0)
    assert result.usage.input_tokens_details is not None
    assert result.usage.input_tokens_details.image_tokens == 0
    assert result.usage.input_tokens_details.text_tokens == 0


def test_convert_to_image_response_with_valid_usage_fields():
    """
    Test that valid usage fields are preserved correctly.
    """
    response_dict = {
        "created": 1234567890,
        "data": [{"b64_json": "base64encodedstring"}],
        "usage": {
            "input_tokens": 50,
            "input_tokens_details": {
                "image_tokens": 30,
                "text_tokens": 20,
            },
            "output_tokens": 10,
            "total_tokens": 60,
        }
    }

    result = LiteLLMResponseObjectHandler.convert_to_image_response(response_dict)

    assert isinstance(result, ImageResponse)
    assert result.created == 1234567890
    assert result.data[0].b64_json == "base64encodedstring"
    
    # Valid usage fields should be preserved
    assert result.usage is not None
    assert result.usage.input_tokens == 50
    assert result.usage.output_tokens == 10
    assert result.usage.total_tokens == 60
    assert result.usage.input_tokens_details is not None
    assert result.usage.input_tokens_details.image_tokens == 30
    assert result.usage.input_tokens_details.text_tokens == 20