File size: 13,017 Bytes
2fe6f8a 2d96a33 2fe6f8a b30095c 1490204 2fe6f8a 1490204 2d96a33 2fe6f8a 2d96a33 2fe6f8a 1490204 2d96a33 2fe6f8a 1490204 2fe6f8a 2d96a33 2fe6f8a 5fc0bcd 2fe6f8a b30095c 1490204 b30095c 1490204 b30095c 2d96a33 2fe6f8a 2d96a33 2b794b7 1490204 2fe6f8a b30095c 1490204 b30095c 1490204 b30095c 1490204 b30095c 1490204 b30095c 1490204 b30095c 1490204 2fe6f8a 1490204 2fe6f8a 2d96a33 2fe6f8a 2d96a33 2fe6f8a 1490204 2fe6f8a 1490204 2fe6f8a 2d96a33 2fe6f8a 1490204 2fe6f8a 2d96a33 2fe6f8a 2d96a33 1490204 2fe6f8a 1490204 2fe6f8a 1490204 2fe6f8a 1490204 2fe6f8a 1490204 2fe6f8a 5fc0bcd 1490204 5fc0bcd 2fe6f8a 1490204 2fe6f8a 1490204 2fe6f8a 1490204 2fe6f8a 1490204 2fe6f8a 1490204 2fe6f8a 2d96a33 2fe6f8a 2d96a33 2fe6f8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
from huggingface_hub import InferenceClient
import streamlit as st
import logging
import os
from dotenv import load_dotenv
from datasets import load_dataset
from langchain_core.documents import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import BedrockEmbeddings
from langchain_qdrant import Qdrant
from langchain_aws import ChatBedrock
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams
import re
import json
from urllib.error import URLError
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def load_environment():
"""Load and validate environment variables."""
try:
load_dotenv()
required_vars = ['AWS_ACCESS_KEY_ID', 'AWS_SECRET_ACCESS_KEY', 'AWS_REGION', 'QDRANT_URL', 'QDRANT_API_KEY']
missing_vars = [var for var in required_vars if not os.getenv(var)]
if missing_vars:
logger.error(f"Missing environment variables: {missing_vars}")
st.error(f"Missing environment variables: {missing_vars}")
raise ValueError(f"Missing environment variables: {missing_vars}")
logger.info("Environment variables loaded successfully")
except Exception as e:
logger.error(f"Error loading environment variables: {e}")
st.error(f"Error loading environment variables: {e}")
raise
@st.cache_resource
def load_wikipedia_documents():
"""Load 100 Wikipedia documents from Cohere's HF dataset."""
try:
dataset = load_dataset(
"Cohere/wikipedia-22-12-simple-embeddings",
split="train[:100]" # Load only 100 entries
)
documents = [Document(page_content=item["text"]) for item in dataset]
logger.info(f"Loaded {len(documents)} Wikipedia documents")
if not documents:
logger.error("No documents loaded from dataset")
st.error("No documents loaded from dataset")
return []
return documents
except Exception as e:
logger.error(f"Error loading dataset: {e}")
st.error(f"Failed to load dataset: {e}")
return []
@st.cache_resource
def split_documents(_documents):
"""Split documents into chunks."""
try:
if not _documents:
logger.error("No documents provided for splitting")
st.error("No documents provided for splitting")
return []
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
chunks = splitter.split_documents(_documents)
logger.info(f"Split into {len(chunks)} chunks")
if not chunks:
logger.error("No chunks created from documents")
st.error("No chunks created from documents")
return []
return chunks
except Exception as e:
logger.error(f"Error splitting documents: {e}")
st.error(f"Failed to split documents: {e}")
return []
@st.cache_resource
def initialize_embeddings():
"""Initialize AWS Bedrock embeddings."""
try:
embeddings = BedrockEmbeddings(
model_id="amazon.titan-embed-text-v1",
region_name=os.getenv("AWS_REGION")
)
logger.info("Initialized Bedrock embeddings")
return embeddings
except Exception as e:
logger.error(f"Error initializing embeddings: {e}")
st.error(f"Failed to initialize embeddings: {e}")
return None
def store_in_qdrant(_chunks, _embeddings):
"""Store document chunks in a hosted Qdrant instance after deleting all collections."""
try:
# Initialize Qdrant client
client = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
timeout=30
)
# Test Qdrant connection
try:
client.get_collections()
logger.info("Successfully connected to Qdrant at %s", os.getenv("QDRANT_URL"))
except Exception as e:
logger.error("Failed to connect to Qdrant: %s", e)
st.error(f"Failed to connect to Qdrant: {e}")
return None
# Delete all existing collections
try:
collections = client.get_collections().collections
for collection in collections:
client.delete_collection(collection.name)
logger.info(f"Deleted Qdrant collection: {collection.name}")
logger.info("All Qdrant collections deleted")
except Exception as e:
logger.warning(f"Error deleting collections: {e}")
st.warning(f"Error deleting collections: {e}")
# Validate input chunks
if not _chunks:
logger.error("No chunks provided for Qdrant storage")
st.error("No chunks provided for Qdrant storage")
return None
# Create and populate new collection
collection_name = "wikipedia_chunks"
try:
vector_store = Qdrant.from_documents(
documents=_chunks,
embedding=_embeddings,
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
collection_name=collection_name,
force_recreate=True # Ensure fresh collection
)
logger.info(f"Created Qdrant collection {collection_name} with {len(_chunks)} chunks")
except Exception as e:
logger.error(f"Error creating Qdrant collection: {e}")
st.error(f"Failed to create Qdrant collection: {e}")
return None
# Verify storage
try:
collection_info = client.get_collection(collection_name)
stored_points = collection_info.points_count
logger.info(f"Stored {stored_points} points in Qdrant collection {collection_name}")
if stored_points == 0:
logger.error("No documents stored in Qdrant collection")
st.error("No documents stored in Qdrant collection")
return None
if stored_points != len(_chunks):
logger.warning(f"Expected {len(_chunks)} chunks, but stored {stored_points} in Qdrant")
st.warning(f"Expected {len(_chunks)} chunks, but stored {stored_points} in Qdrant")
return vector_store
except Exception as e:
logger.error(f"Error verifying Qdrant storage: {e}")
st.error(f"Failed to verify Qdrant storage: {e}")
return None
except Exception as e:
logger.error(f"Error in Qdrant storage process: {e}")
st.error(f"Failed to store documents in Qdrant: {e}")
return None
@st.cache_resource
def initialize_llm():
"""Initialize AWS Bedrock Claude 3.5 Sonnet model."""
try:
llm = ChatBedrock(
model_id="anthropic.claude-3-5-sonnet-20240620-v1:0",
region_name=os.getenv("AWS_REGION"),
model_kwargs={"max_tokens": 1000}
)
logger.info("Initialized Claude 3.5 Sonnet")
return llm
except Exception as e:
logger.error(f"Error initializing LLM: {e}")
st.error(f"Failed to initialize LLM: {e}")
return None
def extract_score_from_text(text):
"""Extract the first float number between 0 and 1 from the text using regex."""
try:
matches = re.findall(r'\b0(?:\.\d+)?\b|\b1(?:\.0+)?\b', text)
if not matches:
logger.warning("No score found in text")
return None
score = float(matches[0])
if 0.0 <= score <= 1.0:
return score
logger.warning(f"Score {score} out of expected range 0-1")
return None
except ValueError as e:
logger.warning(f"Cannot convert match to float: {e}")
return None
def claude_rerank(docs, query, llm, top_n=5):
"""Rerank documents based on relevance using the LLM."""
try:
rerank_prompt = ChatPromptTemplate.from_template(
"""
Given the query: "{query}" and the document chunk: "{chunk}", please rate
the relevance on a scale from 0 to 1 (0=not relevant, 1=highly relevant).
Respond with a number only, like: 0.8
"""
)
scored_docs = []
for idx, doc in enumerate(docs):
prompt = rerank_prompt.format(query=query, chunk=doc.page_content)
response = llm.invoke(prompt)
text = response.content.strip()
logger.info(f"Doc {idx} rerank raw output: {text}")
score = extract_score_from_text(text)
if score is None:
logger.warning(f"Failed to extract valid score for doc {idx}. Assigning 0.")
score = 0.0
scored_docs.append((doc, score))
scored_docs.sort(key=lambda x: x[1], reverse=True)
logger.info(f"Reranked top {top_n} docs based on scores")
return [doc for doc, _ in scored_docs[:top_n]]
except Exception as e:
logger.error(f"Error in reranking: {e}")
st.error(f"Error in reranking: {e}")
return docs[:top_n] # Fallback to original docs
def create_rag_chain(vector_store, llm, use_rerank=False):
"""Create a RAG chain with or without reranking."""
try:
prompt_template = ChatPromptTemplate.from_template(
"""You are a helpful assistant. Use the following context to answer the question concisely.\n\nContext:\n{context}\n\nQuestion: {question}\n\nAnswer:"""
)
retriever = vector_store.as_retriever(search_kwargs={"k": 20 if use_rerank else 5})
def rerank_context(inputs):
try:
docs = retriever.invoke(inputs["question"])
if not docs:
logger.warning("No documents retrieved for query")
return {"context": "", "question": inputs["question"]}
if use_rerank:
docs = claude_rerank(docs, inputs["question"], llm)
return {"context": "\n\n".join(doc.page_content for doc in docs), "question": inputs["question"]}
except Exception as e:
logger.error(f"Error in rerank_context: {e}")
return {"context": "", "question": inputs["question"]}
chain = rerank_context | prompt_template | llm | StrOutputParser()
logger.info(f"Initialized {'re-ranked' if use_rerank else 'baseline'} RAG chain")
return chain
except Exception as e:
logger.error(f"Error creating RAG chain: {e}")
st.error(f"Failed to create RAG chain: {e}")
return None
def main():
st.title("Wikipedia Q&A with RAG (Qdrant + AWS Bedrock)")
st.write("Enter a question to get answers using baseline and reranked retrieval methods.")
# Load environment variables
try:
load_environment()
except ValueError:
return
# Initialize components
documents = load_wikipedia_documents()
if not documents:
st.error("Cannot proceed without documents")
return
chunks = split_documents(documents)
if not chunks:
st.error("Cannot proceed without document chunks")
return
embeddings = initialize_embeddings()
if embeddings is None:
st.error("Cannot proceed without embeddings")
return
vector_store = store_in_qdrant(chunks, embeddings)
if vector_store is None:
st.error("Cannot proceed without vector store")
return
llm = initialize_llm()
if llm is None:
st.error("Cannot proceed without LLM")
return
baseline_chain = create_rag_chain(vector_store, llm, use_rerank=False)
if baseline_chain is None:
st.error("Cannot proceed without baseline chain")
return
rerank_chain = create_rag_chain(vector_store, llm, use_rerank=True)
if rerank_chain is None:
st.error("Cannot proceed without rerank chain")
return
# Streamlit input
query = st.text_input("Enter your question:", placeholder="e.g., What are the main causes of climate change?")
if query:
with st.spinner("Processing your query..."):
try:
baseline_response = baseline_chain.invoke({"question": query})
rerank_response = rerank_chain.invoke({"question": query})
st.subheader("Results")
st.write("**Query:**", query)
st.write("**Baseline Answer:**")
st.write(baseline_response)
st.write("**Reranked Answer:**")
st.write(rerank_response)
except Exception as e:
logger.error(f"Error processing query: {e}")
st.error(f"Error processing query: {e}")
if __name__ == "__main__":
main()
|