Update app.py
Browse files
app.py
CHANGED
@@ -14,8 +14,10 @@ from langchain_core.prompts import ChatPromptTemplate
|
|
14 |
from langchain_core.runnables import RunnablePassthrough
|
15 |
from langchain_core.output_parsers import StrOutputParser
|
16 |
from qdrant_client import QdrantClient
|
|
|
17 |
import re
|
18 |
import json
|
|
|
19 |
|
20 |
# Set up logging
|
21 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -23,14 +25,19 @@ logger = logging.getLogger(__name__)
|
|
23 |
|
24 |
def load_environment():
|
25 |
"""Load and validate environment variables."""
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
@st.cache_resource
|
36 |
def load_wikipedia_documents():
|
@@ -42,6 +49,10 @@ def load_wikipedia_documents():
|
|
42 |
)
|
43 |
documents = [Document(page_content=item["text"]) for item in dataset]
|
44 |
logger.info(f"Loaded {len(documents)} Wikipedia documents")
|
|
|
|
|
|
|
|
|
45 |
return documents
|
46 |
except Exception as e:
|
47 |
logger.error(f"Error loading dataset: {e}")
|
@@ -52,9 +63,17 @@ def load_wikipedia_documents():
|
|
52 |
def split_documents(_documents):
|
53 |
"""Split documents into chunks."""
|
54 |
try:
|
|
|
|
|
|
|
|
|
55 |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
56 |
chunks = splitter.split_documents(_documents)
|
57 |
logger.info(f"Split into {len(chunks)} chunks")
|
|
|
|
|
|
|
|
|
58 |
return chunks
|
59 |
except Exception as e:
|
60 |
logger.error(f"Error splitting documents: {e}")
|
@@ -76,47 +95,79 @@ def initialize_embeddings():
|
|
76 |
st.error(f"Failed to initialize embeddings: {e}")
|
77 |
return None
|
78 |
|
79 |
-
@st.cache_resource
|
80 |
def store_in_qdrant(_chunks, _embeddings):
|
81 |
-
"""Store document chunks in a hosted Qdrant instance after deleting
|
82 |
try:
|
83 |
# Initialize Qdrant client
|
84 |
client = QdrantClient(
|
85 |
url=os.getenv("QDRANT_URL"),
|
86 |
-
api_key=os.getenv("QDRANT_API_KEY")
|
|
|
87 |
)
|
88 |
|
89 |
-
#
|
90 |
-
collection_name = "wikipedia_chunks"
|
91 |
try:
|
92 |
-
client.
|
93 |
-
logger.info(
|
94 |
except Exception as e:
|
95 |
-
logger.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Create and populate new collection
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
st.error("No documents stored in Qdrant collection")
|
113 |
return None
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
except Exception as e:
|
119 |
-
logger.error(f"Error
|
120 |
st.error(f"Failed to store documents in Qdrant: {e}")
|
121 |
return None
|
122 |
|
@@ -138,62 +189,78 @@ def initialize_llm():
|
|
138 |
|
139 |
def extract_score_from_text(text):
|
140 |
"""Extract the first float number between 0 and 1 from the text using regex."""
|
141 |
-
matches = re.findall(r'\b0(?:\.\d+)?\b|\b1(?:\.0+)?\b', text)
|
142 |
-
if not matches:
|
143 |
-
logger.warning("No score found in text.")
|
144 |
-
return None
|
145 |
try:
|
|
|
|
|
|
|
|
|
146 |
score = float(matches[0])
|
147 |
if 0.0 <= score <= 1.0:
|
148 |
return score
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
logger.warning(f"Cannot convert match to float: {matches[0]}")
|
154 |
return None
|
155 |
|
156 |
def claude_rerank(docs, query, llm, top_n=5):
|
157 |
"""Rerank documents based on relevance using the LLM."""
|
158 |
-
|
159 |
-
|
|
|
160 |
Given the query: "{query}" and the document chunk: "{chunk}", please rate
|
161 |
the relevance on a scale from 0 to 1 (0=not relevant, 1=highly relevant).
|
162 |
|
163 |
Respond with a number only, like: 0.8
|
164 |
"""
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
180 |
|
181 |
def create_rag_chain(vector_store, llm, use_rerank=False):
|
182 |
"""Create a RAG chain with or without reranking."""
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
197 |
|
198 |
def main():
|
199 |
st.title("Wikipedia Q&A with RAG (Qdrant + AWS Bedrock)")
|
@@ -208,22 +275,33 @@ def main():
|
|
208 |
# Initialize components
|
209 |
documents = load_wikipedia_documents()
|
210 |
if not documents:
|
|
|
211 |
return
|
212 |
chunks = split_documents(documents)
|
213 |
if not chunks:
|
|
|
214 |
return
|
215 |
embeddings = initialize_embeddings()
|
216 |
if embeddings is None:
|
|
|
217 |
return
|
218 |
vector_store = store_in_qdrant(chunks, embeddings)
|
219 |
if vector_store is None:
|
|
|
220 |
return
|
221 |
llm = initialize_llm()
|
222 |
if llm is None:
|
|
|
223 |
return
|
224 |
|
225 |
baseline_chain = create_rag_chain(vector_store, llm, use_rerank=False)
|
|
|
|
|
|
|
226 |
rerank_chain = create_rag_chain(vector_store, llm, use_rerank=True)
|
|
|
|
|
|
|
227 |
|
228 |
# Streamlit input
|
229 |
query = st.text_input("Enter your question:", placeholder="e.g., What are the main causes of climate change?")
|
|
|
14 |
from langchain_core.runnables import RunnablePassthrough
|
15 |
from langchain_core.output_parsers import StrOutputParser
|
16 |
from qdrant_client import QdrantClient
|
17 |
+
from qdrant_client.models import Distance, VectorParams
|
18 |
import re
|
19 |
import json
|
20 |
+
from urllib.error import URLError
|
21 |
|
22 |
# Set up logging
|
23 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
25 |
|
26 |
def load_environment():
|
27 |
"""Load and validate environment variables."""
|
28 |
+
try:
|
29 |
+
load_dotenv()
|
30 |
+
required_vars = ['AWS_ACCESS_KEY_ID', 'AWS_SECRET_ACCESS_KEY', 'AWS_REGION', 'QDRANT_URL', 'QDRANT_API_KEY']
|
31 |
+
missing_vars = [var for var in required_vars if not os.getenv(var)]
|
32 |
+
if missing_vars:
|
33 |
+
logger.error(f"Missing environment variables: {missing_vars}")
|
34 |
+
st.error(f"Missing environment variables: {missing_vars}")
|
35 |
+
raise ValueError(f"Missing environment variables: {missing_vars}")
|
36 |
+
logger.info("Environment variables loaded successfully")
|
37 |
+
except Exception as e:
|
38 |
+
logger.error(f"Error loading environment variables: {e}")
|
39 |
+
st.error(f"Error loading environment variables: {e}")
|
40 |
+
raise
|
41 |
|
42 |
@st.cache_resource
|
43 |
def load_wikipedia_documents():
|
|
|
49 |
)
|
50 |
documents = [Document(page_content=item["text"]) for item in dataset]
|
51 |
logger.info(f"Loaded {len(documents)} Wikipedia documents")
|
52 |
+
if not documents:
|
53 |
+
logger.error("No documents loaded from dataset")
|
54 |
+
st.error("No documents loaded from dataset")
|
55 |
+
return []
|
56 |
return documents
|
57 |
except Exception as e:
|
58 |
logger.error(f"Error loading dataset: {e}")
|
|
|
63 |
def split_documents(_documents):
|
64 |
"""Split documents into chunks."""
|
65 |
try:
|
66 |
+
if not _documents:
|
67 |
+
logger.error("No documents provided for splitting")
|
68 |
+
st.error("No documents provided for splitting")
|
69 |
+
return []
|
70 |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
71 |
chunks = splitter.split_documents(_documents)
|
72 |
logger.info(f"Split into {len(chunks)} chunks")
|
73 |
+
if not chunks:
|
74 |
+
logger.error("No chunks created from documents")
|
75 |
+
st.error("No chunks created from documents")
|
76 |
+
return []
|
77 |
return chunks
|
78 |
except Exception as e:
|
79 |
logger.error(f"Error splitting documents: {e}")
|
|
|
95 |
st.error(f"Failed to initialize embeddings: {e}")
|
96 |
return None
|
97 |
|
|
|
98 |
def store_in_qdrant(_chunks, _embeddings):
|
99 |
+
"""Store document chunks in a hosted Qdrant instance after deleting all collections."""
|
100 |
try:
|
101 |
# Initialize Qdrant client
|
102 |
client = QdrantClient(
|
103 |
url=os.getenv("QDRANT_URL"),
|
104 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
105 |
+
timeout=30
|
106 |
)
|
107 |
|
108 |
+
# Test Qdrant connection
|
|
|
109 |
try:
|
110 |
+
client.get_collections()
|
111 |
+
logger.info("Successfully connected to Qdrant at %s", os.getenv("QDRANT_URL"))
|
112 |
except Exception as e:
|
113 |
+
logger.error("Failed to connect to Qdrant: %s", e)
|
114 |
+
st.error(f"Failed to connect to Qdrant: {e}")
|
115 |
+
return None
|
116 |
+
|
117 |
+
# Delete all existing collections
|
118 |
+
try:
|
119 |
+
collections = client.get_collections().collections
|
120 |
+
for collection in collections:
|
121 |
+
client.delete_collection(collection.name)
|
122 |
+
logger.info(f"Deleted Qdrant collection: {collection.name}")
|
123 |
+
logger.info("All Qdrant collections deleted")
|
124 |
+
except Exception as e:
|
125 |
+
logger.warning(f"Error deleting collections: {e}")
|
126 |
+
st.warning(f"Error deleting collections: {e}")
|
127 |
+
|
128 |
+
# Validate input chunks
|
129 |
+
if not _chunks:
|
130 |
+
logger.error("No chunks provided for Qdrant storage")
|
131 |
+
st.error("No chunks provided for Qdrant storage")
|
132 |
+
return None
|
133 |
|
134 |
# Create and populate new collection
|
135 |
+
collection_name = "wikipedia_chunks"
|
136 |
+
try:
|
137 |
+
vector_store = Qdrant.from_documents(
|
138 |
+
documents=_chunks,
|
139 |
+
embedding=_embeddings,
|
140 |
+
url=os.getenv("QDRANT_URL"),
|
141 |
+
api_key=os.getenv("QDRANT_API_KEY"),
|
142 |
+
collection_name=collection_name,
|
143 |
+
force_recreate=True # Ensure fresh collection
|
144 |
+
)
|
145 |
+
logger.info(f"Created Qdrant collection {collection_name} with {len(_chunks)} chunks")
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Error creating Qdrant collection: {e}")
|
148 |
+
st.error(f"Failed to create Qdrant collection: {e}")
|
|
|
149 |
return None
|
150 |
+
|
151 |
+
# Verify storage
|
152 |
+
try:
|
153 |
+
collection_info = client.get_collection(collection_name)
|
154 |
+
stored_points = collection_info.points_count
|
155 |
+
logger.info(f"Stored {stored_points} points in Qdrant collection {collection_name}")
|
156 |
+
if stored_points == 0:
|
157 |
+
logger.error("No documents stored in Qdrant collection")
|
158 |
+
st.error("No documents stored in Qdrant collection")
|
159 |
+
return None
|
160 |
+
if stored_points != len(_chunks):
|
161 |
+
logger.warning(f"Expected {len(_chunks)} chunks, but stored {stored_points} in Qdrant")
|
162 |
+
st.warning(f"Expected {len(_chunks)} chunks, but stored {stored_points} in Qdrant")
|
163 |
+
return vector_store
|
164 |
+
except Exception as e:
|
165 |
+
logger.error(f"Error verifying Qdrant storage: {e}")
|
166 |
+
st.error(f"Failed to verify Qdrant storage: {e}")
|
167 |
+
return None
|
168 |
+
|
169 |
except Exception as e:
|
170 |
+
logger.error(f"Error in Qdrant storage process: {e}")
|
171 |
st.error(f"Failed to store documents in Qdrant: {e}")
|
172 |
return None
|
173 |
|
|
|
189 |
|
190 |
def extract_score_from_text(text):
|
191 |
"""Extract the first float number between 0 and 1 from the text using regex."""
|
|
|
|
|
|
|
|
|
192 |
try:
|
193 |
+
matches = re.findall(r'\b0(?:\.\d+)?\b|\b1(?:\.0+)?\b', text)
|
194 |
+
if not matches:
|
195 |
+
logger.warning("No score found in text")
|
196 |
+
return None
|
197 |
score = float(matches[0])
|
198 |
if 0.0 <= score <= 1.0:
|
199 |
return score
|
200 |
+
logger.warning(f"Score {score} out of expected range 0-1")
|
201 |
+
return None
|
202 |
+
except ValueError as e:
|
203 |
+
logger.warning(f"Cannot convert match to float: {e}")
|
|
|
204 |
return None
|
205 |
|
206 |
def claude_rerank(docs, query, llm, top_n=5):
|
207 |
"""Rerank documents based on relevance using the LLM."""
|
208 |
+
try:
|
209 |
+
rerank_prompt = ChatPromptTemplate.from_template(
|
210 |
+
"""
|
211 |
Given the query: "{query}" and the document chunk: "{chunk}", please rate
|
212 |
the relevance on a scale from 0 to 1 (0=not relevant, 1=highly relevant).
|
213 |
|
214 |
Respond with a number only, like: 0.8
|
215 |
"""
|
216 |
+
)
|
217 |
+
scored_docs = []
|
218 |
+
for idx, doc in enumerate(docs):
|
219 |
+
prompt = rerank_prompt.format(query=query, chunk=doc.page_content)
|
220 |
+
response = llm.invoke(prompt)
|
221 |
+
text = response.content.strip()
|
222 |
+
logger.info(f"Doc {idx} rerank raw output: {text}")
|
223 |
+
score = extract_score_from_text(text)
|
224 |
+
if score is None:
|
225 |
+
logger.warning(f"Failed to extract valid score for doc {idx}. Assigning 0.")
|
226 |
+
score = 0.0
|
227 |
+
scored_docs.append((doc, score))
|
228 |
+
scored_docs.sort(key=lambda x: x[1], reverse=True)
|
229 |
+
logger.info(f"Reranked top {top_n} docs based on scores")
|
230 |
+
return [doc for doc, _ in scored_docs[:top_n]]
|
231 |
+
except Exception as e:
|
232 |
+
logger.error(f"Error in reranking: {e}")
|
233 |
+
st.error(f"Error in reranking: {e}")
|
234 |
+
return docs[:top_n] # Fallback to original docs
|
235 |
|
236 |
def create_rag_chain(vector_store, llm, use_rerank=False):
|
237 |
"""Create a RAG chain with or without reranking."""
|
238 |
+
try:
|
239 |
+
prompt_template = ChatPromptTemplate.from_template(
|
240 |
+
"""You are a helpful assistant. Use the following context to answer the question concisely.\n\nContext:\n{context}\n\nQuestion: {question}\n\nAnswer:"""
|
241 |
+
)
|
242 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 20 if use_rerank else 5})
|
243 |
|
244 |
+
def rerank_context(inputs):
|
245 |
+
try:
|
246 |
+
docs = retriever.invoke(inputs["question"])
|
247 |
+
if not docs:
|
248 |
+
logger.warning("No documents retrieved for query")
|
249 |
+
return {"context": "", "question": inputs["question"]}
|
250 |
+
if use_rerank:
|
251 |
+
docs = claude_rerank(docs, inputs["question"], llm)
|
252 |
+
return {"context": "\n\n".join(doc.page_content for doc in docs), "question": inputs["question"]}
|
253 |
+
except Exception as e:
|
254 |
+
logger.error(f"Error in rerank_context: {e}")
|
255 |
+
return {"context": "", "question": inputs["question"]}
|
256 |
|
257 |
+
chain = rerank_context | prompt_template | llm | StrOutputParser()
|
258 |
+
logger.info(f"Initialized {'re-ranked' if use_rerank else 'baseline'} RAG chain")
|
259 |
+
return chain
|
260 |
+
except Exception as e:
|
261 |
+
logger.error(f"Error creating RAG chain: {e}")
|
262 |
+
st.error(f"Failed to create RAG chain: {e}")
|
263 |
+
return None
|
264 |
|
265 |
def main():
|
266 |
st.title("Wikipedia Q&A with RAG (Qdrant + AWS Bedrock)")
|
|
|
275 |
# Initialize components
|
276 |
documents = load_wikipedia_documents()
|
277 |
if not documents:
|
278 |
+
st.error("Cannot proceed without documents")
|
279 |
return
|
280 |
chunks = split_documents(documents)
|
281 |
if not chunks:
|
282 |
+
st.error("Cannot proceed without document chunks")
|
283 |
return
|
284 |
embeddings = initialize_embeddings()
|
285 |
if embeddings is None:
|
286 |
+
st.error("Cannot proceed without embeddings")
|
287 |
return
|
288 |
vector_store = store_in_qdrant(chunks, embeddings)
|
289 |
if vector_store is None:
|
290 |
+
st.error("Cannot proceed without vector store")
|
291 |
return
|
292 |
llm = initialize_llm()
|
293 |
if llm is None:
|
294 |
+
st.error("Cannot proceed without LLM")
|
295 |
return
|
296 |
|
297 |
baseline_chain = create_rag_chain(vector_store, llm, use_rerank=False)
|
298 |
+
if baseline_chain is None:
|
299 |
+
st.error("Cannot proceed without baseline chain")
|
300 |
+
return
|
301 |
rerank_chain = create_rag_chain(vector_store, llm, use_rerank=True)
|
302 |
+
if rerank_chain is None:
|
303 |
+
st.error("Cannot proceed without rerank chain")
|
304 |
+
return
|
305 |
|
306 |
# Streamlit input
|
307 |
query = st.text_input("Enter your question:", placeholder="e.g., What are the main causes of climate change?")
|