Spaces:
Running
Running
devtonic
#1
by
Tonic
- opened
This view is limited to 50 files because it contains too many changes.
See the raw diff here.
- .cursorrules +0 -240
- .env.example +0 -48
- .github/README.md +0 -57
- .github/workflows/ci.yml +0 -127
- .gitignore +0 -80
- .pre-commit-config.yaml +0 -64
- .pre-commit-hooks/run_pytest.ps1 +0 -19
- .pre-commit-hooks/run_pytest.sh +0 -20
- .pre-commit-hooks/run_pytest_embeddings.ps1 +0 -14
- .pre-commit-hooks/run_pytest_embeddings.sh +0 -15
- .pre-commit-hooks/run_pytest_unit.ps1 +0 -14
- .pre-commit-hooks/run_pytest_unit.sh +0 -15
- .pre-commit-hooks/run_pytest_with_sync.ps1 +0 -25
- .pre-commit-hooks/run_pytest_with_sync.py +0 -235
- .python-version +0 -1
- AGENTS.txt +0 -236
- CONTRIBUTING.md +0 -1
- Dockerfile +0 -52
- Makefile +0 -42
- README.md +8 -113
- dev/.cursorrules +0 -241
- dev/AGENTS.txt +0 -236
- dev/Makefile +0 -51
- dev/docs_plugins.py +0 -74
- docs/api/agents.md +0 -270
- docs/api/models.md +0 -248
- docs/api/orchestrators.md +0 -195
- docs/api/services.md +0 -201
- docs/api/tools.md +0 -235
- docs/architecture/agents.md +0 -192
- docs/architecture/graph-orchestration.md +0 -152
- docs/architecture/graph_orchestration.md +0 -235
- docs/architecture/middleware.md +0 -142
- docs/architecture/orchestrators.md +0 -198
- docs/architecture/services.md +0 -142
- docs/architecture/tools.md +0 -175
- docs/architecture/workflow-diagrams.md +0 -670
- docs/architecture/workflows.md +0 -662
- docs/configuration/CONFIGURATION.md +0 -743
- docs/configuration/index.md +0 -746
- docs/contributing.md +0 -428
- docs/contributing/code-quality.md +0 -81
- docs/contributing/code-style.md +0 -61
- docs/contributing/error-handling.md +0 -69
- docs/contributing/implementation-patterns.md +0 -84
- docs/contributing/index.md +0 -163
- docs/contributing/prompt-engineering.md +0 -69
- docs/contributing/testing.md +0 -65
- docs/getting-started/examples.md +0 -209
- docs/getting-started/installation.md +0 -148
.cursorrules
DELETED
|
@@ -1,240 +0,0 @@
|
|
| 1 |
-
# DeepCritical Project - Cursor Rules
|
| 2 |
-
|
| 3 |
-
## Project-Wide Rules
|
| 4 |
-
|
| 5 |
-
**Architecture**: Multi-agent research system using Pydantic AI for agent orchestration, supporting iterative and deep research patterns. Uses middleware for state management, budget tracking, and workflow coordination.
|
| 6 |
-
|
| 7 |
-
**Type Safety**: ALWAYS use complete type hints. All functions must have parameter and return type annotations. Use `mypy --strict` compliance. Use `TYPE_CHECKING` imports for circular dependencies: `from typing import TYPE_CHECKING; if TYPE_CHECKING: from src.services.embeddings import EmbeddingService`
|
| 8 |
-
|
| 9 |
-
**Async Patterns**: ALL I/O operations must be async (`async def`, `await`). Use `asyncio.gather()` for parallel operations. CPU-bound work must use `run_in_executor()`: `loop = asyncio.get_running_loop(); result = await loop.run_in_executor(None, cpu_bound_function, args)`. Never block the event loop.
|
| 10 |
-
|
| 11 |
-
**Error Handling**: Use custom exceptions from `src/utils/exceptions.py`: `DeepCriticalError`, `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions: `raise SearchError(...) from e`. Log with structlog: `logger.error("Operation failed", error=str(e), context=value)`.
|
| 12 |
-
|
| 13 |
-
**Logging**: Use `structlog` for ALL logging (NOT `print` or `logging`). Import: `import structlog; logger = structlog.get_logger()`. Log with structured data: `logger.info("event", key=value)`. Use appropriate levels: DEBUG, INFO, WARNING, ERROR.
|
| 14 |
-
|
| 15 |
-
**Pydantic Models**: All data exchange uses Pydantic models from `src/utils/models.py`. Models are frozen (`model_config = {"frozen": True}`) for immutability. Use `Field()` with descriptions. Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints.
|
| 16 |
-
|
| 17 |
-
**Code Style**: Ruff with 100-char line length. Ignore rules: `PLR0913` (too many arguments), `PLR0912` (too many branches), `PLR0911` (too many returns), `PLR2004` (magic values), `PLW0603` (global statement), `PLC0415` (lazy imports).
|
| 18 |
-
|
| 19 |
-
**Docstrings**: Google-style docstrings for all public functions. Include Args, Returns, Raises sections. Use type hints in docstrings only if needed for clarity.
|
| 20 |
-
|
| 21 |
-
**Testing**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`). Use `respx` for httpx mocking, `pytest-mock` for general mocking.
|
| 22 |
-
|
| 23 |
-
**State Management**: Use `ContextVar` in middleware for thread-safe isolation. Never use global mutable state (except singletons via `@lru_cache`). Use `WorkflowState` from `src/middleware/state_machine.py` for workflow state.
|
| 24 |
-
|
| 25 |
-
**Citation Validation**: ALWAYS validate references before returning reports. Use `validate_references()` from `src/utils/citation_validator.py`. Remove hallucinated citations. Log warnings for removed citations.
|
| 26 |
-
|
| 27 |
-
---
|
| 28 |
-
|
| 29 |
-
## src/agents/ - Agent Implementation Rules
|
| 30 |
-
|
| 31 |
-
**Pattern**: All agents use Pydantic AI `Agent` class. Agents have structured output types (Pydantic models) or return strings. Use factory functions in `src/agent_factory/agents.py` for creation.
|
| 32 |
-
|
| 33 |
-
**Agent Structure**:
|
| 34 |
-
- System prompt as module-level constant (with date injection: `datetime.now().strftime("%Y-%m-%d")`)
|
| 35 |
-
- Agent class with `__init__(model: Any | None = None)`
|
| 36 |
-
- Main method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 37 |
-
- Factory function: `def create_agent_name(model: Any | None = None) -> AgentName`
|
| 38 |
-
|
| 39 |
-
**Model Initialization**: Use `get_model()` from `src/agent_factory/judges.py` if no model provided. Support OpenAI/Anthropic/HF Inference via settings.
|
| 40 |
-
|
| 41 |
-
**Error Handling**: Return fallback values (e.g., `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`) on failure. Log errors with context. Use retry logic (3 retries) in Pydantic AI Agent initialization.
|
| 42 |
-
|
| 43 |
-
**Input Validation**: Validate query/inputs are not empty. Truncate very long inputs with warnings. Handle None values gracefully.
|
| 44 |
-
|
| 45 |
-
**Output Types**: Use structured output types from `src/utils/models.py` (e.g., `KnowledgeGapOutput`, `AgentSelectionPlan`, `ReportDraft`). For text output (writer agents), return `str` directly.
|
| 46 |
-
|
| 47 |
-
**Agent-Specific Rules**:
|
| 48 |
-
- `knowledge_gap.py`: Outputs `KnowledgeGapOutput`. Evaluates research completeness.
|
| 49 |
-
- `tool_selector.py`: Outputs `AgentSelectionPlan`. Selects tools (RAG/web/database).
|
| 50 |
-
- `writer.py`: Returns markdown string. Includes citations in numbered format.
|
| 51 |
-
- `long_writer.py`: Uses `ReportDraft` input/output. Handles section-by-section writing.
|
| 52 |
-
- `proofreader.py`: Takes `ReportDraft`, returns polished markdown.
|
| 53 |
-
- `thinking.py`: Returns observation string from conversation history.
|
| 54 |
-
- `input_parser.py`: Outputs `ParsedQuery` with research mode detection.
|
| 55 |
-
|
| 56 |
-
---
|
| 57 |
-
|
| 58 |
-
## src/tools/ - Search Tool Rules
|
| 59 |
-
|
| 60 |
-
**Protocol**: All tools implement `SearchTool` protocol from `src/tools/base.py`: `name` property and `async def search(query, max_results) -> list[Evidence]`.
|
| 61 |
-
|
| 62 |
-
**Rate Limiting**: Use `@retry` decorator from tenacity: `@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))`. Implement `_rate_limit()` method for APIs with limits. Use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 63 |
-
|
| 64 |
-
**Error Handling**: Raise `SearchError` or `RateLimitError` on failures. Handle HTTP errors (429, 500, timeout). Return empty list on non-critical errors (log warning).
|
| 65 |
-
|
| 66 |
-
**Query Preprocessing**: Use `preprocess_query()` from `src/tools/query_utils.py` to remove noise and expand synonyms.
|
| 67 |
-
|
| 68 |
-
**Evidence Conversion**: Convert API responses to `Evidence` objects with `Citation`. Extract metadata (title, url, date, authors). Set relevance scores (0.0-1.0). Handle missing fields gracefully.
|
| 69 |
-
|
| 70 |
-
**Tool-Specific Rules**:
|
| 71 |
-
- `pubmed.py`: Use NCBI E-utilities (ESearch → EFetch). Rate limit: 0.34s between requests. Parse XML with `xmltodict`. Handle single vs. multiple articles.
|
| 72 |
-
- `clinicaltrials.py`: Use `requests` library (NOT httpx - WAF blocks httpx). Run in thread pool: `await asyncio.to_thread(requests.get, ...)`. Filter: Only interventional studies, active/completed.
|
| 73 |
-
- `europepmc.py`: Handle preprint markers: `[PREPRINT - Not peer-reviewed]`. Build URLs from DOI or PMID.
|
| 74 |
-
- `rag_tool.py`: Wraps `LlamaIndexRAGService`. Returns Evidence from RAG results. Handles ingestion.
|
| 75 |
-
- `search_handler.py`: Orchestrates parallel searches across multiple tools. Uses `asyncio.gather()` with `return_exceptions=True`. Aggregates results into `SearchResult`.
|
| 76 |
-
|
| 77 |
-
---
|
| 78 |
-
|
| 79 |
-
## src/middleware/ - Middleware Rules
|
| 80 |
-
|
| 81 |
-
**State Management**: Use `ContextVar` for thread-safe isolation. `WorkflowState` uses `ContextVar[WorkflowState | None]`. Initialize with `init_workflow_state(embedding_service)`. Access with `get_workflow_state()` (auto-initializes if missing).
|
| 82 |
-
|
| 83 |
-
**WorkflowState**: Tracks `evidence: list[Evidence]`, `conversation: Conversation`, `embedding_service: Any`. Methods: `add_evidence()` (deduplicates by URL), `async search_related()` (semantic search).
|
| 84 |
-
|
| 85 |
-
**WorkflowManager**: Manages parallel research loops. Methods: `add_loop()`, `run_loops_parallel()`, `update_loop_status()`, `sync_loop_evidence_to_state()`. Uses `asyncio.gather()` for parallel execution. Handles errors per loop (don't fail all if one fails).
|
| 86 |
-
|
| 87 |
-
**BudgetTracker**: Tracks tokens, time, iterations per loop and globally. Methods: `create_budget()`, `add_tokens()`, `start_timer()`, `update_timer()`, `increment_iteration()`, `check_budget()`, `can_continue()`. Token estimation: `estimate_tokens(text)` (~4 chars per token), `estimate_llm_call_tokens(prompt, response)`.
|
| 88 |
-
|
| 89 |
-
**Models**: All middleware models in `src/utils/models.py`. `IterationData`, `Conversation`, `ResearchLoop`, `BudgetStatus` are used by middleware.
|
| 90 |
-
|
| 91 |
-
---
|
| 92 |
-
|
| 93 |
-
## src/orchestrator/ - Orchestration Rules
|
| 94 |
-
|
| 95 |
-
**Research Flows**: Two patterns: `IterativeResearchFlow` (single loop) and `DeepResearchFlow` (plan → parallel loops → synthesis). Both support agent chains (`use_graph=False`) and graph execution (`use_graph=True`).
|
| 96 |
-
|
| 97 |
-
**IterativeResearchFlow**: Pattern: Generate observations → Evaluate gaps → Select tools → Execute → Judge → Continue/Complete. Uses `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`, `WriterAgent`, `JudgeHandler`. Tracks iterations, time, budget.
|
| 98 |
-
|
| 99 |
-
**DeepResearchFlow**: Pattern: Planner → Parallel iterative loops per section → Synthesizer. Uses `PlannerAgent`, `IterativeResearchFlow` (per section), `LongWriterAgent` or `ProofreaderAgent`. Uses `WorkflowManager` for parallel execution.
|
| 100 |
-
|
| 101 |
-
**Graph Orchestrator**: Uses Pydantic AI Graphs (when available) or agent chains (fallback). Routes based on research mode (iterative/deep/auto). Streams `AgentEvent` objects for UI.
|
| 102 |
-
|
| 103 |
-
**State Initialization**: Always call `init_workflow_state()` before running flows. Initialize `BudgetTracker` per loop. Use `WorkflowManager` for parallel coordination.
|
| 104 |
-
|
| 105 |
-
**Event Streaming**: Yield `AgentEvent` objects during execution. Event types: "started", "search_complete", "judge_complete", "hypothesizing", "synthesizing", "complete", "error". Include iteration numbers and data payloads.
|
| 106 |
-
|
| 107 |
-
---
|
| 108 |
-
|
| 109 |
-
## src/services/ - Service Rules
|
| 110 |
-
|
| 111 |
-
**EmbeddingService**: Local sentence-transformers (NO API key required). All operations async-safe via `run_in_executor()`. ChromaDB for vector storage. Deduplication threshold: 0.85 (85% similarity = duplicate).
|
| 112 |
-
|
| 113 |
-
**LlamaIndexRAGService**: Uses OpenAI embeddings (requires `OPENAI_API_KEY`). Methods: `ingest_evidence()`, `retrieve()`, `query()`. Returns documents with metadata (source, title, url, date, authors). Lazy initialization with graceful fallback.
|
| 114 |
-
|
| 115 |
-
**StatisticalAnalyzer**: Generates Python code via LLM. Executes in Modal sandbox (secure, isolated). Library versions pinned in `SANDBOX_LIBRARIES` dict. Returns `AnalysisResult` with verdict (SUPPORTED/REFUTED/INCONCLUSIVE).
|
| 116 |
-
|
| 117 |
-
**Singleton Pattern**: Use `@lru_cache(maxsize=1)` for singletons: `@lru_cache(maxsize=1); def get_service() -> Service: return Service()`. Lazy initialization to avoid requiring dependencies at import time.
|
| 118 |
-
|
| 119 |
-
---
|
| 120 |
-
|
| 121 |
-
## src/utils/ - Utility Rules
|
| 122 |
-
|
| 123 |
-
**Models**: All Pydantic models in `src/utils/models.py`. Use frozen models (`model_config = {"frozen": True}`) except where mutation needed. Use `Field()` with descriptions. Validate with constraints.
|
| 124 |
-
|
| 125 |
-
**Config**: Settings via Pydantic Settings (`src/utils/config.py`). Load from `.env` automatically. Use `settings` singleton: `from src.utils.config import settings`. Validate API keys with properties: `has_openai_key`, `has_anthropic_key`.
|
| 126 |
-
|
| 127 |
-
**Exceptions**: Custom exception hierarchy in `src/utils/exceptions.py`. Base: `DeepCriticalError`. Specific: `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions.
|
| 128 |
-
|
| 129 |
-
**LLM Factory**: Centralized LLM model creation in `src/utils/llm_factory.py`. Supports OpenAI, Anthropic, HF Inference. Use `get_model()` or factory functions. Check requirements before initialization.
|
| 130 |
-
|
| 131 |
-
**Citation Validator**: Use `validate_references()` from `src/utils/citation_validator.py`. Removes hallucinated citations (URLs not in evidence). Logs warnings. Returns validated report string.
|
| 132 |
-
|
| 133 |
-
---
|
| 134 |
-
|
| 135 |
-
## src/orchestrator_factory.py Rules
|
| 136 |
-
|
| 137 |
-
**Purpose**: Factory for creating orchestrators. Supports "simple" (legacy) and "advanced" (magentic) modes. Auto-detects mode based on API key availability.
|
| 138 |
-
|
| 139 |
-
**Pattern**: Lazy import for optional dependencies (`_get_magentic_orchestrator_class()`). Handles `ImportError` gracefully with clear error messages.
|
| 140 |
-
|
| 141 |
-
**Mode Detection**: `_determine_mode()` checks explicit mode or auto-detects: "advanced" if `settings.has_openai_key`, else "simple". Maps "magentic" → "advanced".
|
| 142 |
-
|
| 143 |
-
**Function Signature**: `create_orchestrator(search_handler, judge_handler, config, mode) -> Any`. Simple mode requires handlers. Advanced mode uses MagenticOrchestrator.
|
| 144 |
-
|
| 145 |
-
**Error Handling**: Raise `ValueError` with clear messages if requirements not met. Log mode selection with structlog.
|
| 146 |
-
|
| 147 |
-
---
|
| 148 |
-
|
| 149 |
-
## src/orchestrator_hierarchical.py Rules
|
| 150 |
-
|
| 151 |
-
**Purpose**: Hierarchical orchestrator using middleware and sub-teams. Adapts Magentic ChatAgent to SubIterationTeam protocol.
|
| 152 |
-
|
| 153 |
-
**Pattern**: Uses `SubIterationMiddleware` with `ResearchTeam` and `LLMSubIterationJudge`. Event-driven via callback queue.
|
| 154 |
-
|
| 155 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated, but kept for compatibility).
|
| 156 |
-
|
| 157 |
-
**Event Streaming**: Uses `asyncio.Queue` for event coordination. Yields `AgentEvent` objects. Handles event callback pattern with `asyncio.wait()`.
|
| 158 |
-
|
| 159 |
-
**Error Handling**: Log errors with context. Yield error events. Process remaining events after task completion.
|
| 160 |
-
|
| 161 |
-
---
|
| 162 |
-
|
| 163 |
-
## src/orchestrator_magentic.py Rules
|
| 164 |
-
|
| 165 |
-
**Purpose**: Magentic-based orchestrator using ChatAgent pattern. Each agent has internal LLM. Manager orchestrates agents.
|
| 166 |
-
|
| 167 |
-
**Pattern**: Uses `MagenticBuilder` with participants (searcher, hypothesizer, judge, reporter). Manager uses `OpenAIChatClient`. Workflow built in `_build_workflow()`.
|
| 168 |
-
|
| 169 |
-
**Event Processing**: `_process_event()` converts Magentic events to `AgentEvent`. Handles: `MagenticOrchestratorMessageEvent`, `MagenticAgentMessageEvent`, `MagenticFinalResultEvent`, `MagenticAgentDeltaEvent`, `WorkflowOutputEvent`.
|
| 170 |
-
|
| 171 |
-
**Text Extraction**: `_extract_text()` defensively extracts text from messages. Priority: `.content` → `.text` → `str(message)`. Handles buggy message objects.
|
| 172 |
-
|
| 173 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated).
|
| 174 |
-
|
| 175 |
-
**Requirements**: Must call `check_magentic_requirements()` in `__init__`. Requires `agent-framework-core` and OpenAI API key.
|
| 176 |
-
|
| 177 |
-
**Event Types**: Maps agent names to event types: "search" → "search_complete", "judge" → "judge_complete", "hypothes" → "hypothesizing", "report" → "synthesizing".
|
| 178 |
-
|
| 179 |
-
---
|
| 180 |
-
|
| 181 |
-
## src/agent_factory/ - Factory Rules
|
| 182 |
-
|
| 183 |
-
**Pattern**: Factory functions for creating agents and handlers. Lazy initialization for optional dependencies. Support OpenAI/Anthropic/HF Inference.
|
| 184 |
-
|
| 185 |
-
**Judges**: `create_judge_handler()` creates `JudgeHandler` with structured output (`JudgeAssessment`). Supports `MockJudgeHandler`, `HFInferenceJudgeHandler` as fallbacks.
|
| 186 |
-
|
| 187 |
-
**Agents**: Factory functions in `agents.py` for all Pydantic AI agents. Pattern: `create_agent_name(model: Any | None = None) -> AgentName`. Use `get_model()` if model not provided.
|
| 188 |
-
|
| 189 |
-
**Graph Builder**: `graph_builder.py` contains utilities for building research graphs. Supports iterative and deep research graph construction.
|
| 190 |
-
|
| 191 |
-
**Error Handling**: Raise `ConfigurationError` if required API keys missing. Log agent creation. Handle import errors gracefully.
|
| 192 |
-
|
| 193 |
-
---
|
| 194 |
-
|
| 195 |
-
## src/prompts/ - Prompt Rules
|
| 196 |
-
|
| 197 |
-
**Pattern**: System prompts stored as module-level constants. Include date injection: `datetime.now().strftime("%Y-%m-%d")`. Format evidence with truncation (1500 chars per item).
|
| 198 |
-
|
| 199 |
-
**Judge Prompts**: In `judge.py`. Handle empty evidence case separately. Always request structured JSON output.
|
| 200 |
-
|
| 201 |
-
**Hypothesis Prompts**: In `hypothesis.py`. Use diverse evidence selection (MMR algorithm). Sentence-aware truncation.
|
| 202 |
-
|
| 203 |
-
**Report Prompts**: In `report.py`. Include full citation details. Use diverse evidence selection (n=20). Emphasize citation validation rules.
|
| 204 |
-
|
| 205 |
-
---
|
| 206 |
-
|
| 207 |
-
## Testing Rules
|
| 208 |
-
|
| 209 |
-
**Structure**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`).
|
| 210 |
-
|
| 211 |
-
**Mocking**: Use `respx` for httpx mocking. Use `pytest-mock` for general mocking. Mock LLM calls in unit tests (use `MockJudgeHandler`).
|
| 212 |
-
|
| 213 |
-
**Fixtures**: Common fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`.
|
| 214 |
-
|
| 215 |
-
**Coverage**: Aim for >80% coverage. Test error handling, edge cases, and integration paths.
|
| 216 |
-
|
| 217 |
-
---
|
| 218 |
-
|
| 219 |
-
## File-Specific Agent Rules
|
| 220 |
-
|
| 221 |
-
**knowledge_gap.py**: Outputs `KnowledgeGapOutput`. System prompt evaluates research completeness. Handles conversation history. Returns fallback on error.
|
| 222 |
-
|
| 223 |
-
**writer.py**: Returns markdown string. System prompt includes citation format examples. Validates inputs. Truncates long findings. Retry logic for transient failures.
|
| 224 |
-
|
| 225 |
-
**long_writer.py**: Uses `ReportDraft` input/output. Writes sections iteratively. Reformats references (deduplicates, renumbers). Reformats section headings.
|
| 226 |
-
|
| 227 |
-
**proofreader.py**: Takes `ReportDraft`, returns polished markdown. Removes duplicates. Adds summary. Preserves references.
|
| 228 |
-
|
| 229 |
-
**tool_selector.py**: Outputs `AgentSelectionPlan`. System prompt lists available agents (WebSearchAgent, SiteCrawlerAgent, RAGAgent). Guidelines for when to use each.
|
| 230 |
-
|
| 231 |
-
**thinking.py**: Returns observation string. Generates observations from conversation history. Uses query and background context.
|
| 232 |
-
|
| 233 |
-
**input_parser.py**: Outputs `ParsedQuery`. Detects research mode (iterative/deep). Extracts entities and research questions. Improves/refines query.
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.env.example
DELETED
|
@@ -1,48 +0,0 @@
|
|
| 1 |
-
# ============== LLM CONFIGURATION ==============
|
| 2 |
-
|
| 3 |
-
# Provider: "openai" or "anthropic"
|
| 4 |
-
LLM_PROVIDER=openai
|
| 5 |
-
|
| 6 |
-
# API Keys (at least one required for full LLM analysis)
|
| 7 |
-
OPENAI_API_KEY=sk-your-key-here
|
| 8 |
-
ANTHROPIC_API_KEY=sk-ant-your-key-here
|
| 9 |
-
|
| 10 |
-
# Model names (optional - sensible defaults set in config.py)
|
| 11 |
-
# ANTHROPIC_MODEL=claude-sonnet-4-5-20250929
|
| 12 |
-
# OPENAI_MODEL=gpt-5.1
|
| 13 |
-
|
| 14 |
-
# ============== EMBEDDINGS ==============
|
| 15 |
-
|
| 16 |
-
# OpenAI Embedding Model (used if LLM_PROVIDER is openai and performing RAG/Embeddings)
|
| 17 |
-
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
|
| 18 |
-
|
| 19 |
-
# Local Embedding Model (used for local/offline embeddings)
|
| 20 |
-
LOCAL_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
| 21 |
-
|
| 22 |
-
# ============== HUGGINGFACE (FREE TIER) ==============
|
| 23 |
-
|
| 24 |
-
# HuggingFace Token - enables Llama 3.1 (best quality free model)
|
| 25 |
-
# Get yours at: https://huggingface.co/settings/tokens
|
| 26 |
-
#
|
| 27 |
-
# WITHOUT HF_TOKEN: Falls back to ungated models (zephyr-7b-beta)
|
| 28 |
-
# WITH HF_TOKEN: Uses Llama 3.1 8B Instruct (requires accepting license)
|
| 29 |
-
#
|
| 30 |
-
# For HuggingFace Spaces deployment:
|
| 31 |
-
# Set this as a "Secret" in Space Settings -> Variables and secrets
|
| 32 |
-
# Users/judges don't need their own token - the Space secret is used
|
| 33 |
-
#
|
| 34 |
-
HF_TOKEN=hf_your-token-here
|
| 35 |
-
|
| 36 |
-
# ============== AGENT CONFIGURATION ==============
|
| 37 |
-
|
| 38 |
-
MAX_ITERATIONS=10
|
| 39 |
-
SEARCH_TIMEOUT=30
|
| 40 |
-
LOG_LEVEL=INFO
|
| 41 |
-
|
| 42 |
-
# ============== EXTERNAL SERVICES ==============
|
| 43 |
-
|
| 44 |
-
# PubMed (optional - higher rate limits)
|
| 45 |
-
NCBI_API_KEY=your-ncbi-key-here
|
| 46 |
-
|
| 47 |
-
# Vector Database (optional - for LlamaIndex RAG)
|
| 48 |
-
CHROMA_DB_PATH=./chroma_db
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.github/README.md
DELETED
|
@@ -1,57 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
> [!IMPORTANT]
|
| 3 |
-
> **You are reading the Github README!**
|
| 4 |
-
>
|
| 5 |
-
> - 📚 **Documentation**: See our [technical documentation](https://deepcritical.github.io/GradioDemo/) for detailed information
|
| 6 |
-
> - 📖 **Demo README**: Check out the [Demo README](..README.md) for for more information about our MCP Hackathon submission
|
| 7 |
-
> - 🏆 **Hackathon Submission**: Keep reading below for more information about our MCP Hackathon submission
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
<div align="center">
|
| 11 |
-
|
| 12 |
-
[](https://github.com/DeepCritical/GradioDemo)
|
| 13 |
-
[](deepcritical.github.io/GradioDemo/)
|
| 14 |
-
[](https://huggingface.co/spaces/DataQuests/DeepCritical)
|
| 15 |
-
[](https://codecov.io/gh/DeepCritical/GradioDemo)
|
| 16 |
-
[](https://discord.gg/qdfnvSPcqP)
|
| 17 |
-
|
| 18 |
-
</div>
|
| 19 |
-
|
| 20 |
-
## Quick Start
|
| 21 |
-
|
| 22 |
-
### 1. Environment Setup
|
| 23 |
-
|
| 24 |
-
```bash
|
| 25 |
-
# Install uv if you haven't already
|
| 26 |
-
pip install uv
|
| 27 |
-
|
| 28 |
-
# Sync dependencies
|
| 29 |
-
uv sync --all-extras
|
| 30 |
-
```
|
| 31 |
-
|
| 32 |
-
### 2. Run the UI
|
| 33 |
-
|
| 34 |
-
```bash
|
| 35 |
-
# Start the Gradio app
|
| 36 |
-
gradio run "src/app.py"
|
| 37 |
-
```
|
| 38 |
-
|
| 39 |
-
Open your browser to `http://localhost:7860`.
|
| 40 |
-
|
| 41 |
-
### 3. Connect via MCP
|
| 42 |
-
|
| 43 |
-
This application exposes a Model Context Protocol (MCP) server, allowing you to use its search tools directly from Claude Desktop or other MCP clients.
|
| 44 |
-
|
| 45 |
-
**MCP Server URL**: `http://localhost:7860/gradio_api/mcp/`
|
| 46 |
-
|
| 47 |
-
**Claude Desktop Configuration**:
|
| 48 |
-
Add this to your `claude_desktop_config.json`:
|
| 49 |
-
```json
|
| 50 |
-
{
|
| 51 |
-
"mcpServers": {
|
| 52 |
-
"deepcritical": {
|
| 53 |
-
"url": "http://localhost:7860/gradio_api/mcp/"
|
| 54 |
-
}
|
| 55 |
-
}
|
| 56 |
-
}
|
| 57 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.github/workflows/ci.yml
DELETED
|
@@ -1,127 +0,0 @@
|
|
| 1 |
-
name: CI
|
| 2 |
-
|
| 3 |
-
on:
|
| 4 |
-
push:
|
| 5 |
-
branches: [main, dev, develop]
|
| 6 |
-
pull_request:
|
| 7 |
-
branches: [main, dev, develop]
|
| 8 |
-
|
| 9 |
-
jobs:
|
| 10 |
-
test:
|
| 11 |
-
runs-on: ubuntu-latest
|
| 12 |
-
strategy:
|
| 13 |
-
matrix:
|
| 14 |
-
python-version: ["3.11"]
|
| 15 |
-
|
| 16 |
-
steps:
|
| 17 |
-
- uses: actions/checkout@v4
|
| 18 |
-
|
| 19 |
-
- name: Set up Python ${{ matrix.python-version }}
|
| 20 |
-
uses: actions/setup-python@v5
|
| 21 |
-
with:
|
| 22 |
-
python-version: ${{ matrix.python-version }}
|
| 23 |
-
|
| 24 |
-
- name: Install dependencies
|
| 25 |
-
run: |
|
| 26 |
-
python -m pip install --upgrade pip
|
| 27 |
-
pip install -e ".[dev]"
|
| 28 |
-
|
| 29 |
-
- name: Lint with ruff
|
| 30 |
-
run: |
|
| 31 |
-
ruff check . --exclude tests
|
| 32 |
-
ruff format --check . --exclude tests
|
| 33 |
-
continue-on-error: true
|
| 34 |
-
|
| 35 |
-
- name: Type check with mypy
|
| 36 |
-
run: |
|
| 37 |
-
mypy src
|
| 38 |
-
continue-on-error: true
|
| 39 |
-
|
| 40 |
-
- name: Install embedding dependencies
|
| 41 |
-
run: |
|
| 42 |
-
pip install -e ".[embeddings]"
|
| 43 |
-
|
| 44 |
-
- name: Run unit tests (excluding OpenAI and embedding providers)
|
| 45 |
-
env:
|
| 46 |
-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 47 |
-
run: |
|
| 48 |
-
pytest tests/unit/ -v -m "not openai and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-report=term
|
| 49 |
-
|
| 50 |
-
- name: Run local embeddings tests
|
| 51 |
-
env:
|
| 52 |
-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 53 |
-
run: |
|
| 54 |
-
pytest tests/ -v -m "local_embeddings" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-report=term --cov-append || true
|
| 55 |
-
continue-on-error: true # Allow failures if dependencies not available
|
| 56 |
-
|
| 57 |
-
- name: Run HuggingFace integration tests
|
| 58 |
-
env:
|
| 59 |
-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 60 |
-
run: |
|
| 61 |
-
pytest tests/integration/ -v -m "huggingface and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-report=term --cov-append || true
|
| 62 |
-
continue-on-error: true # Allow failures if HF_TOKEN not set
|
| 63 |
-
|
| 64 |
-
- name: Run non-OpenAI integration tests (excluding embedding providers)
|
| 65 |
-
env:
|
| 66 |
-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 67 |
-
run: |
|
| 68 |
-
pytest tests/integration/ -v -m "integration and not openai and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-report=term --cov-append || true
|
| 69 |
-
continue-on-error: true # Allow failures if dependencies not available
|
| 70 |
-
|
| 71 |
-
- name: Upload coverage reports to Codecov
|
| 72 |
-
uses: codecov/codecov-action@v5
|
| 73 |
-
with:
|
| 74 |
-
token: ${{ secrets.CODECOV_TOKEN }}
|
| 75 |
-
slug: DeepCritical/GradioDemo
|
| 76 |
-
files: ./coverage.xml
|
| 77 |
-
fail_ci_if_error: false
|
| 78 |
-
continue-on-error: true
|
| 79 |
-
|
| 80 |
-
docs:
|
| 81 |
-
runs-on: ubuntu-latest
|
| 82 |
-
permissions:
|
| 83 |
-
contents: write
|
| 84 |
-
if: github.event_name == 'push' && (github.ref == 'refs/heads/main' || github.ref == 'refs/heads/dev' || github.ref == 'refs/heads/develop')
|
| 85 |
-
steps:
|
| 86 |
-
- uses: actions/checkout@v4
|
| 87 |
-
with:
|
| 88 |
-
fetch-depth: 0
|
| 89 |
-
|
| 90 |
-
- name: Set up Python
|
| 91 |
-
uses: actions/setup-python@v5
|
| 92 |
-
with:
|
| 93 |
-
python-version: '3.11'
|
| 94 |
-
|
| 95 |
-
- name: Install uv
|
| 96 |
-
uses: astral-sh/setup-uv@v5
|
| 97 |
-
with:
|
| 98 |
-
version: "latest"
|
| 99 |
-
|
| 100 |
-
- name: Install dependencies
|
| 101 |
-
run: |
|
| 102 |
-
uv sync --extra dev
|
| 103 |
-
|
| 104 |
-
- name: Configure Git
|
| 105 |
-
run: |
|
| 106 |
-
git config user.name "github-actions[bot]"
|
| 107 |
-
git config user.email "github-actions[bot]@users.noreply.github.com"
|
| 108 |
-
git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/${{ github.repository }}.git
|
| 109 |
-
|
| 110 |
-
- name: Deploy to GitHub Pages
|
| 111 |
-
run: |
|
| 112 |
-
# mkdocs gh-deploy automatically creates .nojekyll, but let's verify
|
| 113 |
-
uv run mkdocs gh-deploy --force --message "Deploy docs [skip ci]" --strict
|
| 114 |
-
# Verify .nojekyll was created in gh-pages branch
|
| 115 |
-
git fetch origin gh-pages:gh-pages || true
|
| 116 |
-
git checkout gh-pages || true
|
| 117 |
-
if [ -f .nojekyll ]; then
|
| 118 |
-
echo "✓ .nojekyll file exists"
|
| 119 |
-
else
|
| 120 |
-
echo "⚠ .nojekyll file missing, creating it..."
|
| 121 |
-
touch .nojekyll
|
| 122 |
-
git add .nojekyll
|
| 123 |
-
git commit -m "Add .nojekyll to disable Jekyll [skip ci]" || true
|
| 124 |
-
git push origin gh-pages || true
|
| 125 |
-
fi
|
| 126 |
-
env:
|
| 127 |
-
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
DELETED
|
@@ -1,80 +0,0 @@
|
|
| 1 |
-
folder/
|
| 2 |
-
.cursor/
|
| 3 |
-
.ruff_cache/
|
| 4 |
-
# Python
|
| 5 |
-
__pycache__/
|
| 6 |
-
*.py[cod]
|
| 7 |
-
*$py.class
|
| 8 |
-
*.so
|
| 9 |
-
.Python
|
| 10 |
-
build/
|
| 11 |
-
develop-eggs/
|
| 12 |
-
dist/
|
| 13 |
-
downloads/
|
| 14 |
-
eggs/
|
| 15 |
-
.eggs/
|
| 16 |
-
lib/
|
| 17 |
-
lib64/
|
| 18 |
-
parts/
|
| 19 |
-
sdist/
|
| 20 |
-
var/
|
| 21 |
-
wheels/
|
| 22 |
-
*.egg-info/
|
| 23 |
-
.installed.cfg
|
| 24 |
-
*.egg
|
| 25 |
-
|
| 26 |
-
# Virtual environments
|
| 27 |
-
.venv/
|
| 28 |
-
venv/
|
| 29 |
-
ENV/
|
| 30 |
-
env/
|
| 31 |
-
|
| 32 |
-
# IDE
|
| 33 |
-
.vscode/
|
| 34 |
-
.idea/
|
| 35 |
-
*.swp
|
| 36 |
-
*.swo
|
| 37 |
-
|
| 38 |
-
# Environment
|
| 39 |
-
.env
|
| 40 |
-
.env.local
|
| 41 |
-
*.local
|
| 42 |
-
|
| 43 |
-
# Claude
|
| 44 |
-
.claude/
|
| 45 |
-
|
| 46 |
-
# Burner docs (working drafts, not for commit)
|
| 47 |
-
burner_docs/
|
| 48 |
-
|
| 49 |
-
# Reference repos (clone locally, don't commit)
|
| 50 |
-
reference_repos/autogen-microsoft/
|
| 51 |
-
reference_repos/claude-agent-sdk/
|
| 52 |
-
reference_repos/pydanticai-research-agent/
|
| 53 |
-
reference_repos/pubmed-mcp-server/
|
| 54 |
-
reference_repos/DeepCritical/
|
| 55 |
-
|
| 56 |
-
# Keep the README in reference_repos
|
| 57 |
-
!reference_repos/README.md
|
| 58 |
-
|
| 59 |
-
# OS
|
| 60 |
-
.DS_Store
|
| 61 |
-
Thumbs.db
|
| 62 |
-
|
| 63 |
-
# Logs
|
| 64 |
-
*.log
|
| 65 |
-
logs/
|
| 66 |
-
|
| 67 |
-
# Testing
|
| 68 |
-
.pytest_cache/
|
| 69 |
-
.mypy_cache/
|
| 70 |
-
.coverage
|
| 71 |
-
htmlcov/
|
| 72 |
-
|
| 73 |
-
# Database files
|
| 74 |
-
chroma_db/
|
| 75 |
-
*.sqlite3
|
| 76 |
-
|
| 77 |
-
# Development directory (personal notes and planning)
|
| 78 |
-
dev/
|
| 79 |
-
|
| 80 |
-
# Trigger rebuild Wed Nov 26 17:51:41 EST 2025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-config.yaml
DELETED
|
@@ -1,64 +0,0 @@
|
|
| 1 |
-
repos:
|
| 2 |
-
- repo: https://github.com/astral-sh/ruff-pre-commit
|
| 3 |
-
rev: v0.4.4
|
| 4 |
-
hooks:
|
| 5 |
-
- id: ruff
|
| 6 |
-
args: [--fix, --exclude, tests]
|
| 7 |
-
exclude: ^reference_repos/
|
| 8 |
-
- id: ruff-format
|
| 9 |
-
args: [--exclude, tests]
|
| 10 |
-
exclude: ^reference_repos/
|
| 11 |
-
|
| 12 |
-
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 13 |
-
rev: v1.10.0
|
| 14 |
-
hooks:
|
| 15 |
-
- id: mypy
|
| 16 |
-
files: ^src/
|
| 17 |
-
exclude: ^folder
|
| 18 |
-
additional_dependencies:
|
| 19 |
-
- pydantic>=2.7
|
| 20 |
-
- pydantic-settings>=2.2
|
| 21 |
-
- tenacity>=8.2
|
| 22 |
-
- pydantic-ai>=0.0.16
|
| 23 |
-
args: [--ignore-missing-imports]
|
| 24 |
-
|
| 25 |
-
- repo: local
|
| 26 |
-
hooks:
|
| 27 |
-
- id: pytest-unit
|
| 28 |
-
name: pytest unit tests (no OpenAI)
|
| 29 |
-
entry: uv
|
| 30 |
-
language: system
|
| 31 |
-
types: [python]
|
| 32 |
-
args: [
|
| 33 |
-
"run",
|
| 34 |
-
"pytest",
|
| 35 |
-
"tests/unit/",
|
| 36 |
-
"-v",
|
| 37 |
-
"-m",
|
| 38 |
-
"not openai and not embedding_provider",
|
| 39 |
-
"--tb=short",
|
| 40 |
-
"-p",
|
| 41 |
-
"no:logfire",
|
| 42 |
-
]
|
| 43 |
-
pass_filenames: false
|
| 44 |
-
always_run: true
|
| 45 |
-
require_serial: false
|
| 46 |
-
- id: pytest-local-embeddings
|
| 47 |
-
name: pytest local embeddings tests
|
| 48 |
-
entry: uv
|
| 49 |
-
language: system
|
| 50 |
-
types: [python]
|
| 51 |
-
args: [
|
| 52 |
-
"run",
|
| 53 |
-
"pytest",
|
| 54 |
-
"tests/",
|
| 55 |
-
"-v",
|
| 56 |
-
"-m",
|
| 57 |
-
"local_embeddings",
|
| 58 |
-
"--tb=short",
|
| 59 |
-
"-p",
|
| 60 |
-
"no:logfire",
|
| 61 |
-
]
|
| 62 |
-
pass_filenames: false
|
| 63 |
-
always_run: true
|
| 64 |
-
require_serial: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-hooks/run_pytest.ps1
DELETED
|
@@ -1,19 +0,0 @@
|
|
| 1 |
-
# PowerShell pytest runner for pre-commit (Windows)
|
| 2 |
-
# Uses uv if available, otherwise falls back to pytest
|
| 3 |
-
|
| 4 |
-
if (Get-Command uv -ErrorAction SilentlyContinue) {
|
| 5 |
-
# Sync dependencies before running tests
|
| 6 |
-
uv sync
|
| 7 |
-
uv run pytest $args
|
| 8 |
-
} else {
|
| 9 |
-
Write-Warning "uv not found, using system pytest (may have missing dependencies)"
|
| 10 |
-
pytest $args
|
| 11 |
-
}
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-hooks/run_pytest.sh
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
#!/bin/bash
|
| 2 |
-
# Cross-platform pytest runner for pre-commit
|
| 3 |
-
# Uses uv if available, otherwise falls back to pytest
|
| 4 |
-
|
| 5 |
-
if command -v uv >/dev/null 2>&1; then
|
| 6 |
-
# Sync dependencies before running tests
|
| 7 |
-
uv sync
|
| 8 |
-
uv run pytest "$@"
|
| 9 |
-
else
|
| 10 |
-
echo "Warning: uv not found, using system pytest (may have missing dependencies)"
|
| 11 |
-
pytest "$@"
|
| 12 |
-
fi
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-hooks/run_pytest_embeddings.ps1
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
# PowerShell wrapper to sync embeddings dependencies and run embeddings tests
|
| 2 |
-
|
| 3 |
-
$ErrorActionPreference = "Stop"
|
| 4 |
-
|
| 5 |
-
if (Get-Command uv -ErrorAction SilentlyContinue) {
|
| 6 |
-
Write-Host "Syncing embeddings dependencies..."
|
| 7 |
-
uv sync --extra embeddings
|
| 8 |
-
Write-Host "Running embeddings tests..."
|
| 9 |
-
uv run pytest tests/ -v -m local_embeddings --tb=short -p no:logfire
|
| 10 |
-
} else {
|
| 11 |
-
Write-Error "uv not found"
|
| 12 |
-
exit 1
|
| 13 |
-
}
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-hooks/run_pytest_embeddings.sh
DELETED
|
@@ -1,15 +0,0 @@
|
|
| 1 |
-
#!/bin/bash
|
| 2 |
-
# Wrapper script to sync embeddings dependencies and run embeddings tests
|
| 3 |
-
|
| 4 |
-
set -e
|
| 5 |
-
|
| 6 |
-
if command -v uv >/dev/null 2>&1; then
|
| 7 |
-
echo "Syncing embeddings dependencies..."
|
| 8 |
-
uv sync --extra embeddings
|
| 9 |
-
echo "Running embeddings tests..."
|
| 10 |
-
uv run pytest tests/ -v -m local_embeddings --tb=short -p no:logfire
|
| 11 |
-
else
|
| 12 |
-
echo "Error: uv not found"
|
| 13 |
-
exit 1
|
| 14 |
-
fi
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-hooks/run_pytest_unit.ps1
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
# PowerShell wrapper to sync dependencies and run unit tests
|
| 2 |
-
|
| 3 |
-
$ErrorActionPreference = "Stop"
|
| 4 |
-
|
| 5 |
-
if (Get-Command uv -ErrorAction SilentlyContinue) {
|
| 6 |
-
Write-Host "Syncing dependencies..."
|
| 7 |
-
uv sync
|
| 8 |
-
Write-Host "Running unit tests..."
|
| 9 |
-
uv run pytest tests/unit/ -v -m "not openai and not embedding_provider" --tb=short -p no:logfire
|
| 10 |
-
} else {
|
| 11 |
-
Write-Error "uv not found"
|
| 12 |
-
exit 1
|
| 13 |
-
}
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-hooks/run_pytest_unit.sh
DELETED
|
@@ -1,15 +0,0 @@
|
|
| 1 |
-
#!/bin/bash
|
| 2 |
-
# Wrapper script to sync dependencies and run unit tests
|
| 3 |
-
|
| 4 |
-
set -e
|
| 5 |
-
|
| 6 |
-
if command -v uv >/dev/null 2>&1; then
|
| 7 |
-
echo "Syncing dependencies..."
|
| 8 |
-
uv sync
|
| 9 |
-
echo "Running unit tests..."
|
| 10 |
-
uv run pytest tests/unit/ -v -m "not openai and not embedding_provider" --tb=short -p no:logfire
|
| 11 |
-
else
|
| 12 |
-
echo "Error: uv not found"
|
| 13 |
-
exit 1
|
| 14 |
-
fi
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-hooks/run_pytest_with_sync.ps1
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
# PowerShell wrapper for pytest runner
|
| 2 |
-
# Ensures uv is available and runs the Python script
|
| 3 |
-
|
| 4 |
-
param(
|
| 5 |
-
[Parameter(Position=0)]
|
| 6 |
-
[string]$TestType = "unit"
|
| 7 |
-
)
|
| 8 |
-
|
| 9 |
-
$ErrorActionPreference = "Stop"
|
| 10 |
-
|
| 11 |
-
# Check if uv is available
|
| 12 |
-
if (-not (Get-Command uv -ErrorAction SilentlyContinue)) {
|
| 13 |
-
Write-Error "uv not found. Please install uv: https://github.com/astral-sh/uv"
|
| 14 |
-
exit 1
|
| 15 |
-
}
|
| 16 |
-
|
| 17 |
-
# Get the script directory
|
| 18 |
-
$ScriptDir = Split-Path -Parent $MyInvocation.MyCommand.Path
|
| 19 |
-
$PythonScript = Join-Path $ScriptDir "run_pytest_with_sync.py"
|
| 20 |
-
|
| 21 |
-
# Run the Python script using uv
|
| 22 |
-
uv run python $PythonScript $TestType
|
| 23 |
-
|
| 24 |
-
exit $LASTEXITCODE
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.pre-commit-hooks/run_pytest_with_sync.py
DELETED
|
@@ -1,235 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""Cross-platform pytest runner that syncs dependencies before running tests."""
|
| 3 |
-
|
| 4 |
-
import shutil
|
| 5 |
-
import subprocess
|
| 6 |
-
import sys
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
def clean_caches(project_root: Path) -> None:
|
| 11 |
-
"""Remove pytest and Python cache directories and files.
|
| 12 |
-
|
| 13 |
-
Comprehensively removes all cache files and directories to ensure
|
| 14 |
-
clean test runs. Only scans specific directories to avoid resource
|
| 15 |
-
exhaustion from scanning large directories like .venv on Windows.
|
| 16 |
-
"""
|
| 17 |
-
# Directories to scan for caches (only project code, not dependencies)
|
| 18 |
-
scan_dirs = ["src", "tests", ".pre-commit-hooks"]
|
| 19 |
-
|
| 20 |
-
# Directories to exclude (to avoid resource issues)
|
| 21 |
-
exclude_dirs = {
|
| 22 |
-
".venv",
|
| 23 |
-
"venv",
|
| 24 |
-
"ENV",
|
| 25 |
-
"env",
|
| 26 |
-
".git",
|
| 27 |
-
"node_modules",
|
| 28 |
-
"dist",
|
| 29 |
-
"build",
|
| 30 |
-
".eggs",
|
| 31 |
-
"reference_repos",
|
| 32 |
-
"folder",
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
# Comprehensive list of cache patterns to remove
|
| 36 |
-
cache_patterns = [
|
| 37 |
-
".pytest_cache",
|
| 38 |
-
"__pycache__",
|
| 39 |
-
"*.pyc",
|
| 40 |
-
"*.pyo",
|
| 41 |
-
"*.pyd",
|
| 42 |
-
".mypy_cache",
|
| 43 |
-
".ruff_cache",
|
| 44 |
-
".coverage",
|
| 45 |
-
"coverage.xml",
|
| 46 |
-
"htmlcov",
|
| 47 |
-
".hypothesis", # Hypothesis testing framework cache
|
| 48 |
-
".tox", # Tox cache (if used)
|
| 49 |
-
".cache", # General Python cache
|
| 50 |
-
]
|
| 51 |
-
|
| 52 |
-
def should_exclude(path: Path) -> bool:
|
| 53 |
-
"""Check if a path should be excluded from cache cleanup."""
|
| 54 |
-
# Check if any parent directory is in exclude list
|
| 55 |
-
for parent in path.parents:
|
| 56 |
-
if parent.name in exclude_dirs:
|
| 57 |
-
return True
|
| 58 |
-
# Check if the path itself is excluded
|
| 59 |
-
if path.name in exclude_dirs:
|
| 60 |
-
return True
|
| 61 |
-
return False
|
| 62 |
-
|
| 63 |
-
cleaned = []
|
| 64 |
-
|
| 65 |
-
# Only scan specific directories to avoid resource exhaustion
|
| 66 |
-
for scan_dir in scan_dirs:
|
| 67 |
-
scan_path = project_root / scan_dir
|
| 68 |
-
if not scan_path.exists():
|
| 69 |
-
continue
|
| 70 |
-
|
| 71 |
-
for pattern in cache_patterns:
|
| 72 |
-
if "*" in pattern:
|
| 73 |
-
# Handle glob patterns for files
|
| 74 |
-
try:
|
| 75 |
-
for cache_file in scan_path.rglob(pattern):
|
| 76 |
-
if should_exclude(cache_file):
|
| 77 |
-
continue
|
| 78 |
-
try:
|
| 79 |
-
if cache_file.is_file():
|
| 80 |
-
cache_file.unlink()
|
| 81 |
-
cleaned.append(str(cache_file.relative_to(project_root)))
|
| 82 |
-
except OSError:
|
| 83 |
-
pass # Ignore errors (file might be locked or already deleted)
|
| 84 |
-
except OSError:
|
| 85 |
-
pass # Ignore errors during directory traversal
|
| 86 |
-
else:
|
| 87 |
-
# Handle directory patterns
|
| 88 |
-
try:
|
| 89 |
-
for cache_dir in scan_path.rglob(pattern):
|
| 90 |
-
if should_exclude(cache_dir):
|
| 91 |
-
continue
|
| 92 |
-
try:
|
| 93 |
-
if cache_dir.is_dir():
|
| 94 |
-
shutil.rmtree(cache_dir, ignore_errors=True)
|
| 95 |
-
cleaned.append(str(cache_dir.relative_to(project_root)))
|
| 96 |
-
except OSError:
|
| 97 |
-
pass # Ignore errors (directory might be locked)
|
| 98 |
-
except OSError:
|
| 99 |
-
pass # Ignore errors during directory traversal
|
| 100 |
-
|
| 101 |
-
# Also clean root-level caches (like .pytest_cache in project root)
|
| 102 |
-
root_cache_patterns = [
|
| 103 |
-
".pytest_cache",
|
| 104 |
-
".mypy_cache",
|
| 105 |
-
".ruff_cache",
|
| 106 |
-
".coverage",
|
| 107 |
-
"coverage.xml",
|
| 108 |
-
"htmlcov",
|
| 109 |
-
".hypothesis",
|
| 110 |
-
".tox",
|
| 111 |
-
".cache",
|
| 112 |
-
".pytest",
|
| 113 |
-
]
|
| 114 |
-
for pattern in root_cache_patterns:
|
| 115 |
-
cache_path = project_root / pattern
|
| 116 |
-
if cache_path.exists():
|
| 117 |
-
try:
|
| 118 |
-
if cache_path.is_dir():
|
| 119 |
-
shutil.rmtree(cache_path, ignore_errors=True)
|
| 120 |
-
elif cache_path.is_file():
|
| 121 |
-
cache_path.unlink()
|
| 122 |
-
cleaned.append(pattern)
|
| 123 |
-
except OSError:
|
| 124 |
-
pass
|
| 125 |
-
|
| 126 |
-
# Also remove any .pyc files in root directory
|
| 127 |
-
try:
|
| 128 |
-
for pyc_file in project_root.glob("*.pyc"):
|
| 129 |
-
try:
|
| 130 |
-
pyc_file.unlink()
|
| 131 |
-
cleaned.append(pyc_file.name)
|
| 132 |
-
except OSError:
|
| 133 |
-
pass
|
| 134 |
-
except OSError:
|
| 135 |
-
pass
|
| 136 |
-
|
| 137 |
-
if cleaned:
|
| 138 |
-
print(
|
| 139 |
-
f"Cleaned {len(cleaned)} cache items: {', '.join(cleaned[:10])}{'...' if len(cleaned) > 10 else ''}"
|
| 140 |
-
)
|
| 141 |
-
else:
|
| 142 |
-
print("No cache files found to clean")
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def run_command(
|
| 146 |
-
cmd: list[str], check: bool = True, shell: bool = False, cwd: str | None = None
|
| 147 |
-
) -> int:
|
| 148 |
-
"""Run a command and return exit code."""
|
| 149 |
-
try:
|
| 150 |
-
result = subprocess.run(
|
| 151 |
-
cmd,
|
| 152 |
-
check=check,
|
| 153 |
-
shell=shell,
|
| 154 |
-
cwd=cwd,
|
| 155 |
-
env=None, # Use current environment, uv will handle venv
|
| 156 |
-
)
|
| 157 |
-
return result.returncode
|
| 158 |
-
except subprocess.CalledProcessError as e:
|
| 159 |
-
return e.returncode
|
| 160 |
-
except FileNotFoundError:
|
| 161 |
-
print(f"Error: Command not found: {cmd[0]}")
|
| 162 |
-
return 1
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
def main() -> int:
|
| 166 |
-
"""Main entry point."""
|
| 167 |
-
import os
|
| 168 |
-
|
| 169 |
-
# Get the project root (where pyproject.toml is)
|
| 170 |
-
script_dir = Path(__file__).parent
|
| 171 |
-
project_root = script_dir.parent
|
| 172 |
-
|
| 173 |
-
# Change to project root to ensure uv works correctly
|
| 174 |
-
os.chdir(project_root)
|
| 175 |
-
|
| 176 |
-
# Clean caches before running tests
|
| 177 |
-
print("Cleaning pytest and Python caches...")
|
| 178 |
-
clean_caches(project_root)
|
| 179 |
-
|
| 180 |
-
# Check if uv is available
|
| 181 |
-
if run_command(["uv", "--version"], check=False) != 0:
|
| 182 |
-
print("Error: uv not found. Please install uv: https://github.com/astral-sh/uv")
|
| 183 |
-
return 1
|
| 184 |
-
|
| 185 |
-
# Parse arguments
|
| 186 |
-
test_type = sys.argv[1] if len(sys.argv) > 1 else "unit"
|
| 187 |
-
extra_args = sys.argv[2:] if len(sys.argv) > 2 else []
|
| 188 |
-
|
| 189 |
-
# Sync dependencies - always include dev
|
| 190 |
-
# Note: embeddings dependencies are now in main dependencies, not optional
|
| 191 |
-
# Use --extra dev for [project.optional-dependencies].dev (not --dev which is for [dependency-groups])
|
| 192 |
-
sync_cmd = ["uv", "sync", "--extra", "dev"]
|
| 193 |
-
|
| 194 |
-
print(f"Syncing dependencies for {test_type} tests...")
|
| 195 |
-
if run_command(sync_cmd, cwd=project_root) != 0:
|
| 196 |
-
return 1
|
| 197 |
-
|
| 198 |
-
# Build pytest command - use uv run to ensure correct environment
|
| 199 |
-
if test_type == "unit":
|
| 200 |
-
pytest_args = [
|
| 201 |
-
"tests/unit/",
|
| 202 |
-
"-v",
|
| 203 |
-
"-m",
|
| 204 |
-
"not openai and not embedding_provider",
|
| 205 |
-
"--tb=short",
|
| 206 |
-
"-p",
|
| 207 |
-
"no:logfire",
|
| 208 |
-
"--cache-clear", # Clear pytest cache before running
|
| 209 |
-
]
|
| 210 |
-
elif test_type == "embeddings":
|
| 211 |
-
pytest_args = [
|
| 212 |
-
"tests/",
|
| 213 |
-
"-v",
|
| 214 |
-
"-m",
|
| 215 |
-
"local_embeddings",
|
| 216 |
-
"--tb=short",
|
| 217 |
-
"-p",
|
| 218 |
-
"no:logfire",
|
| 219 |
-
"--cache-clear", # Clear pytest cache before running
|
| 220 |
-
]
|
| 221 |
-
else:
|
| 222 |
-
pytest_args = []
|
| 223 |
-
|
| 224 |
-
pytest_args.extend(extra_args)
|
| 225 |
-
|
| 226 |
-
# Use uv run python -m pytest to ensure we use the venv's pytest
|
| 227 |
-
# This is more reliable than uv run pytest which might find system pytest
|
| 228 |
-
pytest_cmd = ["uv", "run", "python", "-m", "pytest", *pytest_args]
|
| 229 |
-
|
| 230 |
-
print(f"Running {test_type} tests...")
|
| 231 |
-
return run_command(pytest_cmd, cwd=project_root)
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
if __name__ == "__main__":
|
| 235 |
-
sys.exit(main())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.python-version
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
3.11
|
|
|
|
|
|
AGENTS.txt
DELETED
|
@@ -1,236 +0,0 @@
|
|
| 1 |
-
# DeepCritical Project - Rules
|
| 2 |
-
|
| 3 |
-
## Project-Wide Rules
|
| 4 |
-
|
| 5 |
-
**Architecture**: Multi-agent research system using Pydantic AI for agent orchestration, supporting iterative and deep research patterns. Uses middleware for state management, budget tracking, and workflow coordination.
|
| 6 |
-
|
| 7 |
-
**Type Safety**: ALWAYS use complete type hints. All functions must have parameter and return type annotations. Use `mypy --strict` compliance. Use `TYPE_CHECKING` imports for circular dependencies: `from typing import TYPE_CHECKING; if TYPE_CHECKING: from src.services.embeddings import EmbeddingService`
|
| 8 |
-
|
| 9 |
-
**Async Patterns**: ALL I/O operations must be async (`async def`, `await`). Use `asyncio.gather()` for parallel operations. CPU-bound work must use `run_in_executor()`: `loop = asyncio.get_running_loop(); result = await loop.run_in_executor(None, cpu_bound_function, args)`. Never block the event loop.
|
| 10 |
-
|
| 11 |
-
**Error Handling**: Use custom exceptions from `src/utils/exceptions.py`: `DeepCriticalError`, `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions: `raise SearchError(...) from e`. Log with structlog: `logger.error("Operation failed", error=str(e), context=value)`.
|
| 12 |
-
|
| 13 |
-
**Logging**: Use `structlog` for ALL logging (NOT `print` or `logging`). Import: `import structlog; logger = structlog.get_logger()`. Log with structured data: `logger.info("event", key=value)`. Use appropriate levels: DEBUG, INFO, WARNING, ERROR.
|
| 14 |
-
|
| 15 |
-
**Pydantic Models**: All data exchange uses Pydantic models from `src/utils/models.py`. Models are frozen (`model_config = {"frozen": True}`) for immutability. Use `Field()` with descriptions. Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints.
|
| 16 |
-
|
| 17 |
-
**Code Style**: Ruff with 100-char line length. Ignore rules: `PLR0913` (too many arguments), `PLR0912` (too many branches), `PLR0911` (too many returns), `PLR2004` (magic values), `PLW0603` (global statement), `PLC0415` (lazy imports).
|
| 18 |
-
|
| 19 |
-
**Docstrings**: Google-style docstrings for all public functions. Include Args, Returns, Raises sections. Use type hints in docstrings only if needed for clarity.
|
| 20 |
-
|
| 21 |
-
**Testing**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`). Use `respx` for httpx mocking, `pytest-mock` for general mocking.
|
| 22 |
-
|
| 23 |
-
**State Management**: Use `ContextVar` in middleware for thread-safe isolation. Never use global mutable state (except singletons via `@lru_cache`). Use `WorkflowState` from `src/middleware/state_machine.py` for workflow state.
|
| 24 |
-
|
| 25 |
-
**Citation Validation**: ALWAYS validate references before returning reports. Use `validate_references()` from `src/utils/citation_validator.py`. Remove hallucinated citations. Log warnings for removed citations.
|
| 26 |
-
|
| 27 |
-
---
|
| 28 |
-
|
| 29 |
-
## src/agents/ - Agent Implementation Rules
|
| 30 |
-
|
| 31 |
-
**Pattern**: All agents use Pydantic AI `Agent` class. Agents have structured output types (Pydantic models) or return strings. Use factory functions in `src/agent_factory/agents.py` for creation.
|
| 32 |
-
|
| 33 |
-
**Agent Structure**:
|
| 34 |
-
- System prompt as module-level constant (with date injection: `datetime.now().strftime("%Y-%m-%d")`)
|
| 35 |
-
- Agent class with `__init__(model: Any | None = None)`
|
| 36 |
-
- Main method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 37 |
-
- Factory function: `def create_agent_name(model: Any | None = None) -> AgentName`
|
| 38 |
-
|
| 39 |
-
**Model Initialization**: Use `get_model()` from `src/agent_factory/judges.py` if no model provided. Support OpenAI/Anthropic/HF Inference via settings.
|
| 40 |
-
|
| 41 |
-
**Error Handling**: Return fallback values (e.g., `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`) on failure. Log errors with context. Use retry logic (3 retries) in Pydantic AI Agent initialization.
|
| 42 |
-
|
| 43 |
-
**Input Validation**: Validate query/inputs are not empty. Truncate very long inputs with warnings. Handle None values gracefully.
|
| 44 |
-
|
| 45 |
-
**Output Types**: Use structured output types from `src/utils/models.py` (e.g., `KnowledgeGapOutput`, `AgentSelectionPlan`, `ReportDraft`). For text output (writer agents), return `str` directly.
|
| 46 |
-
|
| 47 |
-
**Agent-Specific Rules**:
|
| 48 |
-
- `knowledge_gap.py`: Outputs `KnowledgeGapOutput`. Evaluates research completeness.
|
| 49 |
-
- `tool_selector.py`: Outputs `AgentSelectionPlan`. Selects tools (RAG/web/database).
|
| 50 |
-
- `writer.py`: Returns markdown string. Includes citations in numbered format.
|
| 51 |
-
- `long_writer.py`: Uses `ReportDraft` input/output. Handles section-by-section writing.
|
| 52 |
-
- `proofreader.py`: Takes `ReportDraft`, returns polished markdown.
|
| 53 |
-
- `thinking.py`: Returns observation string from conversation history.
|
| 54 |
-
- `input_parser.py`: Outputs `ParsedQuery` with research mode detection.
|
| 55 |
-
|
| 56 |
-
---
|
| 57 |
-
|
| 58 |
-
## src/tools/ - Search Tool Rules
|
| 59 |
-
|
| 60 |
-
**Protocol**: All tools implement `SearchTool` protocol from `src/tools/base.py`: `name` property and `async def search(query, max_results) -> list[Evidence]`.
|
| 61 |
-
|
| 62 |
-
**Rate Limiting**: Use `@retry` decorator from tenacity: `@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))`. Implement `_rate_limit()` method for APIs with limits. Use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 63 |
-
|
| 64 |
-
**Error Handling**: Raise `SearchError` or `RateLimitError` on failures. Handle HTTP errors (429, 500, timeout). Return empty list on non-critical errors (log warning).
|
| 65 |
-
|
| 66 |
-
**Query Preprocessing**: Use `preprocess_query()` from `src/tools/query_utils.py` to remove noise and expand synonyms.
|
| 67 |
-
|
| 68 |
-
**Evidence Conversion**: Convert API responses to `Evidence` objects with `Citation`. Extract metadata (title, url, date, authors). Set relevance scores (0.0-1.0). Handle missing fields gracefully.
|
| 69 |
-
|
| 70 |
-
**Tool-Specific Rules**:
|
| 71 |
-
- `pubmed.py`: Use NCBI E-utilities (ESearch → EFetch). Rate limit: 0.34s between requests. Parse XML with `xmltodict`. Handle single vs. multiple articles.
|
| 72 |
-
- `clinicaltrials.py`: Use `requests` library (NOT httpx - WAF blocks httpx). Run in thread pool: `await asyncio.to_thread(requests.get, ...)`. Filter: Only interventional studies, active/completed.
|
| 73 |
-
- `europepmc.py`: Handle preprint markers: `[PREPRINT - Not peer-reviewed]`. Build URLs from DOI or PMID.
|
| 74 |
-
- `rag_tool.py`: Wraps `LlamaIndexRAGService`. Returns Evidence from RAG results. Handles ingestion.
|
| 75 |
-
- `search_handler.py`: Orchestrates parallel searches across multiple tools. Uses `asyncio.gather()` with `return_exceptions=True`. Aggregates results into `SearchResult`.
|
| 76 |
-
|
| 77 |
-
---
|
| 78 |
-
|
| 79 |
-
## src/middleware/ - Middleware Rules
|
| 80 |
-
|
| 81 |
-
**State Management**: Use `ContextVar` for thread-safe isolation. `WorkflowState` uses `ContextVar[WorkflowState | None]`. Initialize with `init_workflow_state(embedding_service)`. Access with `get_workflow_state()` (auto-initializes if missing).
|
| 82 |
-
|
| 83 |
-
**WorkflowState**: Tracks `evidence: list[Evidence]`, `conversation: Conversation`, `embedding_service: Any`. Methods: `add_evidence()` (deduplicates by URL), `async search_related()` (semantic search).
|
| 84 |
-
|
| 85 |
-
**WorkflowManager**: Manages parallel research loops. Methods: `add_loop()`, `run_loops_parallel()`, `update_loop_status()`, `sync_loop_evidence_to_state()`. Uses `asyncio.gather()` for parallel execution. Handles errors per loop (don't fail all if one fails).
|
| 86 |
-
|
| 87 |
-
**BudgetTracker**: Tracks tokens, time, iterations per loop and globally. Methods: `create_budget()`, `add_tokens()`, `start_timer()`, `update_timer()`, `increment_iteration()`, `check_budget()`, `can_continue()`. Token estimation: `estimate_tokens(text)` (~4 chars per token), `estimate_llm_call_tokens(prompt, response)`.
|
| 88 |
-
|
| 89 |
-
**Models**: All middleware models in `src/utils/models.py`. `IterationData`, `Conversation`, `ResearchLoop`, `BudgetStatus` are used by middleware.
|
| 90 |
-
|
| 91 |
-
---
|
| 92 |
-
|
| 93 |
-
## src/orchestrator/ - Orchestration Rules
|
| 94 |
-
|
| 95 |
-
**Research Flows**: Two patterns: `IterativeResearchFlow` (single loop) and `DeepResearchFlow` (plan → parallel loops → synthesis). Both support agent chains (`use_graph=False`) and graph execution (`use_graph=True`).
|
| 96 |
-
|
| 97 |
-
**IterativeResearchFlow**: Pattern: Generate observations → Evaluate gaps → Select tools → Execute → Judge → Continue/Complete. Uses `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`, `WriterAgent`, `JudgeHandler`. Tracks iterations, time, budget.
|
| 98 |
-
|
| 99 |
-
**DeepResearchFlow**: Pattern: Planner → Parallel iterative loops per section → Synthesizer. Uses `PlannerAgent`, `IterativeResearchFlow` (per section), `LongWriterAgent` or `ProofreaderAgent`. Uses `WorkflowManager` for parallel execution.
|
| 100 |
-
|
| 101 |
-
**Graph Orchestrator**: Uses Pydantic AI Graphs (when available) or agent chains (fallback). Routes based on research mode (iterative/deep/auto). Streams `AgentEvent` objects for UI.
|
| 102 |
-
|
| 103 |
-
**State Initialization**: Always call `init_workflow_state()` before running flows. Initialize `BudgetTracker` per loop. Use `WorkflowManager` for parallel coordination.
|
| 104 |
-
|
| 105 |
-
**Event Streaming**: Yield `AgentEvent` objects during execution. Event types: "started", "search_complete", "judge_complete", "hypothesizing", "synthesizing", "complete", "error". Include iteration numbers and data payloads.
|
| 106 |
-
|
| 107 |
-
---
|
| 108 |
-
|
| 109 |
-
## src/services/ - Service Rules
|
| 110 |
-
|
| 111 |
-
**EmbeddingService**: Local sentence-transformers (NO API key required). All operations async-safe via `run_in_executor()`. ChromaDB for vector storage. Deduplication threshold: 0.85 (85% similarity = duplicate).
|
| 112 |
-
|
| 113 |
-
**LlamaIndexRAGService**: Uses OpenAI embeddings (requires `OPENAI_API_KEY`). Methods: `ingest_evidence()`, `retrieve()`, `query()`. Returns documents with metadata (source, title, url, date, authors). Lazy initialization with graceful fallback.
|
| 114 |
-
|
| 115 |
-
**StatisticalAnalyzer**: Generates Python code via LLM. Executes in Modal sandbox (secure, isolated). Library versions pinned in `SANDBOX_LIBRARIES` dict. Returns `AnalysisResult` with verdict (SUPPORTED/REFUTED/INCONCLUSIVE).
|
| 116 |
-
|
| 117 |
-
**Singleton Pattern**: Use `@lru_cache(maxsize=1)` for singletons: `@lru_cache(maxsize=1); def get_service() -> Service: return Service()`. Lazy initialization to avoid requiring dependencies at import time.
|
| 118 |
-
|
| 119 |
-
---
|
| 120 |
-
|
| 121 |
-
## src/utils/ - Utility Rules
|
| 122 |
-
|
| 123 |
-
**Models**: All Pydantic models in `src/utils/models.py`. Use frozen models (`model_config = {"frozen": True}`) except where mutation needed. Use `Field()` with descriptions. Validate with constraints.
|
| 124 |
-
|
| 125 |
-
**Config**: Settings via Pydantic Settings (`src/utils/config.py`). Load from `.env` automatically. Use `settings` singleton: `from src.utils.config import settings`. Validate API keys with properties: `has_openai_key`, `has_anthropic_key`.
|
| 126 |
-
|
| 127 |
-
**Exceptions**: Custom exception hierarchy in `src/utils/exceptions.py`. Base: `DeepCriticalError`. Specific: `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions.
|
| 128 |
-
|
| 129 |
-
**LLM Factory**: Centralized LLM model creation in `src/utils/llm_factory.py`. Supports OpenAI, Anthropic, HF Inference. Use `get_model()` or factory functions. Check requirements before initialization.
|
| 130 |
-
|
| 131 |
-
**Citation Validator**: Use `validate_references()` from `src/utils/citation_validator.py`. Removes hallucinated citations (URLs not in evidence). Logs warnings. Returns validated report string.
|
| 132 |
-
|
| 133 |
-
---
|
| 134 |
-
|
| 135 |
-
## src/orchestrator_factory.py Rules
|
| 136 |
-
|
| 137 |
-
**Purpose**: Factory for creating orchestrators. Supports "simple" (legacy) and "advanced" (magentic) modes. Auto-detects mode based on API key availability.
|
| 138 |
-
|
| 139 |
-
**Pattern**: Lazy import for optional dependencies (`_get_magentic_orchestrator_class()`). Handles `ImportError` gracefully with clear error messages.
|
| 140 |
-
|
| 141 |
-
**Mode Detection**: `_determine_mode()` checks explicit mode or auto-detects: "advanced" if `settings.has_openai_key`, else "simple". Maps "magentic" → "advanced".
|
| 142 |
-
|
| 143 |
-
**Function Signature**: `create_orchestrator(search_handler, judge_handler, config, mode) -> Any`. Simple mode requires handlers. Advanced mode uses MagenticOrchestrator.
|
| 144 |
-
|
| 145 |
-
**Error Handling**: Raise `ValueError` with clear messages if requirements not met. Log mode selection with structlog.
|
| 146 |
-
|
| 147 |
-
---
|
| 148 |
-
|
| 149 |
-
## src/orchestrator_hierarchical.py Rules
|
| 150 |
-
|
| 151 |
-
**Purpose**: Hierarchical orchestrator using middleware and sub-teams. Adapts Magentic ChatAgent to SubIterationTeam protocol.
|
| 152 |
-
|
| 153 |
-
**Pattern**: Uses `SubIterationMiddleware` with `ResearchTeam` and `LLMSubIterationJudge`. Event-driven via callback queue.
|
| 154 |
-
|
| 155 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated, but kept for compatibility).
|
| 156 |
-
|
| 157 |
-
**Event Streaming**: Uses `asyncio.Queue` for event coordination. Yields `AgentEvent` objects. Handles event callback pattern with `asyncio.wait()`.
|
| 158 |
-
|
| 159 |
-
**Error Handling**: Log errors with context. Yield error events. Process remaining events after task completion.
|
| 160 |
-
|
| 161 |
-
---
|
| 162 |
-
|
| 163 |
-
## src/orchestrator_magentic.py Rules
|
| 164 |
-
|
| 165 |
-
**Purpose**: Magentic-based orchestrator using ChatAgent pattern. Each agent has internal LLM. Manager orchestrates agents.
|
| 166 |
-
|
| 167 |
-
**Pattern**: Uses `MagenticBuilder` with participants (searcher, hypothesizer, judge, reporter). Manager uses `OpenAIChatClient`. Workflow built in `_build_workflow()`.
|
| 168 |
-
|
| 169 |
-
**Event Processing**: `_process_event()` converts Magentic events to `AgentEvent`. Handles: `MagenticOrchestratorMessageEvent`, `MagenticAgentMessageEvent`, `MagenticFinalResultEvent`, `MagenticAgentDeltaEvent`, `WorkflowOutputEvent`.
|
| 170 |
-
|
| 171 |
-
**Text Extraction**: `_extract_text()` defensively extracts text from messages. Priority: `.content` → `.text` → `str(message)`. Handles buggy message objects.
|
| 172 |
-
|
| 173 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated).
|
| 174 |
-
|
| 175 |
-
**Requirements**: Must call `check_magentic_requirements()` in `__init__`. Requires `agent-framework-core` and OpenAI API key.
|
| 176 |
-
|
| 177 |
-
**Event Types**: Maps agent names to event types: "search" → "search_complete", "judge" → "judge_complete", "hypothes" → "hypothesizing", "report" → "synthesizing".
|
| 178 |
-
|
| 179 |
-
---
|
| 180 |
-
|
| 181 |
-
## src/agent_factory/ - Factory Rules
|
| 182 |
-
|
| 183 |
-
**Pattern**: Factory functions for creating agents and handlers. Lazy initialization for optional dependencies. Support OpenAI/Anthropic/HF Inference.
|
| 184 |
-
|
| 185 |
-
**Judges**: `create_judge_handler()` creates `JudgeHandler` with structured output (`JudgeAssessment`). Supports `MockJudgeHandler`, `HFInferenceJudgeHandler` as fallbacks.
|
| 186 |
-
|
| 187 |
-
**Agents**: Factory functions in `agents.py` for all Pydantic AI agents. Pattern: `create_agent_name(model: Any | None = None) -> AgentName`. Use `get_model()` if model not provided.
|
| 188 |
-
|
| 189 |
-
**Graph Builder**: `graph_builder.py` contains utilities for building research graphs. Supports iterative and deep research graph construction.
|
| 190 |
-
|
| 191 |
-
**Error Handling**: Raise `ConfigurationError` if required API keys missing. Log agent creation. Handle import errors gracefully.
|
| 192 |
-
|
| 193 |
-
---
|
| 194 |
-
|
| 195 |
-
## src/prompts/ - Prompt Rules
|
| 196 |
-
|
| 197 |
-
**Pattern**: System prompts stored as module-level constants. Include date injection: `datetime.now().strftime("%Y-%m-%d")`. Format evidence with truncation (1500 chars per item).
|
| 198 |
-
|
| 199 |
-
**Judge Prompts**: In `judge.py`. Handle empty evidence case separately. Always request structured JSON output.
|
| 200 |
-
|
| 201 |
-
**Hypothesis Prompts**: In `hypothesis.py`. Use diverse evidence selection (MMR algorithm). Sentence-aware truncation.
|
| 202 |
-
|
| 203 |
-
**Report Prompts**: In `report.py`. Include full citation details. Use diverse evidence selection (n=20). Emphasize citation validation rules.
|
| 204 |
-
|
| 205 |
-
---
|
| 206 |
-
|
| 207 |
-
## Testing Rules
|
| 208 |
-
|
| 209 |
-
**Structure**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`).
|
| 210 |
-
|
| 211 |
-
**Mocking**: Use `respx` for httpx mocking. Use `pytest-mock` for general mocking. Mock LLM calls in unit tests (use `MockJudgeHandler`).
|
| 212 |
-
|
| 213 |
-
**Fixtures**: Common fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`.
|
| 214 |
-
|
| 215 |
-
**Coverage**: Aim for >80% coverage. Test error handling, edge cases, and integration paths.
|
| 216 |
-
|
| 217 |
-
---
|
| 218 |
-
|
| 219 |
-
## File-Specific Agent Rules
|
| 220 |
-
|
| 221 |
-
**knowledge_gap.py**: Outputs `KnowledgeGapOutput`. System prompt evaluates research completeness. Handles conversation history. Returns fallback on error.
|
| 222 |
-
|
| 223 |
-
**writer.py**: Returns markdown string. System prompt includes citation format examples. Validates inputs. Truncates long findings. Retry logic for transient failures.
|
| 224 |
-
|
| 225 |
-
**long_writer.py**: Uses `ReportDraft` input/output. Writes sections iteratively. Reformats references (deduplicates, renumbers). Reformats section headings.
|
| 226 |
-
|
| 227 |
-
**proofreader.py**: Takes `ReportDraft`, returns polished markdown. Removes duplicates. Adds summary. Preserves references.
|
| 228 |
-
|
| 229 |
-
**tool_selector.py**: Outputs `AgentSelectionPlan`. System prompt lists available agents (WebSearchAgent, SiteCrawlerAgent, RAGAgent). Guidelines for when to use each.
|
| 230 |
-
|
| 231 |
-
**thinking.py**: Returns observation string. Generates observations from conversation history. Uses query and background context.
|
| 232 |
-
|
| 233 |
-
**input_parser.py**: Outputs `ParsedQuery`. Detects research mode (iterative/deep). Extracts entities and research questions. Improves/refines query.
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CONTRIBUTING.md
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
make sure you run the full pre-commit checks before opening a PR (not draft) otherwise Obstacle is the Way will loose his mind
|
|
|
|
|
|
Dockerfile
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
# Dockerfile for DeepCritical
|
| 2 |
-
FROM python:3.11-slim
|
| 3 |
-
|
| 4 |
-
# Set working directory
|
| 5 |
-
WORKDIR /app
|
| 6 |
-
|
| 7 |
-
# Install system dependencies (curl needed for HEALTHCHECK)
|
| 8 |
-
RUN apt-get update && apt-get install -y \
|
| 9 |
-
git \
|
| 10 |
-
curl \
|
| 11 |
-
&& rm -rf /var/lib/apt/lists/*
|
| 12 |
-
|
| 13 |
-
# Install uv
|
| 14 |
-
RUN pip install uv==0.5.4
|
| 15 |
-
|
| 16 |
-
# Copy project files
|
| 17 |
-
COPY pyproject.toml .
|
| 18 |
-
COPY uv.lock .
|
| 19 |
-
COPY src/ src/
|
| 20 |
-
COPY README.md .
|
| 21 |
-
|
| 22 |
-
# Install runtime dependencies only (no dev/test tools)
|
| 23 |
-
RUN uv sync --frozen --no-dev --extra embeddings --extra magentic
|
| 24 |
-
|
| 25 |
-
# Create non-root user BEFORE downloading models
|
| 26 |
-
RUN useradd --create-home --shell /bin/bash appuser
|
| 27 |
-
|
| 28 |
-
# Set cache directory for HuggingFace models (must be writable by appuser)
|
| 29 |
-
ENV HF_HOME=/app/.cache
|
| 30 |
-
ENV TRANSFORMERS_CACHE=/app/.cache
|
| 31 |
-
|
| 32 |
-
# Create cache dir with correct ownership
|
| 33 |
-
RUN mkdir -p /app/.cache && chown -R appuser:appuser /app/.cache
|
| 34 |
-
|
| 35 |
-
# Pre-download the embedding model during build (as appuser to set correct ownership)
|
| 36 |
-
USER appuser
|
| 37 |
-
RUN uv run python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('all-MiniLM-L6-v2')"
|
| 38 |
-
|
| 39 |
-
# Expose port
|
| 40 |
-
EXPOSE 7860
|
| 41 |
-
|
| 42 |
-
# Health check
|
| 43 |
-
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
|
| 44 |
-
CMD curl -f http://localhost:7860/ || exit 1
|
| 45 |
-
|
| 46 |
-
# Set environment variables
|
| 47 |
-
ENV GRADIO_SERVER_NAME=0.0.0.0
|
| 48 |
-
ENV GRADIO_SERVER_PORT=7860
|
| 49 |
-
ENV PYTHONPATH=/app
|
| 50 |
-
|
| 51 |
-
# Run the app
|
| 52 |
-
CMD ["uv", "run", "python", "-m", "src.app"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Makefile
DELETED
|
@@ -1,42 +0,0 @@
|
|
| 1 |
-
.PHONY: install test lint format typecheck check clean all cov cov-html
|
| 2 |
-
|
| 3 |
-
# Default target
|
| 4 |
-
all: check
|
| 5 |
-
|
| 6 |
-
install:
|
| 7 |
-
uv sync --all-extras
|
| 8 |
-
uv run pre-commit install
|
| 9 |
-
|
| 10 |
-
test:
|
| 11 |
-
uv run pytest tests/unit/ -v -m "not openai" -p no:logfire
|
| 12 |
-
|
| 13 |
-
test-hf:
|
| 14 |
-
uv run pytest tests/ -v -m "huggingface" -p no:logfire
|
| 15 |
-
|
| 16 |
-
test-all:
|
| 17 |
-
uv run pytest tests/ -v -p no:logfire
|
| 18 |
-
|
| 19 |
-
# Coverage aliases
|
| 20 |
-
cov: test-cov
|
| 21 |
-
test-cov:
|
| 22 |
-
uv run pytest --cov=src --cov-report=term-missing -m "not openai" -p no:logfire
|
| 23 |
-
|
| 24 |
-
cov-html:
|
| 25 |
-
uv run pytest --cov=src --cov-report=html -p no:logfire
|
| 26 |
-
@echo "Coverage report: open htmlcov/index.html"
|
| 27 |
-
|
| 28 |
-
lint:
|
| 29 |
-
uv run ruff check src tests
|
| 30 |
-
|
| 31 |
-
format:
|
| 32 |
-
uv run ruff format src tests
|
| 33 |
-
|
| 34 |
-
typecheck:
|
| 35 |
-
uv run mypy src
|
| 36 |
-
|
| 37 |
-
check: lint typecheck test-cov
|
| 38 |
-
@echo "All checks passed!"
|
| 39 |
-
|
| 40 |
-
clean:
|
| 41 |
-
rm -rf .pytest_cache .mypy_cache .ruff_cache __pycache__ .coverage htmlcov
|
| 42 |
-
find . -type d -name "__pycache__" -exec rm -rf {} + 2>/dev/null || true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -1,120 +1,15 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
python_version: "3.11"
|
| 9 |
app_file: src/app.py
|
| 10 |
-
|
| 11 |
-
hf_oauth_expiration_minutes: 480
|
| 12 |
-
hf_oauth_scopes:
|
| 13 |
-
- inference-api
|
| 14 |
-
pinned: true
|
| 15 |
license: mit
|
| 16 |
-
|
| 17 |
-
- mcp-in-action-track-enterprise
|
| 18 |
-
- mcp-hackathon
|
| 19 |
-
- drug-repurposing
|
| 20 |
-
- biomedical-ai
|
| 21 |
-
- pydantic-ai
|
| 22 |
-
- llamaindex
|
| 23 |
-
- modal
|
| 24 |
---
|
| 25 |
|
| 26 |
-
|
| 27 |
-
> **You are reading the Gradio Demo README!**
|
| 28 |
-
>
|
| 29 |
-
> - 📚 **Documentation**: See our [technical documentation](deepcritical.github.io/GradioDemo/) for detailed information
|
| 30 |
-
> - 📖 **Complete README**: Check out the [full README](.github/README.md) for setup, configuration, and contribution guidelines
|
| 31 |
-
> - 🏆 **Hackathon Submission**: Keep reading below for more information about our MCP Hackathon submission
|
| 32 |
|
| 33 |
-
<div align="center">
|
| 34 |
-
|
| 35 |
-
[](https://github.com/DeepCritical/GradioDemo)
|
| 36 |
-
[](deepcritical.github.io/GradioDemo/)
|
| 37 |
-
[](https://huggingface.co/spaces/DataQuests/DeepCritical)
|
| 38 |
-
[](https://codecov.io/gh/DeepCritical/GradioDemo)
|
| 39 |
-
[](https://discord.gg/qdfnvSPcqP)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
</div>
|
| 43 |
-
|
| 44 |
-
# DeepCritical
|
| 45 |
-
|
| 46 |
-
## About
|
| 47 |
-
|
| 48 |
-
The [Deep Critical Gradio Hackathon Team](### Team) met online in the Alzheimer's Critical Literature Review Group in the Hugging Science initiative. We're building the agent framework we want to use for ai assisted research to [turn the vast amounts of clinical data into cures](https://github.com/DeepCritical/GradioDemo).
|
| 49 |
-
|
| 50 |
-
For this hackathon we're proposing a simple yet powerful Deep Research Agent that iteratively looks for the answer until it finds it using general purpose websearch and special purpose retrievers for technical retrievers.
|
| 51 |
-
|
| 52 |
-
## Deep Critical In the Medial
|
| 53 |
-
|
| 54 |
-
- Social Medial Posts about Deep Critical :
|
| 55 |
-
-
|
| 56 |
-
-
|
| 57 |
-
-
|
| 58 |
-
-
|
| 59 |
-
-
|
| 60 |
-
-
|
| 61 |
-
-
|
| 62 |
-
|
| 63 |
-
## Important information
|
| 64 |
-
|
| 65 |
-
- **[readme](.github\README.md)**: configure, deploy , contribute and learn more here.
|
| 66 |
-
- **[docs](deepcritical.github.io/GradioDemo/)**: want to know how all this works ? read our detailed technical documentation here.
|
| 67 |
-
- **[demo](https://huggingface/spaces/DataQuests/DeepCritical)**: Try our demo on huggingface
|
| 68 |
-
- **[team](### Team)**: Join us , or follow us !
|
| 69 |
-
- **[video]**: See our demo video
|
| 70 |
-
|
| 71 |
-
## Future Developments
|
| 72 |
-
|
| 73 |
-
- [] Apply Deep Research Systems To Generate Short Form Video (up to 5 minutes)
|
| 74 |
-
- [] Visualize Pydantic Graphs as Loading Screens in the UI
|
| 75 |
-
- [] Improve Data Science with more Complex Graph Agents
|
| 76 |
-
- [] Create Deep Critical Drug Reporposing / Discovery Demo
|
| 77 |
-
- [] Create Deep Critical Literal Review
|
| 78 |
-
- [] Create Deep Critical Hypothesis Generator
|
| 79 |
-
- [] Create PyPi Package
|
| 80 |
-
|
| 81 |
-
## Completed
|
| 82 |
-
|
| 83 |
-
- [x] **Multi-Source Search**: PubMed, ClinicalTrials.gov, bioRxiv/medRxiv
|
| 84 |
-
- [x] **MCP Integration**: Use our tools from Claude Desktop or any MCP client
|
| 85 |
-
- [x] **HuggingFace OAuth**: Sign in with HuggingFace
|
| 86 |
-
- [x] **Modal Sandbox**: Secure execution of AI-generated statistical code
|
| 87 |
-
- [x] **LlamaIndex RAG**: Semantic search and evidence synthesis
|
| 88 |
-
- [x] **HuggingfaceInference**:
|
| 89 |
-
- [x] **HuggingfaceMCP Custom Config To Use Community Tools**:
|
| 90 |
-
- [x] **Strongly Typed Composable Graphs**:
|
| 91 |
-
- [x] **Specialized Research Teams of Agents**:
|
| 92 |
-
|
| 93 |
-
### Team
|
| 94 |
-
|
| 95 |
-
- ZJ
|
| 96 |
-
- MarioAderman
|
| 97 |
-
- Josephrp
|
| 98 |
-
|
| 99 |
-
## Acknowledgements
|
| 100 |
-
|
| 101 |
-
- McSwaggins
|
| 102 |
-
- Magentic
|
| 103 |
-
- Huggingface
|
| 104 |
-
- Gradio
|
| 105 |
-
- DeepCritical
|
| 106 |
-
- Sponsors
|
| 107 |
-
- Microsoft
|
| 108 |
-
- Pydantic
|
| 109 |
-
- Llama-index
|
| 110 |
-
- Anthhropic/MCP
|
| 111 |
-
- List of Tools Makers
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
## Links
|
| 115 |
-
|
| 116 |
-
[](https://github.com/DeepCritical/GradioDemo)
|
| 117 |
-
[](deepcritical.github.io/GradioDemo/)
|
| 118 |
-
[](https://huggingface.co/spaces/DataQuests/DeepCritical)
|
| 119 |
-
[](https://codecov.io/gh/DeepCritical/GradioDemo)
|
| 120 |
-
[](https://discord.gg/qdfnvSPcqP)
|
|
|
|
| 1 |
---
|
| 2 |
+
title: DeepCritical
|
| 3 |
+
emoji: 📈
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 6.0.0
|
|
|
|
| 8 |
app_file: src/app.py
|
| 9 |
+
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: mit
|
| 11 |
+
short_description: Deep Search for Critical Research [BigData] -> [Actionable]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
+
### DeepCritical
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/.cursorrules
DELETED
|
@@ -1,241 +0,0 @@
|
|
| 1 |
-
# DeepCritical Project - Cursor Rules
|
| 2 |
-
|
| 3 |
-
## Project-Wide Rules
|
| 4 |
-
|
| 5 |
-
**Architecture**: Multi-agent research system using Pydantic AI for agent orchestration, supporting iterative and deep research patterns. Uses middleware for state management, budget tracking, and workflow coordination.
|
| 6 |
-
|
| 7 |
-
**Type Safety**: ALWAYS use complete type hints. All functions must have parameter and return type annotations. Use `mypy --strict` compliance. Use `TYPE_CHECKING` imports for circular dependencies: `from typing import TYPE_CHECKING; if TYPE_CHECKING: from src.services.embeddings import EmbeddingService`
|
| 8 |
-
|
| 9 |
-
**Async Patterns**: ALL I/O operations must be async (`async def`, `await`). Use `asyncio.gather()` for parallel operations. CPU-bound work must use `run_in_executor()`: `loop = asyncio.get_running_loop(); result = await loop.run_in_executor(None, cpu_bound_function, args)`. Never block the event loop.
|
| 10 |
-
|
| 11 |
-
**Error Handling**: Use custom exceptions from `src/utils/exceptions.py`: `DeepCriticalError`, `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions: `raise SearchError(...) from e`. Log with structlog: `logger.error("Operation failed", error=str(e), context=value)`.
|
| 12 |
-
|
| 13 |
-
**Logging**: Use `structlog` for ALL logging (NOT `print` or `logging`). Import: `import structlog; logger = structlog.get_logger()`. Log with structured data: `logger.info("event", key=value)`. Use appropriate levels: DEBUG, INFO, WARNING, ERROR.
|
| 14 |
-
|
| 15 |
-
**Pydantic Models**: All data exchange uses Pydantic models from `src/utils/models.py`. Models are frozen (`model_config = {"frozen": True}`) for immutability. Use `Field()` with descriptions. Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints.
|
| 16 |
-
|
| 17 |
-
**Code Style**: Ruff with 100-char line length. Ignore rules: `PLR0913` (too many arguments), `PLR0912` (too many branches), `PLR0911` (too many returns), `PLR2004` (magic values), `PLW0603` (global statement), `PLC0415` (lazy imports).
|
| 18 |
-
|
| 19 |
-
**Docstrings**: Google-style docstrings for all public functions. Include Args, Returns, Raises sections. Use type hints in docstrings only if needed for clarity.
|
| 20 |
-
|
| 21 |
-
**Testing**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`). Use `respx` for httpx mocking, `pytest-mock` for general mocking.
|
| 22 |
-
|
| 23 |
-
**State Management**: Use `ContextVar` in middleware for thread-safe isolation. Never use global mutable state (except singletons via `@lru_cache`). Use `WorkflowState` from `src/middleware/state_machine.py` for workflow state.
|
| 24 |
-
|
| 25 |
-
**Citation Validation**: ALWAYS validate references before returning reports. Use `validate_references()` from `src/utils/citation_validator.py`. Remove hallucinated citations. Log warnings for removed citations.
|
| 26 |
-
|
| 27 |
-
---
|
| 28 |
-
|
| 29 |
-
## src/agents/ - Agent Implementation Rules
|
| 30 |
-
|
| 31 |
-
**Pattern**: All agents use Pydantic AI `Agent` class. Agents have structured output types (Pydantic models) or return strings. Use factory functions in `src/agent_factory/agents.py` for creation.
|
| 32 |
-
|
| 33 |
-
**Agent Structure**:
|
| 34 |
-
- System prompt as module-level constant (with date injection: `datetime.now().strftime("%Y-%m-%d")`)
|
| 35 |
-
- Agent class with `__init__(model: Any | None = None)`
|
| 36 |
-
- Main method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 37 |
-
- Factory function: `def create_agent_name(model: Any | None = None) -> AgentName`
|
| 38 |
-
|
| 39 |
-
**Model Initialization**: Use `get_model()` from `src/agent_factory/judges.py` if no model provided. Support OpenAI/Anthropic/HF Inference via settings.
|
| 40 |
-
|
| 41 |
-
**Error Handling**: Return fallback values (e.g., `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`) on failure. Log errors with context. Use retry logic (3 retries) in Pydantic AI Agent initialization.
|
| 42 |
-
|
| 43 |
-
**Input Validation**: Validate query/inputs are not empty. Truncate very long inputs with warnings. Handle None values gracefully.
|
| 44 |
-
|
| 45 |
-
**Output Types**: Use structured output types from `src/utils/models.py` (e.g., `KnowledgeGapOutput`, `AgentSelectionPlan`, `ReportDraft`). For text output (writer agents), return `str` directly.
|
| 46 |
-
|
| 47 |
-
**Agent-Specific Rules**:
|
| 48 |
-
- `knowledge_gap.py`: Outputs `KnowledgeGapOutput`. Evaluates research completeness.
|
| 49 |
-
- `tool_selector.py`: Outputs `AgentSelectionPlan`. Selects tools (RAG/web/database).
|
| 50 |
-
- `writer.py`: Returns markdown string. Includes citations in numbered format.
|
| 51 |
-
- `long_writer.py`: Uses `ReportDraft` input/output. Handles section-by-section writing.
|
| 52 |
-
- `proofreader.py`: Takes `ReportDraft`, returns polished markdown.
|
| 53 |
-
- `thinking.py`: Returns observation string from conversation history.
|
| 54 |
-
- `input_parser.py`: Outputs `ParsedQuery` with research mode detection.
|
| 55 |
-
|
| 56 |
-
---
|
| 57 |
-
|
| 58 |
-
## src/tools/ - Search Tool Rules
|
| 59 |
-
|
| 60 |
-
**Protocol**: All tools implement `SearchTool` protocol from `src/tools/base.py`: `name` property and `async def search(query, max_results) -> list[Evidence]`.
|
| 61 |
-
|
| 62 |
-
**Rate Limiting**: Use `@retry` decorator from tenacity: `@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))`. Implement `_rate_limit()` method for APIs with limits. Use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 63 |
-
|
| 64 |
-
**Error Handling**: Raise `SearchError` or `RateLimitError` on failures. Handle HTTP errors (429, 500, timeout). Return empty list on non-critical errors (log warning).
|
| 65 |
-
|
| 66 |
-
**Query Preprocessing**: Use `preprocess_query()` from `src/tools/query_utils.py` to remove noise and expand synonyms.
|
| 67 |
-
|
| 68 |
-
**Evidence Conversion**: Convert API responses to `Evidence` objects with `Citation`. Extract metadata (title, url, date, authors). Set relevance scores (0.0-1.0). Handle missing fields gracefully.
|
| 69 |
-
|
| 70 |
-
**Tool-Specific Rules**:
|
| 71 |
-
- `pubmed.py`: Use NCBI E-utilities (ESearch → EFetch). Rate limit: 0.34s between requests. Parse XML with `xmltodict`. Handle single vs. multiple articles.
|
| 72 |
-
- `clinicaltrials.py`: Use `requests` library (NOT httpx - WAF blocks httpx). Run in thread pool: `await asyncio.to_thread(requests.get, ...)`. Filter: Only interventional studies, active/completed.
|
| 73 |
-
- `europepmc.py`: Handle preprint markers: `[PREPRINT - Not peer-reviewed]`. Build URLs from DOI or PMID.
|
| 74 |
-
- `rag_tool.py`: Wraps `LlamaIndexRAGService`. Returns Evidence from RAG results. Handles ingestion.
|
| 75 |
-
- `search_handler.py`: Orchestrates parallel searches across multiple tools. Uses `asyncio.gather()` with `return_exceptions=True`. Aggregates results into `SearchResult`.
|
| 76 |
-
|
| 77 |
-
---
|
| 78 |
-
|
| 79 |
-
## src/middleware/ - Middleware Rules
|
| 80 |
-
|
| 81 |
-
**State Management**: Use `ContextVar` for thread-safe isolation. `WorkflowState` uses `ContextVar[WorkflowState | None]`. Initialize with `init_workflow_state(embedding_service)`. Access with `get_workflow_state()` (auto-initializes if missing).
|
| 82 |
-
|
| 83 |
-
**WorkflowState**: Tracks `evidence: list[Evidence]`, `conversation: Conversation`, `embedding_service: Any`. Methods: `add_evidence()` (deduplicates by URL), `async search_related()` (semantic search).
|
| 84 |
-
|
| 85 |
-
**WorkflowManager**: Manages parallel research loops. Methods: `add_loop()`, `run_loops_parallel()`, `update_loop_status()`, `sync_loop_evidence_to_state()`. Uses `asyncio.gather()` for parallel execution. Handles errors per loop (don't fail all if one fails).
|
| 86 |
-
|
| 87 |
-
**BudgetTracker**: Tracks tokens, time, iterations per loop and globally. Methods: `create_budget()`, `add_tokens()`, `start_timer()`, `update_timer()`, `increment_iteration()`, `check_budget()`, `can_continue()`. Token estimation: `estimate_tokens(text)` (~4 chars per token), `estimate_llm_call_tokens(prompt, response)`.
|
| 88 |
-
|
| 89 |
-
**Models**: All middleware models in `src/utils/models.py`. `IterationData`, `Conversation`, `ResearchLoop`, `BudgetStatus` are used by middleware.
|
| 90 |
-
|
| 91 |
-
---
|
| 92 |
-
|
| 93 |
-
## src/orchestrator/ - Orchestration Rules
|
| 94 |
-
|
| 95 |
-
**Research Flows**: Two patterns: `IterativeResearchFlow` (single loop) and `DeepResearchFlow` (plan → parallel loops → synthesis). Both support agent chains (`use_graph=False`) and graph execution (`use_graph=True`).
|
| 96 |
-
|
| 97 |
-
**IterativeResearchFlow**: Pattern: Generate observations → Evaluate gaps → Select tools → Execute → Judge → Continue/Complete. Uses `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`, `WriterAgent`, `JudgeHandler`. Tracks iterations, time, budget.
|
| 98 |
-
|
| 99 |
-
**DeepResearchFlow**: Pattern: Planner → Parallel iterative loops per section → Synthesizer. Uses `PlannerAgent`, `IterativeResearchFlow` (per section), `LongWriterAgent` or `ProofreaderAgent`. Uses `WorkflowManager` for parallel execution.
|
| 100 |
-
|
| 101 |
-
**Graph Orchestrator**: Uses Pydantic AI Graphs (when available) or agent chains (fallback). Routes based on research mode (iterative/deep/auto). Streams `AgentEvent` objects for UI.
|
| 102 |
-
|
| 103 |
-
**State Initialization**: Always call `init_workflow_state()` before running flows. Initialize `BudgetTracker` per loop. Use `WorkflowManager` for parallel coordination.
|
| 104 |
-
|
| 105 |
-
**Event Streaming**: Yield `AgentEvent` objects during execution. Event types: "started", "search_complete", "judge_complete", "hypothesizing", "synthesizing", "complete", "error". Include iteration numbers and data payloads.
|
| 106 |
-
|
| 107 |
-
---
|
| 108 |
-
|
| 109 |
-
## src/services/ - Service Rules
|
| 110 |
-
|
| 111 |
-
**EmbeddingService**: Local sentence-transformers (NO API key required). All operations async-safe via `run_in_executor()`. ChromaDB for vector storage. Deduplication threshold: 0.85 (85% similarity = duplicate).
|
| 112 |
-
|
| 113 |
-
**LlamaIndexRAGService**: Uses OpenAI embeddings (requires `OPENAI_API_KEY`). Methods: `ingest_evidence()`, `retrieve()`, `query()`. Returns documents with metadata (source, title, url, date, authors). Lazy initialization with graceful fallback.
|
| 114 |
-
|
| 115 |
-
**StatisticalAnalyzer**: Generates Python code via LLM. Executes in Modal sandbox (secure, isolated). Library versions pinned in `SANDBOX_LIBRARIES` dict. Returns `AnalysisResult` with verdict (SUPPORTED/REFUTED/INCONCLUSIVE).
|
| 116 |
-
|
| 117 |
-
**Singleton Pattern**: Use `@lru_cache(maxsize=1)` for singletons: `@lru_cache(maxsize=1); def get_service() -> Service: return Service()`. Lazy initialization to avoid requiring dependencies at import time.
|
| 118 |
-
|
| 119 |
-
---
|
| 120 |
-
|
| 121 |
-
## src/utils/ - Utility Rules
|
| 122 |
-
|
| 123 |
-
**Models**: All Pydantic models in `src/utils/models.py`. Use frozen models (`model_config = {"frozen": True}`) except where mutation needed. Use `Field()` with descriptions. Validate with constraints.
|
| 124 |
-
|
| 125 |
-
**Config**: Settings via Pydantic Settings (`src/utils/config.py`). Load from `.env` automatically. Use `settings` singleton: `from src.utils.config import settings`. Validate API keys with properties: `has_openai_key`, `has_anthropic_key`.
|
| 126 |
-
|
| 127 |
-
**Exceptions**: Custom exception hierarchy in `src/utils/exceptions.py`. Base: `DeepCriticalError`. Specific: `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions.
|
| 128 |
-
|
| 129 |
-
**LLM Factory**: Centralized LLM model creation in `src/utils/llm_factory.py`. Supports OpenAI, Anthropic, HF Inference. Use `get_model()` or factory functions. Check requirements before initialization.
|
| 130 |
-
|
| 131 |
-
**Citation Validator**: Use `validate_references()` from `src/utils/citation_validator.py`. Removes hallucinated citations (URLs not in evidence). Logs warnings. Returns validated report string.
|
| 132 |
-
|
| 133 |
-
---
|
| 134 |
-
|
| 135 |
-
## src/orchestrator_factory.py Rules
|
| 136 |
-
|
| 137 |
-
**Purpose**: Factory for creating orchestrators. Supports "simple" (legacy) and "advanced" (magentic) modes. Auto-detects mode based on API key availability.
|
| 138 |
-
|
| 139 |
-
**Pattern**: Lazy import for optional dependencies (`_get_magentic_orchestrator_class()`). Handles `ImportError` gracefully with clear error messages.
|
| 140 |
-
|
| 141 |
-
**Mode Detection**: `_determine_mode()` checks explicit mode or auto-detects: "advanced" if `settings.has_openai_key`, else "simple". Maps "magentic" → "advanced".
|
| 142 |
-
|
| 143 |
-
**Function Signature**: `create_orchestrator(search_handler, judge_handler, config, mode) -> Any`. Simple mode requires handlers. Advanced mode uses MagenticOrchestrator.
|
| 144 |
-
|
| 145 |
-
**Error Handling**: Raise `ValueError` with clear messages if requirements not met. Log mode selection with structlog.
|
| 146 |
-
|
| 147 |
-
---
|
| 148 |
-
|
| 149 |
-
## src/orchestrator_hierarchical.py Rules
|
| 150 |
-
|
| 151 |
-
**Purpose**: Hierarchical orchestrator using middleware and sub-teams. Adapts Magentic ChatAgent to SubIterationTeam protocol.
|
| 152 |
-
|
| 153 |
-
**Pattern**: Uses `SubIterationMiddleware` with `ResearchTeam` and `LLMSubIterationJudge`. Event-driven via callback queue.
|
| 154 |
-
|
| 155 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated, but kept for compatibility).
|
| 156 |
-
|
| 157 |
-
**Event Streaming**: Uses `asyncio.Queue` for event coordination. Yields `AgentEvent` objects. Handles event callback pattern with `asyncio.wait()`.
|
| 158 |
-
|
| 159 |
-
**Error Handling**: Log errors with context. Yield error events. Process remaining events after task completion.
|
| 160 |
-
|
| 161 |
-
---
|
| 162 |
-
|
| 163 |
-
## src/orchestrator_magentic.py Rules
|
| 164 |
-
|
| 165 |
-
**Purpose**: Magentic-based orchestrator using ChatAgent pattern. Each agent has internal LLM. Manager orchestrates agents.
|
| 166 |
-
|
| 167 |
-
**Pattern**: Uses `MagenticBuilder` with participants (searcher, hypothesizer, judge, reporter). Manager uses `OpenAIChatClient`. Workflow built in `_build_workflow()`.
|
| 168 |
-
|
| 169 |
-
**Event Processing**: `_process_event()` converts Magentic events to `AgentEvent`. Handles: `MagenticOrchestratorMessageEvent`, `MagenticAgentMessageEvent`, `MagenticFinalResultEvent`, `MagenticAgentDeltaEvent`, `WorkflowOutputEvent`.
|
| 170 |
-
|
| 171 |
-
**Text Extraction**: `_extract_text()` defensively extracts text from messages. Priority: `.content` → `.text` → `str(message)`. Handles buggy message objects.
|
| 172 |
-
|
| 173 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated).
|
| 174 |
-
|
| 175 |
-
**Requirements**: Must call `check_magentic_requirements()` in `__init__`. Requires `agent-framework-core` and OpenAI API key.
|
| 176 |
-
|
| 177 |
-
**Event Types**: Maps agent names to event types: "search" → "search_complete", "judge" → "judge_complete", "hypothes" → "hypothesizing", "report" → "synthesizing".
|
| 178 |
-
|
| 179 |
-
---
|
| 180 |
-
|
| 181 |
-
## src/agent_factory/ - Factory Rules
|
| 182 |
-
|
| 183 |
-
**Pattern**: Factory functions for creating agents and handlers. Lazy initialization for optional dependencies. Support OpenAI/Anthropic/HF Inference.
|
| 184 |
-
|
| 185 |
-
**Judges**: `create_judge_handler()` creates `JudgeHandler` with structured output (`JudgeAssessment`). Supports `MockJudgeHandler`, `HFInferenceJudgeHandler` as fallbacks.
|
| 186 |
-
|
| 187 |
-
**Agents**: Factory functions in `agents.py` for all Pydantic AI agents. Pattern: `create_agent_name(model: Any | None = None) -> AgentName`. Use `get_model()` if model not provided.
|
| 188 |
-
|
| 189 |
-
**Graph Builder**: `graph_builder.py` contains utilities for building research graphs. Supports iterative and deep research graph construction.
|
| 190 |
-
|
| 191 |
-
**Error Handling**: Raise `ConfigurationError` if required API keys missing. Log agent creation. Handle import errors gracefully.
|
| 192 |
-
|
| 193 |
-
---
|
| 194 |
-
|
| 195 |
-
## src/prompts/ - Prompt Rules
|
| 196 |
-
|
| 197 |
-
**Pattern**: System prompts stored as module-level constants. Include date injection: `datetime.now().strftime("%Y-%m-%d")`. Format evidence with truncation (1500 chars per item).
|
| 198 |
-
|
| 199 |
-
**Judge Prompts**: In `judge.py`. Handle empty evidence case separately. Always request structured JSON output.
|
| 200 |
-
|
| 201 |
-
**Hypothesis Prompts**: In `hypothesis.py`. Use diverse evidence selection (MMR algorithm). Sentence-aware truncation.
|
| 202 |
-
|
| 203 |
-
**Report Prompts**: In `report.py`. Include full citation details. Use diverse evidence selection (n=20). Emphasize citation validation rules.
|
| 204 |
-
|
| 205 |
-
---
|
| 206 |
-
|
| 207 |
-
## Testing Rules
|
| 208 |
-
|
| 209 |
-
**Structure**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`).
|
| 210 |
-
|
| 211 |
-
**Mocking**: Use `respx` for httpx mocking. Use `pytest-mock` for general mocking. Mock LLM calls in unit tests (use `MockJudgeHandler`).
|
| 212 |
-
|
| 213 |
-
**Fixtures**: Common fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`.
|
| 214 |
-
|
| 215 |
-
**Coverage**: Aim for >80% coverage. Test error handling, edge cases, and integration paths.
|
| 216 |
-
|
| 217 |
-
---
|
| 218 |
-
|
| 219 |
-
## File-Specific Agent Rules
|
| 220 |
-
|
| 221 |
-
**knowledge_gap.py**: Outputs `KnowledgeGapOutput`. System prompt evaluates research completeness. Handles conversation history. Returns fallback on error.
|
| 222 |
-
|
| 223 |
-
**writer.py**: Returns markdown string. System prompt includes citation format examples. Validates inputs. Truncates long findings. Retry logic for transient failures.
|
| 224 |
-
|
| 225 |
-
**long_writer.py**: Uses `ReportDraft` input/output. Writes sections iteratively. Reformats references (deduplicates, renumbers). Reformats section headings.
|
| 226 |
-
|
| 227 |
-
**proofreader.py**: Takes `ReportDraft`, returns polished markdown. Removes duplicates. Adds summary. Preserves references.
|
| 228 |
-
|
| 229 |
-
**tool_selector.py**: Outputs `AgentSelectionPlan`. System prompt lists available agents (WebSearchAgent, SiteCrawlerAgent, RAGAgent). Guidelines for when to use each.
|
| 230 |
-
|
| 231 |
-
**thinking.py**: Returns observation string. Generates observations from conversation history. Uses query and background context.
|
| 232 |
-
|
| 233 |
-
**input_parser.py**: Outputs `ParsedQuery`. Detects research mode (iterative/deep). Extracts entities and research questions. Improves/refines query.
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/AGENTS.txt
DELETED
|
@@ -1,236 +0,0 @@
|
|
| 1 |
-
# DeepCritical Project - Rules
|
| 2 |
-
|
| 3 |
-
## Project-Wide Rules
|
| 4 |
-
|
| 5 |
-
**Architecture**: Multi-agent research system using Pydantic AI for agent orchestration, supporting iterative and deep research patterns. Uses middleware for state management, budget tracking, and workflow coordination.
|
| 6 |
-
|
| 7 |
-
**Type Safety**: ALWAYS use complete type hints. All functions must have parameter and return type annotations. Use `mypy --strict` compliance. Use `TYPE_CHECKING` imports for circular dependencies: `from typing import TYPE_CHECKING; if TYPE_CHECKING: from src.services.embeddings import EmbeddingService`
|
| 8 |
-
|
| 9 |
-
**Async Patterns**: ALL I/O operations must be async (`async def`, `await`). Use `asyncio.gather()` for parallel operations. CPU-bound work must use `run_in_executor()`: `loop = asyncio.get_running_loop(); result = await loop.run_in_executor(None, cpu_bound_function, args)`. Never block the event loop.
|
| 10 |
-
|
| 11 |
-
**Error Handling**: Use custom exceptions from `src/utils/exceptions.py`: `DeepCriticalError`, `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions: `raise SearchError(...) from e`. Log with structlog: `logger.error("Operation failed", error=str(e), context=value)`.
|
| 12 |
-
|
| 13 |
-
**Logging**: Use `structlog` for ALL logging (NOT `print` or `logging`). Import: `import structlog; logger = structlog.get_logger()`. Log with structured data: `logger.info("event", key=value)`. Use appropriate levels: DEBUG, INFO, WARNING, ERROR.
|
| 14 |
-
|
| 15 |
-
**Pydantic Models**: All data exchange uses Pydantic models from `src/utils/models.py`. Models are frozen (`model_config = {"frozen": True}`) for immutability. Use `Field()` with descriptions. Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints.
|
| 16 |
-
|
| 17 |
-
**Code Style**: Ruff with 100-char line length. Ignore rules: `PLR0913` (too many arguments), `PLR0912` (too many branches), `PLR0911` (too many returns), `PLR2004` (magic values), `PLW0603` (global statement), `PLC0415` (lazy imports).
|
| 18 |
-
|
| 19 |
-
**Docstrings**: Google-style docstrings for all public functions. Include Args, Returns, Raises sections. Use type hints in docstrings only if needed for clarity.
|
| 20 |
-
|
| 21 |
-
**Testing**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`). Use `respx` for httpx mocking, `pytest-mock` for general mocking.
|
| 22 |
-
|
| 23 |
-
**State Management**: Use `ContextVar` in middleware for thread-safe isolation. Never use global mutable state (except singletons via `@lru_cache`). Use `WorkflowState` from `src/middleware/state_machine.py` for workflow state.
|
| 24 |
-
|
| 25 |
-
**Citation Validation**: ALWAYS validate references before returning reports. Use `validate_references()` from `src/utils/citation_validator.py`. Remove hallucinated citations. Log warnings for removed citations.
|
| 26 |
-
|
| 27 |
-
---
|
| 28 |
-
|
| 29 |
-
## src/agents/ - Agent Implementation Rules
|
| 30 |
-
|
| 31 |
-
**Pattern**: All agents use Pydantic AI `Agent` class. Agents have structured output types (Pydantic models) or return strings. Use factory functions in `src/agent_factory/agents.py` for creation.
|
| 32 |
-
|
| 33 |
-
**Agent Structure**:
|
| 34 |
-
- System prompt as module-level constant (with date injection: `datetime.now().strftime("%Y-%m-%d")`)
|
| 35 |
-
- Agent class with `__init__(model: Any | None = None)`
|
| 36 |
-
- Main method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 37 |
-
- Factory function: `def create_agent_name(model: Any | None = None) -> AgentName`
|
| 38 |
-
|
| 39 |
-
**Model Initialization**: Use `get_model()` from `src/agent_factory/judges.py` if no model provided. Support OpenAI/Anthropic/HF Inference via settings.
|
| 40 |
-
|
| 41 |
-
**Error Handling**: Return fallback values (e.g., `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`) on failure. Log errors with context. Use retry logic (3 retries) in Pydantic AI Agent initialization.
|
| 42 |
-
|
| 43 |
-
**Input Validation**: Validate query/inputs are not empty. Truncate very long inputs with warnings. Handle None values gracefully.
|
| 44 |
-
|
| 45 |
-
**Output Types**: Use structured output types from `src/utils/models.py` (e.g., `KnowledgeGapOutput`, `AgentSelectionPlan`, `ReportDraft`). For text output (writer agents), return `str` directly.
|
| 46 |
-
|
| 47 |
-
**Agent-Specific Rules**:
|
| 48 |
-
- `knowledge_gap.py`: Outputs `KnowledgeGapOutput`. Evaluates research completeness.
|
| 49 |
-
- `tool_selector.py`: Outputs `AgentSelectionPlan`. Selects tools (RAG/web/database).
|
| 50 |
-
- `writer.py`: Returns markdown string. Includes citations in numbered format.
|
| 51 |
-
- `long_writer.py`: Uses `ReportDraft` input/output. Handles section-by-section writing.
|
| 52 |
-
- `proofreader.py`: Takes `ReportDraft`, returns polished markdown.
|
| 53 |
-
- `thinking.py`: Returns observation string from conversation history.
|
| 54 |
-
- `input_parser.py`: Outputs `ParsedQuery` with research mode detection.
|
| 55 |
-
|
| 56 |
-
---
|
| 57 |
-
|
| 58 |
-
## src/tools/ - Search Tool Rules
|
| 59 |
-
|
| 60 |
-
**Protocol**: All tools implement `SearchTool` protocol from `src/tools/base.py`: `name` property and `async def search(query, max_results) -> list[Evidence]`.
|
| 61 |
-
|
| 62 |
-
**Rate Limiting**: Use `@retry` decorator from tenacity: `@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))`. Implement `_rate_limit()` method for APIs with limits. Use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 63 |
-
|
| 64 |
-
**Error Handling**: Raise `SearchError` or `RateLimitError` on failures. Handle HTTP errors (429, 500, timeout). Return empty list on non-critical errors (log warning).
|
| 65 |
-
|
| 66 |
-
**Query Preprocessing**: Use `preprocess_query()` from `src/tools/query_utils.py` to remove noise and expand synonyms.
|
| 67 |
-
|
| 68 |
-
**Evidence Conversion**: Convert API responses to `Evidence` objects with `Citation`. Extract metadata (title, url, date, authors). Set relevance scores (0.0-1.0). Handle missing fields gracefully.
|
| 69 |
-
|
| 70 |
-
**Tool-Specific Rules**:
|
| 71 |
-
- `pubmed.py`: Use NCBI E-utilities (ESearch → EFetch). Rate limit: 0.34s between requests. Parse XML with `xmltodict`. Handle single vs. multiple articles.
|
| 72 |
-
- `clinicaltrials.py`: Use `requests` library (NOT httpx - WAF blocks httpx). Run in thread pool: `await asyncio.to_thread(requests.get, ...)`. Filter: Only interventional studies, active/completed.
|
| 73 |
-
- `europepmc.py`: Handle preprint markers: `[PREPRINT - Not peer-reviewed]`. Build URLs from DOI or PMID.
|
| 74 |
-
- `rag_tool.py`: Wraps `LlamaIndexRAGService`. Returns Evidence from RAG results. Handles ingestion.
|
| 75 |
-
- `search_handler.py`: Orchestrates parallel searches across multiple tools. Uses `asyncio.gather()` with `return_exceptions=True`. Aggregates results into `SearchResult`.
|
| 76 |
-
|
| 77 |
-
---
|
| 78 |
-
|
| 79 |
-
## src/middleware/ - Middleware Rules
|
| 80 |
-
|
| 81 |
-
**State Management**: Use `ContextVar` for thread-safe isolation. `WorkflowState` uses `ContextVar[WorkflowState | None]`. Initialize with `init_workflow_state(embedding_service)`. Access with `get_workflow_state()` (auto-initializes if missing).
|
| 82 |
-
|
| 83 |
-
**WorkflowState**: Tracks `evidence: list[Evidence]`, `conversation: Conversation`, `embedding_service: Any`. Methods: `add_evidence()` (deduplicates by URL), `async search_related()` (semantic search).
|
| 84 |
-
|
| 85 |
-
**WorkflowManager**: Manages parallel research loops. Methods: `add_loop()`, `run_loops_parallel()`, `update_loop_status()`, `sync_loop_evidence_to_state()`. Uses `asyncio.gather()` for parallel execution. Handles errors per loop (don't fail all if one fails).
|
| 86 |
-
|
| 87 |
-
**BudgetTracker**: Tracks tokens, time, iterations per loop and globally. Methods: `create_budget()`, `add_tokens()`, `start_timer()`, `update_timer()`, `increment_iteration()`, `check_budget()`, `can_continue()`. Token estimation: `estimate_tokens(text)` (~4 chars per token), `estimate_llm_call_tokens(prompt, response)`.
|
| 88 |
-
|
| 89 |
-
**Models**: All middleware models in `src/utils/models.py`. `IterationData`, `Conversation`, `ResearchLoop`, `BudgetStatus` are used by middleware.
|
| 90 |
-
|
| 91 |
-
---
|
| 92 |
-
|
| 93 |
-
## src/orchestrator/ - Orchestration Rules
|
| 94 |
-
|
| 95 |
-
**Research Flows**: Two patterns: `IterativeResearchFlow` (single loop) and `DeepResearchFlow` (plan → parallel loops → synthesis). Both support agent chains (`use_graph=False`) and graph execution (`use_graph=True`).
|
| 96 |
-
|
| 97 |
-
**IterativeResearchFlow**: Pattern: Generate observations → Evaluate gaps → Select tools → Execute → Judge → Continue/Complete. Uses `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`, `WriterAgent`, `JudgeHandler`. Tracks iterations, time, budget.
|
| 98 |
-
|
| 99 |
-
**DeepResearchFlow**: Pattern: Planner → Parallel iterative loops per section → Synthesizer. Uses `PlannerAgent`, `IterativeResearchFlow` (per section), `LongWriterAgent` or `ProofreaderAgent`. Uses `WorkflowManager` for parallel execution.
|
| 100 |
-
|
| 101 |
-
**Graph Orchestrator**: Uses Pydantic AI Graphs (when available) or agent chains (fallback). Routes based on research mode (iterative/deep/auto). Streams `AgentEvent` objects for UI.
|
| 102 |
-
|
| 103 |
-
**State Initialization**: Always call `init_workflow_state()` before running flows. Initialize `BudgetTracker` per loop. Use `WorkflowManager` for parallel coordination.
|
| 104 |
-
|
| 105 |
-
**Event Streaming**: Yield `AgentEvent` objects during execution. Event types: "started", "search_complete", "judge_complete", "hypothesizing", "synthesizing", "complete", "error". Include iteration numbers and data payloads.
|
| 106 |
-
|
| 107 |
-
---
|
| 108 |
-
|
| 109 |
-
## src/services/ - Service Rules
|
| 110 |
-
|
| 111 |
-
**EmbeddingService**: Local sentence-transformers (NO API key required). All operations async-safe via `run_in_executor()`. ChromaDB for vector storage. Deduplication threshold: 0.85 (85% similarity = duplicate).
|
| 112 |
-
|
| 113 |
-
**LlamaIndexRAGService**: Uses OpenAI embeddings (requires `OPENAI_API_KEY`). Methods: `ingest_evidence()`, `retrieve()`, `query()`. Returns documents with metadata (source, title, url, date, authors). Lazy initialization with graceful fallback.
|
| 114 |
-
|
| 115 |
-
**StatisticalAnalyzer**: Generates Python code via LLM. Executes in Modal sandbox (secure, isolated). Library versions pinned in `SANDBOX_LIBRARIES` dict. Returns `AnalysisResult` with verdict (SUPPORTED/REFUTED/INCONCLUSIVE).
|
| 116 |
-
|
| 117 |
-
**Singleton Pattern**: Use `@lru_cache(maxsize=1)` for singletons: `@lru_cache(maxsize=1); def get_service() -> Service: return Service()`. Lazy initialization to avoid requiring dependencies at import time.
|
| 118 |
-
|
| 119 |
-
---
|
| 120 |
-
|
| 121 |
-
## src/utils/ - Utility Rules
|
| 122 |
-
|
| 123 |
-
**Models**: All Pydantic models in `src/utils/models.py`. Use frozen models (`model_config = {"frozen": True}`) except where mutation needed. Use `Field()` with descriptions. Validate with constraints.
|
| 124 |
-
|
| 125 |
-
**Config**: Settings via Pydantic Settings (`src/utils/config.py`). Load from `.env` automatically. Use `settings` singleton: `from src.utils.config import settings`. Validate API keys with properties: `has_openai_key`, `has_anthropic_key`.
|
| 126 |
-
|
| 127 |
-
**Exceptions**: Custom exception hierarchy in `src/utils/exceptions.py`. Base: `DeepCriticalError`. Specific: `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions.
|
| 128 |
-
|
| 129 |
-
**LLM Factory**: Centralized LLM model creation in `src/utils/llm_factory.py`. Supports OpenAI, Anthropic, HF Inference. Use `get_model()` or factory functions. Check requirements before initialization.
|
| 130 |
-
|
| 131 |
-
**Citation Validator**: Use `validate_references()` from `src/utils/citation_validator.py`. Removes hallucinated citations (URLs not in evidence). Logs warnings. Returns validated report string.
|
| 132 |
-
|
| 133 |
-
---
|
| 134 |
-
|
| 135 |
-
## src/orchestrator_factory.py Rules
|
| 136 |
-
|
| 137 |
-
**Purpose**: Factory for creating orchestrators. Supports "simple" (legacy) and "advanced" (magentic) modes. Auto-detects mode based on API key availability.
|
| 138 |
-
|
| 139 |
-
**Pattern**: Lazy import for optional dependencies (`_get_magentic_orchestrator_class()`). Handles `ImportError` gracefully with clear error messages.
|
| 140 |
-
|
| 141 |
-
**Mode Detection**: `_determine_mode()` checks explicit mode or auto-detects: "advanced" if `settings.has_openai_key`, else "simple". Maps "magentic" → "advanced".
|
| 142 |
-
|
| 143 |
-
**Function Signature**: `create_orchestrator(search_handler, judge_handler, config, mode) -> Any`. Simple mode requires handlers. Advanced mode uses MagenticOrchestrator.
|
| 144 |
-
|
| 145 |
-
**Error Handling**: Raise `ValueError` with clear messages if requirements not met. Log mode selection with structlog.
|
| 146 |
-
|
| 147 |
-
---
|
| 148 |
-
|
| 149 |
-
## src/orchestrator_hierarchical.py Rules
|
| 150 |
-
|
| 151 |
-
**Purpose**: Hierarchical orchestrator using middleware and sub-teams. Adapts Magentic ChatAgent to SubIterationTeam protocol.
|
| 152 |
-
|
| 153 |
-
**Pattern**: Uses `SubIterationMiddleware` with `ResearchTeam` and `LLMSubIterationJudge`. Event-driven via callback queue.
|
| 154 |
-
|
| 155 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated, but kept for compatibility).
|
| 156 |
-
|
| 157 |
-
**Event Streaming**: Uses `asyncio.Queue` for event coordination. Yields `AgentEvent` objects. Handles event callback pattern with `asyncio.wait()`.
|
| 158 |
-
|
| 159 |
-
**Error Handling**: Log errors with context. Yield error events. Process remaining events after task completion.
|
| 160 |
-
|
| 161 |
-
---
|
| 162 |
-
|
| 163 |
-
## src/orchestrator_magentic.py Rules
|
| 164 |
-
|
| 165 |
-
**Purpose**: Magentic-based orchestrator using ChatAgent pattern. Each agent has internal LLM. Manager orchestrates agents.
|
| 166 |
-
|
| 167 |
-
**Pattern**: Uses `MagenticBuilder` with participants (searcher, hypothesizer, judge, reporter). Manager uses `OpenAIChatClient`. Workflow built in `_build_workflow()`.
|
| 168 |
-
|
| 169 |
-
**Event Processing**: `_process_event()` converts Magentic events to `AgentEvent`. Handles: `MagenticOrchestratorMessageEvent`, `MagenticAgentMessageEvent`, `MagenticFinalResultEvent`, `MagenticAgentDeltaEvent`, `WorkflowOutputEvent`.
|
| 170 |
-
|
| 171 |
-
**Text Extraction**: `_extract_text()` defensively extracts text from messages. Priority: `.content` → `.text` → `str(message)`. Handles buggy message objects.
|
| 172 |
-
|
| 173 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated).
|
| 174 |
-
|
| 175 |
-
**Requirements**: Must call `check_magentic_requirements()` in `__init__`. Requires `agent-framework-core` and OpenAI API key.
|
| 176 |
-
|
| 177 |
-
**Event Types**: Maps agent names to event types: "search" → "search_complete", "judge" → "judge_complete", "hypothes" → "hypothesizing", "report" → "synthesizing".
|
| 178 |
-
|
| 179 |
-
---
|
| 180 |
-
|
| 181 |
-
## src/agent_factory/ - Factory Rules
|
| 182 |
-
|
| 183 |
-
**Pattern**: Factory functions for creating agents and handlers. Lazy initialization for optional dependencies. Support OpenAI/Anthropic/HF Inference.
|
| 184 |
-
|
| 185 |
-
**Judges**: `create_judge_handler()` creates `JudgeHandler` with structured output (`JudgeAssessment`). Supports `MockJudgeHandler`, `HFInferenceJudgeHandler` as fallbacks.
|
| 186 |
-
|
| 187 |
-
**Agents**: Factory functions in `agents.py` for all Pydantic AI agents. Pattern: `create_agent_name(model: Any | None = None) -> AgentName`. Use `get_model()` if model not provided.
|
| 188 |
-
|
| 189 |
-
**Graph Builder**: `graph_builder.py` contains utilities for building research graphs. Supports iterative and deep research graph construction.
|
| 190 |
-
|
| 191 |
-
**Error Handling**: Raise `ConfigurationError` if required API keys missing. Log agent creation. Handle import errors gracefully.
|
| 192 |
-
|
| 193 |
-
---
|
| 194 |
-
|
| 195 |
-
## src/prompts/ - Prompt Rules
|
| 196 |
-
|
| 197 |
-
**Pattern**: System prompts stored as module-level constants. Include date injection: `datetime.now().strftime("%Y-%m-%d")`. Format evidence with truncation (1500 chars per item).
|
| 198 |
-
|
| 199 |
-
**Judge Prompts**: In `judge.py`. Handle empty evidence case separately. Always request structured JSON output.
|
| 200 |
-
|
| 201 |
-
**Hypothesis Prompts**: In `hypothesis.py`. Use diverse evidence selection (MMR algorithm). Sentence-aware truncation.
|
| 202 |
-
|
| 203 |
-
**Report Prompts**: In `report.py`. Include full citation details. Use diverse evidence selection (n=20). Emphasize citation validation rules.
|
| 204 |
-
|
| 205 |
-
---
|
| 206 |
-
|
| 207 |
-
## Testing Rules
|
| 208 |
-
|
| 209 |
-
**Structure**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`).
|
| 210 |
-
|
| 211 |
-
**Mocking**: Use `respx` for httpx mocking. Use `pytest-mock` for general mocking. Mock LLM calls in unit tests (use `MockJudgeHandler`).
|
| 212 |
-
|
| 213 |
-
**Fixtures**: Common fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`.
|
| 214 |
-
|
| 215 |
-
**Coverage**: Aim for >80% coverage. Test error handling, edge cases, and integration paths.
|
| 216 |
-
|
| 217 |
-
---
|
| 218 |
-
|
| 219 |
-
## File-Specific Agent Rules
|
| 220 |
-
|
| 221 |
-
**knowledge_gap.py**: Outputs `KnowledgeGapOutput`. System prompt evaluates research completeness. Handles conversation history. Returns fallback on error.
|
| 222 |
-
|
| 223 |
-
**writer.py**: Returns markdown string. System prompt includes citation format examples. Validates inputs. Truncates long findings. Retry logic for transient failures.
|
| 224 |
-
|
| 225 |
-
**long_writer.py**: Uses `ReportDraft` input/output. Writes sections iteratively. Reformats references (deduplicates, renumbers). Reformats section headings.
|
| 226 |
-
|
| 227 |
-
**proofreader.py**: Takes `ReportDraft`, returns polished markdown. Removes duplicates. Adds summary. Preserves references.
|
| 228 |
-
|
| 229 |
-
**tool_selector.py**: Outputs `AgentSelectionPlan`. System prompt lists available agents (WebSearchAgent, SiteCrawlerAgent, RAGAgent). Guidelines for when to use each.
|
| 230 |
-
|
| 231 |
-
**thinking.py**: Returns observation string. Generates observations from conversation history. Uses query and background context.
|
| 232 |
-
|
| 233 |
-
**input_parser.py**: Outputs `ParsedQuery`. Detects research mode (iterative/deep). Extracts entities and research questions. Improves/refines query.
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/Makefile
DELETED
|
@@ -1,51 +0,0 @@
|
|
| 1 |
-
.PHONY: install test lint format typecheck check clean all cov cov-html
|
| 2 |
-
|
| 3 |
-
# Default target
|
| 4 |
-
all: check
|
| 5 |
-
|
| 6 |
-
install:
|
| 7 |
-
uv sync --all-extras
|
| 8 |
-
uv run pre-commit install
|
| 9 |
-
|
| 10 |
-
test:
|
| 11 |
-
uv run pytest tests/unit/ -v -m "not openai" -p no:logfire
|
| 12 |
-
|
| 13 |
-
test-hf:
|
| 14 |
-
uv run pytest tests/ -v -m "huggingface" -p no:logfire
|
| 15 |
-
|
| 16 |
-
test-all:
|
| 17 |
-
uv run pytest tests/ -v -p no:logfire
|
| 18 |
-
|
| 19 |
-
# Coverage aliases
|
| 20 |
-
cov: test-cov
|
| 21 |
-
test-cov:
|
| 22 |
-
uv run pytest --cov=src --cov-report=term-missing -m "not openai" -p no:logfire
|
| 23 |
-
|
| 24 |
-
cov-html:
|
| 25 |
-
uv run pytest --cov=src --cov-report=html -p no:logfire
|
| 26 |
-
@echo "Coverage report: open htmlcov/index.html"
|
| 27 |
-
|
| 28 |
-
lint:
|
| 29 |
-
uv run ruff check src tests
|
| 30 |
-
|
| 31 |
-
format:
|
| 32 |
-
uv run ruff format src tests
|
| 33 |
-
|
| 34 |
-
typecheck:
|
| 35 |
-
uv run mypy src
|
| 36 |
-
|
| 37 |
-
check: lint typecheck test-cov
|
| 38 |
-
@echo "All checks passed!"
|
| 39 |
-
|
| 40 |
-
docs-build:
|
| 41 |
-
uv run mkdocs build
|
| 42 |
-
|
| 43 |
-
docs-serve:
|
| 44 |
-
uv run mkdocs serve
|
| 45 |
-
|
| 46 |
-
docs-clean:
|
| 47 |
-
rm -rf site/
|
| 48 |
-
|
| 49 |
-
clean:
|
| 50 |
-
rm -rf .pytest_cache .mypy_cache .ruff_cache __pycache__ .coverage htmlcov
|
| 51 |
-
find . -type d -name "__pycache__" -exec rm -rf {} + 2>/dev/null || true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/docs_plugins.py
DELETED
|
@@ -1,74 +0,0 @@
|
|
| 1 |
-
"""Custom MkDocs extension to handle code anchor format: ```start:end:filepath"""
|
| 2 |
-
|
| 3 |
-
import re
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
|
| 6 |
-
from markdown import Markdown
|
| 7 |
-
from markdown.extensions import Extension
|
| 8 |
-
from markdown.preprocessors import Preprocessor
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
class CodeAnchorPreprocessor(Preprocessor):
|
| 12 |
-
"""Preprocess code blocks with anchor format: ```start:end:filepath"""
|
| 13 |
-
|
| 14 |
-
def __init__(self, md: Markdown, base_path: Path):
|
| 15 |
-
super().__init__(md)
|
| 16 |
-
self.base_path = base_path
|
| 17 |
-
self.pattern = re.compile(r"^```(\d+):(\d+):([^\n]+)\n(.*?)```$", re.MULTILINE | re.DOTALL)
|
| 18 |
-
|
| 19 |
-
def run(self, lines: list[str]) -> list[str]:
|
| 20 |
-
"""Process lines and convert code anchor format to standard code blocks."""
|
| 21 |
-
text = "\n".join(lines)
|
| 22 |
-
new_text = self.pattern.sub(self._replace_code_anchor, text)
|
| 23 |
-
return new_text.split("\n")
|
| 24 |
-
|
| 25 |
-
def _replace_code_anchor(self, match) -> str:
|
| 26 |
-
"""Replace code anchor format with standard code block + link."""
|
| 27 |
-
start_line = int(match.group(1))
|
| 28 |
-
end_line = int(match.group(2))
|
| 29 |
-
file_path = match.group(3).strip()
|
| 30 |
-
existing_code = match.group(4)
|
| 31 |
-
|
| 32 |
-
# Determine language from file extension
|
| 33 |
-
ext = Path(file_path).suffix.lower()
|
| 34 |
-
lang_map = {
|
| 35 |
-
".py": "python",
|
| 36 |
-
".js": "javascript",
|
| 37 |
-
".ts": "typescript",
|
| 38 |
-
".md": "markdown",
|
| 39 |
-
".yaml": "yaml",
|
| 40 |
-
".yml": "yaml",
|
| 41 |
-
".toml": "toml",
|
| 42 |
-
".json": "json",
|
| 43 |
-
".html": "html",
|
| 44 |
-
".css": "css",
|
| 45 |
-
".sh": "bash",
|
| 46 |
-
}
|
| 47 |
-
language = lang_map.get(ext, "python")
|
| 48 |
-
|
| 49 |
-
# Generate GitHub link
|
| 50 |
-
repo_url = "https://github.com/DeepCritical/GradioDemo"
|
| 51 |
-
github_link = f"{repo_url}/blob/main/{file_path}#L{start_line}-L{end_line}"
|
| 52 |
-
|
| 53 |
-
# Return standard code block with source link
|
| 54 |
-
return (
|
| 55 |
-
f'[View source: `{file_path}` (lines {start_line}-{end_line})]({github_link}){{: target="_blank" }}\n\n'
|
| 56 |
-
f"```{language}\n{existing_code}\n```"
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
class CodeAnchorExtension(Extension):
|
| 61 |
-
"""Markdown extension for code anchors."""
|
| 62 |
-
|
| 63 |
-
def __init__(self, base_path: str = ".", **kwargs):
|
| 64 |
-
super().__init__(**kwargs)
|
| 65 |
-
self.base_path = Path(base_path)
|
| 66 |
-
|
| 67 |
-
def extendMarkdown(self, md: Markdown): # noqa: N802
|
| 68 |
-
"""Register the preprocessor."""
|
| 69 |
-
md.preprocessors.register(CodeAnchorPreprocessor(md, self.base_path), "codeanchor", 25)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def makeExtension(**kwargs): # noqa: N802
|
| 73 |
-
"""Create the extension."""
|
| 74 |
-
return CodeAnchorExtension(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/api/agents.md
DELETED
|
@@ -1,270 +0,0 @@
|
|
| 1 |
-
# Agents API Reference
|
| 2 |
-
|
| 3 |
-
This page documents the API for DeepCritical agents.
|
| 4 |
-
|
| 5 |
-
## KnowledgeGapAgent
|
| 6 |
-
|
| 7 |
-
**Module**: `src.agents.knowledge_gap`
|
| 8 |
-
|
| 9 |
-
**Purpose**: Evaluates research state and identifies knowledge gaps.
|
| 10 |
-
|
| 11 |
-
### Methods
|
| 12 |
-
|
| 13 |
-
#### `evaluate`
|
| 14 |
-
|
| 15 |
-
```python
|
| 16 |
-
async def evaluate(
|
| 17 |
-
self,
|
| 18 |
-
query: str,
|
| 19 |
-
background_context: str,
|
| 20 |
-
conversation_history: Conversation,
|
| 21 |
-
iteration: int,
|
| 22 |
-
time_elapsed_minutes: float,
|
| 23 |
-
max_time_minutes: float
|
| 24 |
-
) -> KnowledgeGapOutput
|
| 25 |
-
```
|
| 26 |
-
|
| 27 |
-
Evaluates research completeness and identifies outstanding knowledge gaps.
|
| 28 |
-
|
| 29 |
-
**Parameters**:
|
| 30 |
-
- `query`: Research query string
|
| 31 |
-
- `background_context`: Background context for the query
|
| 32 |
-
- `conversation_history`: Conversation history with previous iterations
|
| 33 |
-
- `iteration`: Current iteration number
|
| 34 |
-
- `time_elapsed_minutes`: Elapsed time in minutes
|
| 35 |
-
- `max_time_minutes`: Maximum time limit in minutes
|
| 36 |
-
|
| 37 |
-
**Returns**: `KnowledgeGapOutput` with:
|
| 38 |
-
- `research_complete`: Boolean indicating if research is complete
|
| 39 |
-
- `outstanding_gaps`: List of remaining knowledge gaps
|
| 40 |
-
|
| 41 |
-
## ToolSelectorAgent
|
| 42 |
-
|
| 43 |
-
**Module**: `src.agents.tool_selector`
|
| 44 |
-
|
| 45 |
-
**Purpose**: Selects appropriate tools for addressing knowledge gaps.
|
| 46 |
-
|
| 47 |
-
### Methods
|
| 48 |
-
|
| 49 |
-
#### `select_tools`
|
| 50 |
-
|
| 51 |
-
```python
|
| 52 |
-
async def select_tools(
|
| 53 |
-
self,
|
| 54 |
-
query: str,
|
| 55 |
-
knowledge_gaps: list[str],
|
| 56 |
-
available_tools: list[str]
|
| 57 |
-
) -> AgentSelectionPlan
|
| 58 |
-
```
|
| 59 |
-
|
| 60 |
-
Selects tools for addressing knowledge gaps.
|
| 61 |
-
|
| 62 |
-
**Parameters**:
|
| 63 |
-
- `query`: Research query string
|
| 64 |
-
- `knowledge_gaps`: List of knowledge gaps to address
|
| 65 |
-
- `available_tools`: List of available tool names
|
| 66 |
-
|
| 67 |
-
**Returns**: `AgentSelectionPlan` with list of `AgentTask` objects.
|
| 68 |
-
|
| 69 |
-
## WriterAgent
|
| 70 |
-
|
| 71 |
-
**Module**: `src.agents.writer`
|
| 72 |
-
|
| 73 |
-
**Purpose**: Generates final reports from research findings.
|
| 74 |
-
|
| 75 |
-
### Methods
|
| 76 |
-
|
| 77 |
-
#### `write_report`
|
| 78 |
-
|
| 79 |
-
```python
|
| 80 |
-
async def write_report(
|
| 81 |
-
self,
|
| 82 |
-
query: str,
|
| 83 |
-
findings: str,
|
| 84 |
-
output_length: str = "medium",
|
| 85 |
-
output_instructions: str | None = None
|
| 86 |
-
) -> str
|
| 87 |
-
```
|
| 88 |
-
|
| 89 |
-
Generates a markdown report from research findings.
|
| 90 |
-
|
| 91 |
-
**Parameters**:
|
| 92 |
-
- `query`: Research query string
|
| 93 |
-
- `findings`: Research findings to include in report
|
| 94 |
-
- `output_length`: Desired output length ("short", "medium", "long")
|
| 95 |
-
- `output_instructions`: Additional instructions for report generation
|
| 96 |
-
|
| 97 |
-
**Returns**: Markdown string with numbered citations.
|
| 98 |
-
|
| 99 |
-
## LongWriterAgent
|
| 100 |
-
|
| 101 |
-
**Module**: `src.agents.long_writer`
|
| 102 |
-
|
| 103 |
-
**Purpose**: Long-form report generation with section-by-section writing.
|
| 104 |
-
|
| 105 |
-
### Methods
|
| 106 |
-
|
| 107 |
-
#### `write_next_section`
|
| 108 |
-
|
| 109 |
-
```python
|
| 110 |
-
async def write_next_section(
|
| 111 |
-
self,
|
| 112 |
-
query: str,
|
| 113 |
-
draft: ReportDraft,
|
| 114 |
-
section_title: str,
|
| 115 |
-
section_content: str
|
| 116 |
-
) -> LongWriterOutput
|
| 117 |
-
```
|
| 118 |
-
|
| 119 |
-
Writes the next section of a long-form report.
|
| 120 |
-
|
| 121 |
-
**Parameters**:
|
| 122 |
-
- `query`: Research query string
|
| 123 |
-
- `draft`: Current report draft
|
| 124 |
-
- `section_title`: Title of the section to write
|
| 125 |
-
- `section_content`: Content/guidance for the section
|
| 126 |
-
|
| 127 |
-
**Returns**: `LongWriterOutput` with updated draft.
|
| 128 |
-
|
| 129 |
-
#### `write_report`
|
| 130 |
-
|
| 131 |
-
```python
|
| 132 |
-
async def write_report(
|
| 133 |
-
self,
|
| 134 |
-
query: str,
|
| 135 |
-
report_title: str,
|
| 136 |
-
report_draft: ReportDraft
|
| 137 |
-
) -> str
|
| 138 |
-
```
|
| 139 |
-
|
| 140 |
-
Generates final report from draft.
|
| 141 |
-
|
| 142 |
-
**Parameters**:
|
| 143 |
-
- `query`: Research query string
|
| 144 |
-
- `report_title`: Title of the report
|
| 145 |
-
- `report_draft`: Complete report draft
|
| 146 |
-
|
| 147 |
-
**Returns**: Final markdown report string.
|
| 148 |
-
|
| 149 |
-
## ProofreaderAgent
|
| 150 |
-
|
| 151 |
-
**Module**: `src.agents.proofreader`
|
| 152 |
-
|
| 153 |
-
**Purpose**: Proofreads and polishes report drafts.
|
| 154 |
-
|
| 155 |
-
### Methods
|
| 156 |
-
|
| 157 |
-
#### `proofread`
|
| 158 |
-
|
| 159 |
-
```python
|
| 160 |
-
async def proofread(
|
| 161 |
-
self,
|
| 162 |
-
query: str,
|
| 163 |
-
report_title: str,
|
| 164 |
-
report_draft: ReportDraft
|
| 165 |
-
) -> str
|
| 166 |
-
```
|
| 167 |
-
|
| 168 |
-
Proofreads and polishes a report draft.
|
| 169 |
-
|
| 170 |
-
**Parameters**:
|
| 171 |
-
- `query`: Research query string
|
| 172 |
-
- `report_title`: Title of the report
|
| 173 |
-
- `report_draft`: Report draft to proofread
|
| 174 |
-
|
| 175 |
-
**Returns**: Polished markdown string.
|
| 176 |
-
|
| 177 |
-
## ThinkingAgent
|
| 178 |
-
|
| 179 |
-
**Module**: `src.agents.thinking`
|
| 180 |
-
|
| 181 |
-
**Purpose**: Generates observations from conversation history.
|
| 182 |
-
|
| 183 |
-
### Methods
|
| 184 |
-
|
| 185 |
-
#### `generate_observations`
|
| 186 |
-
|
| 187 |
-
```python
|
| 188 |
-
async def generate_observations(
|
| 189 |
-
self,
|
| 190 |
-
query: str,
|
| 191 |
-
background_context: str,
|
| 192 |
-
conversation_history: Conversation
|
| 193 |
-
) -> str
|
| 194 |
-
```
|
| 195 |
-
|
| 196 |
-
Generates observations from conversation history.
|
| 197 |
-
|
| 198 |
-
**Parameters**:
|
| 199 |
-
- `query`: Research query string
|
| 200 |
-
- `background_context`: Background context
|
| 201 |
-
- `conversation_history`: Conversation history
|
| 202 |
-
|
| 203 |
-
**Returns**: Observation string.
|
| 204 |
-
|
| 205 |
-
## InputParserAgent
|
| 206 |
-
|
| 207 |
-
**Module**: `src.agents.input_parser`
|
| 208 |
-
|
| 209 |
-
**Purpose**: Parses and improves user queries, detects research mode.
|
| 210 |
-
|
| 211 |
-
### Methods
|
| 212 |
-
|
| 213 |
-
#### `parse_query`
|
| 214 |
-
|
| 215 |
-
```python
|
| 216 |
-
async def parse_query(
|
| 217 |
-
self,
|
| 218 |
-
query: str
|
| 219 |
-
) -> ParsedQuery
|
| 220 |
-
```
|
| 221 |
-
|
| 222 |
-
Parses and improves a user query.
|
| 223 |
-
|
| 224 |
-
**Parameters**:
|
| 225 |
-
- `query`: Original query string
|
| 226 |
-
|
| 227 |
-
**Returns**: `ParsedQuery` with:
|
| 228 |
-
- `original_query`: Original query string
|
| 229 |
-
- `improved_query`: Refined query string
|
| 230 |
-
- `research_mode`: "iterative" or "deep"
|
| 231 |
-
- `key_entities`: List of key entities
|
| 232 |
-
- `research_questions`: List of research questions
|
| 233 |
-
|
| 234 |
-
## Factory Functions
|
| 235 |
-
|
| 236 |
-
All agents have factory functions in `src.agent_factory.agents`:
|
| 237 |
-
|
| 238 |
-
```python
|
| 239 |
-
def create_knowledge_gap_agent(model: Any | None = None) -> KnowledgeGapAgent
|
| 240 |
-
def create_tool_selector_agent(model: Any | None = None) -> ToolSelectorAgent
|
| 241 |
-
def create_writer_agent(model: Any | None = None) -> WriterAgent
|
| 242 |
-
def create_long_writer_agent(model: Any | None = None) -> LongWriterAgent
|
| 243 |
-
def create_proofreader_agent(model: Any | None = None) -> ProofreaderAgent
|
| 244 |
-
def create_thinking_agent(model: Any | None = None) -> ThinkingAgent
|
| 245 |
-
def create_input_parser_agent(model: Any | None = None) -> InputParserAgent
|
| 246 |
-
```
|
| 247 |
-
|
| 248 |
-
**Parameters**:
|
| 249 |
-
- `model`: Optional Pydantic AI model. If None, uses `get_model()` from settings.
|
| 250 |
-
|
| 251 |
-
**Returns**: Agent instance.
|
| 252 |
-
|
| 253 |
-
## See Also
|
| 254 |
-
|
| 255 |
-
- [Architecture - Agents](../architecture/agents.md) - Architecture overview
|
| 256 |
-
- [Models API](models.md) - Data models used by agents
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/api/models.md
DELETED
|
@@ -1,248 +0,0 @@
|
|
| 1 |
-
# Models API Reference
|
| 2 |
-
|
| 3 |
-
This page documents the Pydantic models used throughout DeepCritical.
|
| 4 |
-
|
| 5 |
-
## Evidence
|
| 6 |
-
|
| 7 |
-
**Module**: `src.utils.models`
|
| 8 |
-
|
| 9 |
-
**Purpose**: Represents evidence from search results.
|
| 10 |
-
|
| 11 |
-
```python
|
| 12 |
-
class Evidence(BaseModel):
|
| 13 |
-
citation: Citation
|
| 14 |
-
content: str
|
| 15 |
-
relevance_score: float = Field(ge=0.0, le=1.0)
|
| 16 |
-
metadata: dict[str, Any] = Field(default_factory=dict)
|
| 17 |
-
```
|
| 18 |
-
|
| 19 |
-
**Fields**:
|
| 20 |
-
- `citation`: Citation information (title, URL, date, authors)
|
| 21 |
-
- `content`: Evidence text content
|
| 22 |
-
- `relevance_score`: Relevance score (0.0-1.0)
|
| 23 |
-
- `metadata`: Additional metadata dictionary
|
| 24 |
-
|
| 25 |
-
## Citation
|
| 26 |
-
|
| 27 |
-
**Module**: `src.utils.models`
|
| 28 |
-
|
| 29 |
-
**Purpose**: Citation information for evidence.
|
| 30 |
-
|
| 31 |
-
```python
|
| 32 |
-
class Citation(BaseModel):
|
| 33 |
-
title: str
|
| 34 |
-
url: str
|
| 35 |
-
date: str | None = None
|
| 36 |
-
authors: list[str] = Field(default_factory=list)
|
| 37 |
-
```
|
| 38 |
-
|
| 39 |
-
**Fields**:
|
| 40 |
-
- `title`: Article/trial title
|
| 41 |
-
- `url`: Source URL
|
| 42 |
-
- `date`: Publication date (optional)
|
| 43 |
-
- `authors`: List of authors (optional)
|
| 44 |
-
|
| 45 |
-
## KnowledgeGapOutput
|
| 46 |
-
|
| 47 |
-
**Module**: `src.utils.models`
|
| 48 |
-
|
| 49 |
-
**Purpose**: Output from knowledge gap evaluation.
|
| 50 |
-
|
| 51 |
-
```python
|
| 52 |
-
class KnowledgeGapOutput(BaseModel):
|
| 53 |
-
research_complete: bool
|
| 54 |
-
outstanding_gaps: list[str] = Field(default_factory=list)
|
| 55 |
-
```
|
| 56 |
-
|
| 57 |
-
**Fields**:
|
| 58 |
-
- `research_complete`: Boolean indicating if research is complete
|
| 59 |
-
- `outstanding_gaps`: List of remaining knowledge gaps
|
| 60 |
-
|
| 61 |
-
## AgentSelectionPlan
|
| 62 |
-
|
| 63 |
-
**Module**: `src.utils.models`
|
| 64 |
-
|
| 65 |
-
**Purpose**: Plan for tool/agent selection.
|
| 66 |
-
|
| 67 |
-
```python
|
| 68 |
-
class AgentSelectionPlan(BaseModel):
|
| 69 |
-
tasks: list[AgentTask] = Field(default_factory=list)
|
| 70 |
-
```
|
| 71 |
-
|
| 72 |
-
**Fields**:
|
| 73 |
-
- `tasks`: List of agent tasks to execute
|
| 74 |
-
|
| 75 |
-
## AgentTask
|
| 76 |
-
|
| 77 |
-
**Module**: `src.utils.models`
|
| 78 |
-
|
| 79 |
-
**Purpose**: Individual agent task.
|
| 80 |
-
|
| 81 |
-
```python
|
| 82 |
-
class AgentTask(BaseModel):
|
| 83 |
-
agent_name: str
|
| 84 |
-
query: str
|
| 85 |
-
context: dict[str, Any] = Field(default_factory=dict)
|
| 86 |
-
```
|
| 87 |
-
|
| 88 |
-
**Fields**:
|
| 89 |
-
- `agent_name`: Name of agent to use
|
| 90 |
-
- `query`: Task query
|
| 91 |
-
- `context`: Additional context dictionary
|
| 92 |
-
|
| 93 |
-
## ReportDraft
|
| 94 |
-
|
| 95 |
-
**Module**: `src.utils.models`
|
| 96 |
-
|
| 97 |
-
**Purpose**: Draft structure for long-form reports.
|
| 98 |
-
|
| 99 |
-
```python
|
| 100 |
-
class ReportDraft(BaseModel):
|
| 101 |
-
title: str
|
| 102 |
-
sections: list[ReportSection] = Field(default_factory=list)
|
| 103 |
-
references: list[Citation] = Field(default_factory=list)
|
| 104 |
-
```
|
| 105 |
-
|
| 106 |
-
**Fields**:
|
| 107 |
-
- `title`: Report title
|
| 108 |
-
- `sections`: List of report sections
|
| 109 |
-
- `references`: List of citations
|
| 110 |
-
|
| 111 |
-
## ReportSection
|
| 112 |
-
|
| 113 |
-
**Module**: `src.utils.models`
|
| 114 |
-
|
| 115 |
-
**Purpose**: Individual section in a report draft.
|
| 116 |
-
|
| 117 |
-
```python
|
| 118 |
-
class ReportSection(BaseModel):
|
| 119 |
-
title: str
|
| 120 |
-
content: str
|
| 121 |
-
order: int
|
| 122 |
-
```
|
| 123 |
-
|
| 124 |
-
**Fields**:
|
| 125 |
-
- `title`: Section title
|
| 126 |
-
- `content`: Section content
|
| 127 |
-
- `order`: Section order number
|
| 128 |
-
|
| 129 |
-
## ParsedQuery
|
| 130 |
-
|
| 131 |
-
**Module**: `src.utils.models`
|
| 132 |
-
|
| 133 |
-
**Purpose**: Parsed and improved query.
|
| 134 |
-
|
| 135 |
-
```python
|
| 136 |
-
class ParsedQuery(BaseModel):
|
| 137 |
-
original_query: str
|
| 138 |
-
improved_query: str
|
| 139 |
-
research_mode: Literal["iterative", "deep"]
|
| 140 |
-
key_entities: list[str] = Field(default_factory=list)
|
| 141 |
-
research_questions: list[str] = Field(default_factory=list)
|
| 142 |
-
```
|
| 143 |
-
|
| 144 |
-
**Fields**:
|
| 145 |
-
- `original_query`: Original query string
|
| 146 |
-
- `improved_query`: Refined query string
|
| 147 |
-
- `research_mode`: Research mode ("iterative" or "deep")
|
| 148 |
-
- `key_entities`: List of key entities
|
| 149 |
-
- `research_questions`: List of research questions
|
| 150 |
-
|
| 151 |
-
## Conversation
|
| 152 |
-
|
| 153 |
-
**Module**: `src.utils.models`
|
| 154 |
-
|
| 155 |
-
**Purpose**: Conversation history with iterations.
|
| 156 |
-
|
| 157 |
-
```python
|
| 158 |
-
class Conversation(BaseModel):
|
| 159 |
-
iterations: list[IterationData] = Field(default_factory=list)
|
| 160 |
-
```
|
| 161 |
-
|
| 162 |
-
**Fields**:
|
| 163 |
-
- `iterations`: List of iteration data
|
| 164 |
-
|
| 165 |
-
## IterationData
|
| 166 |
-
|
| 167 |
-
**Module**: `src.utils.models`
|
| 168 |
-
|
| 169 |
-
**Purpose**: Data for a single iteration.
|
| 170 |
-
|
| 171 |
-
```python
|
| 172 |
-
class IterationData(BaseModel):
|
| 173 |
-
iteration: int
|
| 174 |
-
observations: str | None = None
|
| 175 |
-
knowledge_gaps: list[str] = Field(default_factory=list)
|
| 176 |
-
tool_calls: list[dict[str, Any]] = Field(default_factory=list)
|
| 177 |
-
findings: str | None = None
|
| 178 |
-
thoughts: str | None = None
|
| 179 |
-
```
|
| 180 |
-
|
| 181 |
-
**Fields**:
|
| 182 |
-
- `iteration`: Iteration number
|
| 183 |
-
- `observations`: Generated observations
|
| 184 |
-
- `knowledge_gaps`: Identified knowledge gaps
|
| 185 |
-
- `tool_calls`: Tool calls made
|
| 186 |
-
- `findings`: Findings from tools
|
| 187 |
-
- `thoughts`: Agent thoughts
|
| 188 |
-
|
| 189 |
-
## AgentEvent
|
| 190 |
-
|
| 191 |
-
**Module**: `src.utils.models`
|
| 192 |
-
|
| 193 |
-
**Purpose**: Event emitted during research execution.
|
| 194 |
-
|
| 195 |
-
```python
|
| 196 |
-
class AgentEvent(BaseModel):
|
| 197 |
-
type: str
|
| 198 |
-
iteration: int | None = None
|
| 199 |
-
data: dict[str, Any] = Field(default_factory=dict)
|
| 200 |
-
```
|
| 201 |
-
|
| 202 |
-
**Fields**:
|
| 203 |
-
- `type`: Event type (e.g., "started", "search_complete", "complete")
|
| 204 |
-
- `iteration`: Iteration number (optional)
|
| 205 |
-
- `data`: Event data dictionary
|
| 206 |
-
|
| 207 |
-
## BudgetStatus
|
| 208 |
-
|
| 209 |
-
**Module**: `src.utils.models`
|
| 210 |
-
|
| 211 |
-
**Purpose**: Current budget status.
|
| 212 |
-
|
| 213 |
-
```python
|
| 214 |
-
class BudgetStatus(BaseModel):
|
| 215 |
-
tokens_used: int
|
| 216 |
-
tokens_limit: int
|
| 217 |
-
time_elapsed_seconds: float
|
| 218 |
-
time_limit_seconds: float
|
| 219 |
-
iterations: int
|
| 220 |
-
iterations_limit: int
|
| 221 |
-
```
|
| 222 |
-
|
| 223 |
-
**Fields**:
|
| 224 |
-
- `tokens_used`: Tokens used so far
|
| 225 |
-
- `tokens_limit`: Token limit
|
| 226 |
-
- `time_elapsed_seconds`: Elapsed time in seconds
|
| 227 |
-
- `time_limit_seconds`: Time limit in seconds
|
| 228 |
-
- `iterations`: Current iteration count
|
| 229 |
-
- `iterations_limit`: Iteration limit
|
| 230 |
-
|
| 231 |
-
## See Also
|
| 232 |
-
|
| 233 |
-
- [Architecture - Agents](../architecture/agents.md) - How models are used
|
| 234 |
-
- [Configuration](../configuration/index.md) - Model configuration
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/api/orchestrators.md
DELETED
|
@@ -1,195 +0,0 @@
|
|
| 1 |
-
# Orchestrators API Reference
|
| 2 |
-
|
| 3 |
-
This page documents the API for DeepCritical orchestrators.
|
| 4 |
-
|
| 5 |
-
## IterativeResearchFlow
|
| 6 |
-
|
| 7 |
-
**Module**: `src.orchestrator.research_flow`
|
| 8 |
-
|
| 9 |
-
**Purpose**: Single-loop research with search-judge-synthesize cycles.
|
| 10 |
-
|
| 11 |
-
### Methods
|
| 12 |
-
|
| 13 |
-
#### `run`
|
| 14 |
-
|
| 15 |
-
```python
|
| 16 |
-
async def run(
|
| 17 |
-
self,
|
| 18 |
-
query: str,
|
| 19 |
-
background_context: str = "",
|
| 20 |
-
max_iterations: int | None = None,
|
| 21 |
-
max_time_minutes: float | None = None,
|
| 22 |
-
token_budget: int | None = None
|
| 23 |
-
) -> AsyncGenerator[AgentEvent, None]
|
| 24 |
-
```
|
| 25 |
-
|
| 26 |
-
Runs iterative research flow.
|
| 27 |
-
|
| 28 |
-
**Parameters**:
|
| 29 |
-
- `query`: Research query string
|
| 30 |
-
- `background_context`: Background context (default: "")
|
| 31 |
-
- `max_iterations`: Maximum iterations (default: from settings)
|
| 32 |
-
- `max_time_minutes`: Maximum time in minutes (default: from settings)
|
| 33 |
-
- `token_budget`: Token budget (default: from settings)
|
| 34 |
-
|
| 35 |
-
**Yields**: `AgentEvent` objects for:
|
| 36 |
-
- `started`: Research started
|
| 37 |
-
- `search_complete`: Search completed
|
| 38 |
-
- `judge_complete`: Evidence evaluation completed
|
| 39 |
-
- `synthesizing`: Generating report
|
| 40 |
-
- `complete`: Research completed
|
| 41 |
-
- `error`: Error occurred
|
| 42 |
-
|
| 43 |
-
## DeepResearchFlow
|
| 44 |
-
|
| 45 |
-
**Module**: `src.orchestrator.research_flow`
|
| 46 |
-
|
| 47 |
-
**Purpose**: Multi-section parallel research with planning and synthesis.
|
| 48 |
-
|
| 49 |
-
### Methods
|
| 50 |
-
|
| 51 |
-
#### `run`
|
| 52 |
-
|
| 53 |
-
```python
|
| 54 |
-
async def run(
|
| 55 |
-
self,
|
| 56 |
-
query: str,
|
| 57 |
-
background_context: str = "",
|
| 58 |
-
max_iterations_per_section: int | None = None,
|
| 59 |
-
max_time_minutes: float | None = None,
|
| 60 |
-
token_budget: int | None = None
|
| 61 |
-
) -> AsyncGenerator[AgentEvent, None]
|
| 62 |
-
```
|
| 63 |
-
|
| 64 |
-
Runs deep research flow.
|
| 65 |
-
|
| 66 |
-
**Parameters**:
|
| 67 |
-
- `query`: Research query string
|
| 68 |
-
- `background_context`: Background context (default: "")
|
| 69 |
-
- `max_iterations_per_section`: Maximum iterations per section (default: from settings)
|
| 70 |
-
- `max_time_minutes`: Maximum time in minutes (default: from settings)
|
| 71 |
-
- `token_budget`: Token budget (default: from settings)
|
| 72 |
-
|
| 73 |
-
**Yields**: `AgentEvent` objects for:
|
| 74 |
-
- `started`: Research started
|
| 75 |
-
- `planning`: Creating research plan
|
| 76 |
-
- `looping`: Running parallel research loops
|
| 77 |
-
- `synthesizing`: Synthesizing results
|
| 78 |
-
- `complete`: Research completed
|
| 79 |
-
- `error`: Error occurred
|
| 80 |
-
|
| 81 |
-
## GraphOrchestrator
|
| 82 |
-
|
| 83 |
-
**Module**: `src.orchestrator.graph_orchestrator`
|
| 84 |
-
|
| 85 |
-
**Purpose**: Graph-based execution using Pydantic AI agents as nodes.
|
| 86 |
-
|
| 87 |
-
### Methods
|
| 88 |
-
|
| 89 |
-
#### `run`
|
| 90 |
-
|
| 91 |
-
```python
|
| 92 |
-
async def run(
|
| 93 |
-
self,
|
| 94 |
-
query: str,
|
| 95 |
-
research_mode: str = "auto",
|
| 96 |
-
use_graph: bool = True
|
| 97 |
-
) -> AsyncGenerator[AgentEvent, None]
|
| 98 |
-
```
|
| 99 |
-
|
| 100 |
-
Runs graph-based research orchestration.
|
| 101 |
-
|
| 102 |
-
**Parameters**:
|
| 103 |
-
- `query`: Research query string
|
| 104 |
-
- `research_mode`: Research mode ("iterative", "deep", or "auto")
|
| 105 |
-
- `use_graph`: Whether to use graph execution (default: True)
|
| 106 |
-
|
| 107 |
-
**Yields**: `AgentEvent` objects during graph execution.
|
| 108 |
-
|
| 109 |
-
## Orchestrator Factory
|
| 110 |
-
|
| 111 |
-
**Module**: `src.orchestrator_factory`
|
| 112 |
-
|
| 113 |
-
**Purpose**: Factory for creating orchestrators.
|
| 114 |
-
|
| 115 |
-
### Functions
|
| 116 |
-
|
| 117 |
-
#### `create_orchestrator`
|
| 118 |
-
|
| 119 |
-
```python
|
| 120 |
-
def create_orchestrator(
|
| 121 |
-
search_handler: SearchHandlerProtocol,
|
| 122 |
-
judge_handler: JudgeHandlerProtocol,
|
| 123 |
-
config: dict[str, Any],
|
| 124 |
-
mode: str | None = None
|
| 125 |
-
) -> Any
|
| 126 |
-
```
|
| 127 |
-
|
| 128 |
-
Creates an orchestrator instance.
|
| 129 |
-
|
| 130 |
-
**Parameters**:
|
| 131 |
-
- `search_handler`: Search handler protocol implementation
|
| 132 |
-
- `judge_handler`: Judge handler protocol implementation
|
| 133 |
-
- `config`: Configuration dictionary
|
| 134 |
-
- `mode`: Orchestrator mode ("simple", "advanced", "magentic", or None for auto-detect)
|
| 135 |
-
|
| 136 |
-
**Returns**: Orchestrator instance.
|
| 137 |
-
|
| 138 |
-
**Raises**:
|
| 139 |
-
- `ValueError`: If requirements not met
|
| 140 |
-
|
| 141 |
-
**Modes**:
|
| 142 |
-
- `"simple"`: Legacy orchestrator
|
| 143 |
-
- `"advanced"` or `"magentic"`: Magentic orchestrator (requires OpenAI API key)
|
| 144 |
-
- `None`: Auto-detect based on API key availability
|
| 145 |
-
|
| 146 |
-
## MagenticOrchestrator
|
| 147 |
-
|
| 148 |
-
**Module**: `src.orchestrator_magentic`
|
| 149 |
-
|
| 150 |
-
**Purpose**: Multi-agent coordination using Microsoft Agent Framework.
|
| 151 |
-
|
| 152 |
-
### Methods
|
| 153 |
-
|
| 154 |
-
#### `run`
|
| 155 |
-
|
| 156 |
-
```python
|
| 157 |
-
async def run(
|
| 158 |
-
self,
|
| 159 |
-
query: str,
|
| 160 |
-
max_rounds: int = 15,
|
| 161 |
-
max_stalls: int = 3
|
| 162 |
-
) -> AsyncGenerator[AgentEvent, None]
|
| 163 |
-
```
|
| 164 |
-
|
| 165 |
-
Runs Magentic orchestration.
|
| 166 |
-
|
| 167 |
-
**Parameters**:
|
| 168 |
-
- `query`: Research query string
|
| 169 |
-
- `max_rounds`: Maximum rounds (default: 15)
|
| 170 |
-
- `max_stalls`: Maximum stalls before reset (default: 3)
|
| 171 |
-
|
| 172 |
-
**Yields**: `AgentEvent` objects converted from Magentic events.
|
| 173 |
-
|
| 174 |
-
**Requirements**:
|
| 175 |
-
- `agent-framework-core` package
|
| 176 |
-
- OpenAI API key
|
| 177 |
-
|
| 178 |
-
## See Also
|
| 179 |
-
|
| 180 |
-
- [Architecture - Orchestrators](../architecture/orchestrators.md) - Architecture overview
|
| 181 |
-
- [Graph Orchestration](../architecture/graph-orchestration.md) - Graph execution details
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/api/services.md
DELETED
|
@@ -1,201 +0,0 @@
|
|
| 1 |
-
# Services API Reference
|
| 2 |
-
|
| 3 |
-
This page documents the API for DeepCritical services.
|
| 4 |
-
|
| 5 |
-
## EmbeddingService
|
| 6 |
-
|
| 7 |
-
**Module**: `src.services.embeddings`
|
| 8 |
-
|
| 9 |
-
**Purpose**: Local sentence-transformers for semantic search and deduplication.
|
| 10 |
-
|
| 11 |
-
### Methods
|
| 12 |
-
|
| 13 |
-
#### `embed`
|
| 14 |
-
|
| 15 |
-
```python
|
| 16 |
-
async def embed(self, text: str) -> list[float]
|
| 17 |
-
```
|
| 18 |
-
|
| 19 |
-
Generates embedding for a text string.
|
| 20 |
-
|
| 21 |
-
**Parameters**:
|
| 22 |
-
- `text`: Text to embed
|
| 23 |
-
|
| 24 |
-
**Returns**: Embedding vector as list of floats.
|
| 25 |
-
|
| 26 |
-
#### `embed_batch`
|
| 27 |
-
|
| 28 |
-
```python
|
| 29 |
-
async def embed_batch(self, texts: list[str]) -> list[list[float]]
|
| 30 |
-
```
|
| 31 |
-
|
| 32 |
-
Generates embeddings for multiple texts.
|
| 33 |
-
|
| 34 |
-
**Parameters**:
|
| 35 |
-
- `texts`: List of texts to embed
|
| 36 |
-
|
| 37 |
-
**Returns**: List of embedding vectors.
|
| 38 |
-
|
| 39 |
-
#### `similarity`
|
| 40 |
-
|
| 41 |
-
```python
|
| 42 |
-
async def similarity(self, text1: str, text2: str) -> float
|
| 43 |
-
```
|
| 44 |
-
|
| 45 |
-
Calculates similarity between two texts.
|
| 46 |
-
|
| 47 |
-
**Parameters**:
|
| 48 |
-
- `text1`: First text
|
| 49 |
-
- `text2`: Second text
|
| 50 |
-
|
| 51 |
-
**Returns**: Similarity score (0.0-1.0).
|
| 52 |
-
|
| 53 |
-
#### `find_duplicates`
|
| 54 |
-
|
| 55 |
-
```python
|
| 56 |
-
async def find_duplicates(
|
| 57 |
-
self,
|
| 58 |
-
texts: list[str],
|
| 59 |
-
threshold: float = 0.85
|
| 60 |
-
) -> list[tuple[int, int]]
|
| 61 |
-
```
|
| 62 |
-
|
| 63 |
-
Finds duplicate texts based on similarity threshold.
|
| 64 |
-
|
| 65 |
-
**Parameters**:
|
| 66 |
-
- `texts`: List of texts to check
|
| 67 |
-
- `threshold`: Similarity threshold (default: 0.85)
|
| 68 |
-
|
| 69 |
-
**Returns**: List of (index1, index2) tuples for duplicate pairs.
|
| 70 |
-
|
| 71 |
-
### Factory Function
|
| 72 |
-
|
| 73 |
-
#### `get_embedding_service`
|
| 74 |
-
|
| 75 |
-
```python
|
| 76 |
-
@lru_cache(maxsize=1)
|
| 77 |
-
def get_embedding_service() -> EmbeddingService
|
| 78 |
-
```
|
| 79 |
-
|
| 80 |
-
Returns singleton EmbeddingService instance.
|
| 81 |
-
|
| 82 |
-
## LlamaIndexRAGService
|
| 83 |
-
|
| 84 |
-
**Module**: `src.services.rag`
|
| 85 |
-
|
| 86 |
-
**Purpose**: Retrieval-Augmented Generation using LlamaIndex.
|
| 87 |
-
|
| 88 |
-
### Methods
|
| 89 |
-
|
| 90 |
-
#### `ingest_evidence`
|
| 91 |
-
|
| 92 |
-
```python
|
| 93 |
-
async def ingest_evidence(self, evidence: list[Evidence]) -> None
|
| 94 |
-
```
|
| 95 |
-
|
| 96 |
-
Ingests evidence into RAG service.
|
| 97 |
-
|
| 98 |
-
**Parameters**:
|
| 99 |
-
- `evidence`: List of Evidence objects to ingest
|
| 100 |
-
|
| 101 |
-
**Note**: Requires OpenAI API key for embeddings.
|
| 102 |
-
|
| 103 |
-
#### `retrieve`
|
| 104 |
-
|
| 105 |
-
```python
|
| 106 |
-
async def retrieve(
|
| 107 |
-
self,
|
| 108 |
-
query: str,
|
| 109 |
-
top_k: int = 5
|
| 110 |
-
) -> list[Document]
|
| 111 |
-
```
|
| 112 |
-
|
| 113 |
-
Retrieves relevant documents for a query.
|
| 114 |
-
|
| 115 |
-
**Parameters**:
|
| 116 |
-
- `query`: Search query string
|
| 117 |
-
- `top_k`: Number of top results to return (default: 5)
|
| 118 |
-
|
| 119 |
-
**Returns**: List of Document objects with metadata.
|
| 120 |
-
|
| 121 |
-
#### `query`
|
| 122 |
-
|
| 123 |
-
```python
|
| 124 |
-
async def query(
|
| 125 |
-
self,
|
| 126 |
-
query: str,
|
| 127 |
-
top_k: int = 5
|
| 128 |
-
) -> str
|
| 129 |
-
```
|
| 130 |
-
|
| 131 |
-
Queries RAG service and returns formatted results.
|
| 132 |
-
|
| 133 |
-
**Parameters**:
|
| 134 |
-
- `query`: Search query string
|
| 135 |
-
- `top_k`: Number of top results to return (default: 5)
|
| 136 |
-
|
| 137 |
-
**Returns**: Formatted query results as string.
|
| 138 |
-
|
| 139 |
-
### Factory Function
|
| 140 |
-
|
| 141 |
-
#### `get_rag_service`
|
| 142 |
-
|
| 143 |
-
```python
|
| 144 |
-
@lru_cache(maxsize=1)
|
| 145 |
-
def get_rag_service() -> LlamaIndexRAGService | None
|
| 146 |
-
```
|
| 147 |
-
|
| 148 |
-
Returns singleton LlamaIndexRAGService instance, or None if OpenAI key not available.
|
| 149 |
-
|
| 150 |
-
## StatisticalAnalyzer
|
| 151 |
-
|
| 152 |
-
**Module**: `src.services.statistical_analyzer`
|
| 153 |
-
|
| 154 |
-
**Purpose**: Secure execution of AI-generated statistical code.
|
| 155 |
-
|
| 156 |
-
### Methods
|
| 157 |
-
|
| 158 |
-
#### `analyze`
|
| 159 |
-
|
| 160 |
-
```python
|
| 161 |
-
async def analyze(
|
| 162 |
-
self,
|
| 163 |
-
hypothesis: str,
|
| 164 |
-
evidence: list[Evidence],
|
| 165 |
-
data_description: str | None = None
|
| 166 |
-
) -> AnalysisResult
|
| 167 |
-
```
|
| 168 |
-
|
| 169 |
-
Analyzes a hypothesis using statistical methods.
|
| 170 |
-
|
| 171 |
-
**Parameters**:
|
| 172 |
-
- `hypothesis`: Hypothesis to analyze
|
| 173 |
-
- `evidence`: List of Evidence objects
|
| 174 |
-
- `data_description`: Optional data description
|
| 175 |
-
|
| 176 |
-
**Returns**: `AnalysisResult` with:
|
| 177 |
-
- `verdict`: SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 178 |
-
- `code`: Generated analysis code
|
| 179 |
-
- `output`: Execution output
|
| 180 |
-
- `error`: Error message if execution failed
|
| 181 |
-
|
| 182 |
-
**Note**: Requires Modal credentials for sandbox execution.
|
| 183 |
-
|
| 184 |
-
## See Also
|
| 185 |
-
|
| 186 |
-
- [Architecture - Services](../architecture/services.md) - Architecture overview
|
| 187 |
-
- [Configuration](../configuration/index.md) - Service configuration
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/api/tools.md
DELETED
|
@@ -1,235 +0,0 @@
|
|
| 1 |
-
# Tools API Reference
|
| 2 |
-
|
| 3 |
-
This page documents the API for DeepCritical search tools.
|
| 4 |
-
|
| 5 |
-
## SearchTool Protocol
|
| 6 |
-
|
| 7 |
-
All tools implement the `SearchTool` protocol:
|
| 8 |
-
|
| 9 |
-
```python
|
| 10 |
-
class SearchTool(Protocol):
|
| 11 |
-
@property
|
| 12 |
-
def name(self) -> str: ...
|
| 13 |
-
|
| 14 |
-
async def search(
|
| 15 |
-
self,
|
| 16 |
-
query: str,
|
| 17 |
-
max_results: int = 10
|
| 18 |
-
) -> list[Evidence]: ...
|
| 19 |
-
```
|
| 20 |
-
|
| 21 |
-
## PubMedTool
|
| 22 |
-
|
| 23 |
-
**Module**: `src.tools.pubmed`
|
| 24 |
-
|
| 25 |
-
**Purpose**: Search peer-reviewed biomedical literature from PubMed.
|
| 26 |
-
|
| 27 |
-
### Properties
|
| 28 |
-
|
| 29 |
-
#### `name`
|
| 30 |
-
|
| 31 |
-
```python
|
| 32 |
-
@property
|
| 33 |
-
def name(self) -> str
|
| 34 |
-
```
|
| 35 |
-
|
| 36 |
-
Returns tool name: `"pubmed"`
|
| 37 |
-
|
| 38 |
-
### Methods
|
| 39 |
-
|
| 40 |
-
#### `search`
|
| 41 |
-
|
| 42 |
-
```python
|
| 43 |
-
async def search(
|
| 44 |
-
self,
|
| 45 |
-
query: str,
|
| 46 |
-
max_results: int = 10
|
| 47 |
-
) -> list[Evidence]
|
| 48 |
-
```
|
| 49 |
-
|
| 50 |
-
Searches PubMed for articles.
|
| 51 |
-
|
| 52 |
-
**Parameters**:
|
| 53 |
-
- `query`: Search query string
|
| 54 |
-
- `max_results`: Maximum number of results to return (default: 10)
|
| 55 |
-
|
| 56 |
-
**Returns**: List of `Evidence` objects with PubMed articles.
|
| 57 |
-
|
| 58 |
-
**Raises**:
|
| 59 |
-
- `SearchError`: If search fails
|
| 60 |
-
- `RateLimitError`: If rate limit is exceeded
|
| 61 |
-
|
| 62 |
-
## ClinicalTrialsTool
|
| 63 |
-
|
| 64 |
-
**Module**: `src.tools.clinicaltrials`
|
| 65 |
-
|
| 66 |
-
**Purpose**: Search ClinicalTrials.gov for interventional studies.
|
| 67 |
-
|
| 68 |
-
### Properties
|
| 69 |
-
|
| 70 |
-
#### `name`
|
| 71 |
-
|
| 72 |
-
```python
|
| 73 |
-
@property
|
| 74 |
-
def name(self) -> str
|
| 75 |
-
```
|
| 76 |
-
|
| 77 |
-
Returns tool name: `"clinicaltrials"`
|
| 78 |
-
|
| 79 |
-
### Methods
|
| 80 |
-
|
| 81 |
-
#### `search`
|
| 82 |
-
|
| 83 |
-
```python
|
| 84 |
-
async def search(
|
| 85 |
-
self,
|
| 86 |
-
query: str,
|
| 87 |
-
max_results: int = 10
|
| 88 |
-
) -> list[Evidence]
|
| 89 |
-
```
|
| 90 |
-
|
| 91 |
-
Searches ClinicalTrials.gov for trials.
|
| 92 |
-
|
| 93 |
-
**Parameters**:
|
| 94 |
-
- `query`: Search query string
|
| 95 |
-
- `max_results`: Maximum number of results to return (default: 10)
|
| 96 |
-
|
| 97 |
-
**Returns**: List of `Evidence` objects with clinical trials.
|
| 98 |
-
|
| 99 |
-
**Note**: Only returns interventional studies with status: COMPLETED, ACTIVE_NOT_RECRUITING, RECRUITING, ENROLLING_BY_INVITATION
|
| 100 |
-
|
| 101 |
-
**Raises**:
|
| 102 |
-
- `SearchError`: If search fails
|
| 103 |
-
|
| 104 |
-
## EuropePMCTool
|
| 105 |
-
|
| 106 |
-
**Module**: `src.tools.europepmc`
|
| 107 |
-
|
| 108 |
-
**Purpose**: Search Europe PMC for preprints and peer-reviewed articles.
|
| 109 |
-
|
| 110 |
-
### Properties
|
| 111 |
-
|
| 112 |
-
#### `name`
|
| 113 |
-
|
| 114 |
-
```python
|
| 115 |
-
@property
|
| 116 |
-
def name(self) -> str
|
| 117 |
-
```
|
| 118 |
-
|
| 119 |
-
Returns tool name: `"europepmc"`
|
| 120 |
-
|
| 121 |
-
### Methods
|
| 122 |
-
|
| 123 |
-
#### `search`
|
| 124 |
-
|
| 125 |
-
```python
|
| 126 |
-
async def search(
|
| 127 |
-
self,
|
| 128 |
-
query: str,
|
| 129 |
-
max_results: int = 10
|
| 130 |
-
) -> list[Evidence]
|
| 131 |
-
```
|
| 132 |
-
|
| 133 |
-
Searches Europe PMC for articles and preprints.
|
| 134 |
-
|
| 135 |
-
**Parameters**:
|
| 136 |
-
- `query`: Search query string
|
| 137 |
-
- `max_results`: Maximum number of results to return (default: 10)
|
| 138 |
-
|
| 139 |
-
**Returns**: List of `Evidence` objects with articles/preprints.
|
| 140 |
-
|
| 141 |
-
**Note**: Includes both preprints (marked with `[PREPRINT - Not peer-reviewed]`) and peer-reviewed articles.
|
| 142 |
-
|
| 143 |
-
**Raises**:
|
| 144 |
-
- `SearchError`: If search fails
|
| 145 |
-
|
| 146 |
-
## RAGTool
|
| 147 |
-
|
| 148 |
-
**Module**: `src.tools.rag_tool`
|
| 149 |
-
|
| 150 |
-
**Purpose**: Semantic search within collected evidence.
|
| 151 |
-
|
| 152 |
-
### Properties
|
| 153 |
-
|
| 154 |
-
#### `name`
|
| 155 |
-
|
| 156 |
-
```python
|
| 157 |
-
@property
|
| 158 |
-
def name(self) -> str
|
| 159 |
-
```
|
| 160 |
-
|
| 161 |
-
Returns tool name: `"rag"`
|
| 162 |
-
|
| 163 |
-
### Methods
|
| 164 |
-
|
| 165 |
-
#### `search`
|
| 166 |
-
|
| 167 |
-
```python
|
| 168 |
-
async def search(
|
| 169 |
-
self,
|
| 170 |
-
query: str,
|
| 171 |
-
max_results: int = 10
|
| 172 |
-
) -> list[Evidence]
|
| 173 |
-
```
|
| 174 |
-
|
| 175 |
-
Searches collected evidence using semantic similarity.
|
| 176 |
-
|
| 177 |
-
**Parameters**:
|
| 178 |
-
- `query`: Search query string
|
| 179 |
-
- `max_results`: Maximum number of results to return (default: 10)
|
| 180 |
-
|
| 181 |
-
**Returns**: List of `Evidence` objects from collected evidence.
|
| 182 |
-
|
| 183 |
-
**Note**: Requires evidence to be ingested into RAG service first.
|
| 184 |
-
|
| 185 |
-
## SearchHandler
|
| 186 |
-
|
| 187 |
-
**Module**: `src.tools.search_handler`
|
| 188 |
-
|
| 189 |
-
**Purpose**: Orchestrates parallel searches across multiple tools.
|
| 190 |
-
|
| 191 |
-
### Methods
|
| 192 |
-
|
| 193 |
-
#### `search`
|
| 194 |
-
|
| 195 |
-
```python
|
| 196 |
-
async def search(
|
| 197 |
-
self,
|
| 198 |
-
query: str,
|
| 199 |
-
tools: list[SearchTool] | None = None,
|
| 200 |
-
max_results_per_tool: int = 10
|
| 201 |
-
) -> SearchResult
|
| 202 |
-
```
|
| 203 |
-
|
| 204 |
-
Searches multiple tools in parallel.
|
| 205 |
-
|
| 206 |
-
**Parameters**:
|
| 207 |
-
- `query`: Search query string
|
| 208 |
-
- `tools`: List of tools to use (default: all available tools)
|
| 209 |
-
- `max_results_per_tool`: Maximum results per tool (default: 10)
|
| 210 |
-
|
| 211 |
-
**Returns**: `SearchResult` with:
|
| 212 |
-
- `evidence`: Aggregated list of evidence
|
| 213 |
-
- `tool_results`: Results per tool
|
| 214 |
-
- `total_count`: Total number of results
|
| 215 |
-
|
| 216 |
-
**Note**: Uses `asyncio.gather()` for parallel execution. Handles tool failures gracefully.
|
| 217 |
-
|
| 218 |
-
## See Also
|
| 219 |
-
|
| 220 |
-
- [Architecture - Tools](../architecture/tools.md) - Architecture overview
|
| 221 |
-
- [Models API](models.md) - Data models used by tools
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/agents.md
DELETED
|
@@ -1,192 +0,0 @@
|
|
| 1 |
-
# Agents Architecture
|
| 2 |
-
|
| 3 |
-
DeepCritical uses Pydantic AI agents for all AI-powered operations. All agents follow a consistent pattern and use structured output types.
|
| 4 |
-
|
| 5 |
-
## Agent Pattern
|
| 6 |
-
|
| 7 |
-
All agents use the Pydantic AI `Agent` class with the following structure:
|
| 8 |
-
|
| 9 |
-
- **System Prompt**: Module-level constant with date injection
|
| 10 |
-
- **Agent Class**: `__init__(model: Any | None = None)`
|
| 11 |
-
- **Main Method**: Async method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 12 |
-
- **Factory Function**: `def create_agent_name(model: Any | None = None) -> AgentName`
|
| 13 |
-
|
| 14 |
-
## Model Initialization
|
| 15 |
-
|
| 16 |
-
Agents use `get_model()` from `src/agent_factory/judges.py` if no model is provided. This supports:
|
| 17 |
-
|
| 18 |
-
- OpenAI models
|
| 19 |
-
- Anthropic models
|
| 20 |
-
- HuggingFace Inference API models
|
| 21 |
-
|
| 22 |
-
The model selection is based on the configured `LLM_PROVIDER` in settings.
|
| 23 |
-
|
| 24 |
-
## Error Handling
|
| 25 |
-
|
| 26 |
-
Agents return fallback values on failure rather than raising exceptions:
|
| 27 |
-
|
| 28 |
-
- `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`
|
| 29 |
-
- Empty strings for text outputs
|
| 30 |
-
- Default structured outputs
|
| 31 |
-
|
| 32 |
-
All errors are logged with context using structlog.
|
| 33 |
-
|
| 34 |
-
## Input Validation
|
| 35 |
-
|
| 36 |
-
All agents validate inputs:
|
| 37 |
-
|
| 38 |
-
- Check that queries/inputs are not empty
|
| 39 |
-
- Truncate very long inputs with warnings
|
| 40 |
-
- Handle None values gracefully
|
| 41 |
-
|
| 42 |
-
## Output Types
|
| 43 |
-
|
| 44 |
-
Agents use structured output types from `src/utils/models.py`:
|
| 45 |
-
|
| 46 |
-
- `KnowledgeGapOutput`: Research completeness evaluation
|
| 47 |
-
- `AgentSelectionPlan`: Tool selection plan
|
| 48 |
-
- `ReportDraft`: Long-form report structure
|
| 49 |
-
- `ParsedQuery`: Query parsing and mode detection
|
| 50 |
-
|
| 51 |
-
For text output (writer agents), agents return `str` directly.
|
| 52 |
-
|
| 53 |
-
## Agent Types
|
| 54 |
-
|
| 55 |
-
### Knowledge Gap Agent
|
| 56 |
-
|
| 57 |
-
**File**: `src/agents/knowledge_gap.py`
|
| 58 |
-
|
| 59 |
-
**Purpose**: Evaluates research state and identifies knowledge gaps.
|
| 60 |
-
|
| 61 |
-
**Output**: `KnowledgeGapOutput` with:
|
| 62 |
-
- `research_complete`: Boolean indicating if research is complete
|
| 63 |
-
- `outstanding_gaps`: List of remaining knowledge gaps
|
| 64 |
-
|
| 65 |
-
**Methods**:
|
| 66 |
-
- `async def evaluate(query, background_context, conversation_history, iteration, time_elapsed_minutes, max_time_minutes) -> KnowledgeGapOutput`
|
| 67 |
-
|
| 68 |
-
### Tool Selector Agent
|
| 69 |
-
|
| 70 |
-
**File**: `src/agents/tool_selector.py`
|
| 71 |
-
|
| 72 |
-
**Purpose**: Selects appropriate tools for addressing knowledge gaps.
|
| 73 |
-
|
| 74 |
-
**Output**: `AgentSelectionPlan` with list of `AgentTask` objects.
|
| 75 |
-
|
| 76 |
-
**Available Agents**:
|
| 77 |
-
- `WebSearchAgent`: General web search for fresh information
|
| 78 |
-
- `SiteCrawlerAgent`: Research specific entities/companies
|
| 79 |
-
- `RAGAgent`: Semantic search within collected evidence
|
| 80 |
-
|
| 81 |
-
### Writer Agent
|
| 82 |
-
|
| 83 |
-
**File**: `src/agents/writer.py`
|
| 84 |
-
|
| 85 |
-
**Purpose**: Generates final reports from research findings.
|
| 86 |
-
|
| 87 |
-
**Output**: Markdown string with numbered citations.
|
| 88 |
-
|
| 89 |
-
**Methods**:
|
| 90 |
-
- `async def write_report(query, findings, output_length, output_instructions) -> str`
|
| 91 |
-
|
| 92 |
-
**Features**:
|
| 93 |
-
- Validates inputs
|
| 94 |
-
- Truncates very long findings (max 50000 chars) with warning
|
| 95 |
-
- Retry logic for transient failures (3 retries)
|
| 96 |
-
- Citation validation before returning
|
| 97 |
-
|
| 98 |
-
### Long Writer Agent
|
| 99 |
-
|
| 100 |
-
**File**: `src/agents/long_writer.py`
|
| 101 |
-
|
| 102 |
-
**Purpose**: Long-form report generation with section-by-section writing.
|
| 103 |
-
|
| 104 |
-
**Input/Output**: Uses `ReportDraft` models.
|
| 105 |
-
|
| 106 |
-
**Methods**:
|
| 107 |
-
- `async def write_next_section(query, draft, section_title, section_content) -> LongWriterOutput`
|
| 108 |
-
- `async def write_report(query, report_title, report_draft) -> str`
|
| 109 |
-
|
| 110 |
-
**Features**:
|
| 111 |
-
- Writes sections iteratively
|
| 112 |
-
- Aggregates references across sections
|
| 113 |
-
- Reformats section headings and references
|
| 114 |
-
- Deduplicates and renumbers references
|
| 115 |
-
|
| 116 |
-
### Proofreader Agent
|
| 117 |
-
|
| 118 |
-
**File**: `src/agents/proofreader.py`
|
| 119 |
-
|
| 120 |
-
**Purpose**: Proofreads and polishes report drafts.
|
| 121 |
-
|
| 122 |
-
**Input**: `ReportDraft`
|
| 123 |
-
**Output**: Polished markdown string
|
| 124 |
-
|
| 125 |
-
**Methods**:
|
| 126 |
-
- `async def proofread(query, report_title, report_draft) -> str`
|
| 127 |
-
|
| 128 |
-
**Features**:
|
| 129 |
-
- Removes duplicate content across sections
|
| 130 |
-
- Adds executive summary if multiple sections
|
| 131 |
-
- Preserves all references and citations
|
| 132 |
-
- Improves flow and readability
|
| 133 |
-
|
| 134 |
-
### Thinking Agent
|
| 135 |
-
|
| 136 |
-
**File**: `src/agents/thinking.py`
|
| 137 |
-
|
| 138 |
-
**Purpose**: Generates observations from conversation history.
|
| 139 |
-
|
| 140 |
-
**Output**: Observation string
|
| 141 |
-
|
| 142 |
-
**Methods**:
|
| 143 |
-
- `async def generate_observations(query, background_context, conversation_history) -> str`
|
| 144 |
-
|
| 145 |
-
### Input Parser Agent
|
| 146 |
-
|
| 147 |
-
**File**: `src/agents/input_parser.py`
|
| 148 |
-
|
| 149 |
-
**Purpose**: Parses and improves user queries, detects research mode.
|
| 150 |
-
|
| 151 |
-
**Output**: `ParsedQuery` with:
|
| 152 |
-
- `original_query`: Original query string
|
| 153 |
-
- `improved_query`: Refined query string
|
| 154 |
-
- `research_mode`: "iterative" or "deep"
|
| 155 |
-
- `key_entities`: List of key entities
|
| 156 |
-
- `research_questions`: List of research questions
|
| 157 |
-
|
| 158 |
-
## Factory Functions
|
| 159 |
-
|
| 160 |
-
All agents have factory functions in `src/agent_factory/agents.py`:
|
| 161 |
-
|
| 162 |
-
```python
|
| 163 |
-
def create_knowledge_gap_agent(model: Any | None = None) -> KnowledgeGapAgent
|
| 164 |
-
def create_tool_selector_agent(model: Any | None = None) -> ToolSelectorAgent
|
| 165 |
-
def create_writer_agent(model: Any | None = None) -> WriterAgent
|
| 166 |
-
# ... etc
|
| 167 |
-
```
|
| 168 |
-
|
| 169 |
-
Factory functions:
|
| 170 |
-
- Use `get_model()` if no model provided
|
| 171 |
-
- Raise `ConfigurationError` if creation fails
|
| 172 |
-
- Log agent creation
|
| 173 |
-
|
| 174 |
-
## See Also
|
| 175 |
-
|
| 176 |
-
- [Orchestrators](orchestrators.md) - How agents are orchestrated
|
| 177 |
-
- [API Reference - Agents](../api/agents.md) - API documentation
|
| 178 |
-
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/graph-orchestration.md
DELETED
|
@@ -1,152 +0,0 @@
|
|
| 1 |
-
# Graph Orchestration Architecture
|
| 2 |
-
|
| 3 |
-
## Overview
|
| 4 |
-
|
| 5 |
-
Phase 4 implements a graph-based orchestration system for research workflows using Pydantic AI agents as nodes. This enables better parallel execution, conditional routing, and state management compared to simple agent chains.
|
| 6 |
-
|
| 7 |
-
## Graph Structure
|
| 8 |
-
|
| 9 |
-
### Nodes
|
| 10 |
-
|
| 11 |
-
Graph nodes represent different stages in the research workflow:
|
| 12 |
-
|
| 13 |
-
1. **Agent Nodes**: Execute Pydantic AI agents
|
| 14 |
-
- Input: Prompt/query
|
| 15 |
-
- Output: Structured or unstructured response
|
| 16 |
-
- Examples: `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`
|
| 17 |
-
|
| 18 |
-
2. **State Nodes**: Update or read workflow state
|
| 19 |
-
- Input: Current state
|
| 20 |
-
- Output: Updated state
|
| 21 |
-
- Examples: Update evidence, update conversation history
|
| 22 |
-
|
| 23 |
-
3. **Decision Nodes**: Make routing decisions based on conditions
|
| 24 |
-
- Input: Current state/results
|
| 25 |
-
- Output: Next node ID
|
| 26 |
-
- Examples: Continue research vs. complete research
|
| 27 |
-
|
| 28 |
-
4. **Parallel Nodes**: Execute multiple nodes concurrently
|
| 29 |
-
- Input: List of node IDs
|
| 30 |
-
- Output: Aggregated results
|
| 31 |
-
- Examples: Parallel iterative research loops
|
| 32 |
-
|
| 33 |
-
### Edges
|
| 34 |
-
|
| 35 |
-
Edges define transitions between nodes:
|
| 36 |
-
|
| 37 |
-
1. **Sequential Edges**: Always traversed (no condition)
|
| 38 |
-
- From: Source node
|
| 39 |
-
- To: Target node
|
| 40 |
-
- Condition: None (always True)
|
| 41 |
-
|
| 42 |
-
2. **Conditional Edges**: Traversed based on condition
|
| 43 |
-
- From: Source node
|
| 44 |
-
- To: Target node
|
| 45 |
-
- Condition: Callable that returns bool
|
| 46 |
-
- Example: If research complete → go to writer, else → continue loop
|
| 47 |
-
|
| 48 |
-
3. **Parallel Edges**: Used for parallel execution branches
|
| 49 |
-
- From: Parallel node
|
| 50 |
-
- To: Multiple target nodes
|
| 51 |
-
- Execution: All targets run concurrently
|
| 52 |
-
|
| 53 |
-
## Graph Patterns
|
| 54 |
-
|
| 55 |
-
### Iterative Research Graph
|
| 56 |
-
|
| 57 |
-
```
|
| 58 |
-
[Input] → [Thinking] → [Knowledge Gap] → [Decision: Complete?]
|
| 59 |
-
↓ No ↓ Yes
|
| 60 |
-
[Tool Selector] [Writer]
|
| 61 |
-
↓
|
| 62 |
-
[Execute Tools] → [Loop Back]
|
| 63 |
-
```
|
| 64 |
-
|
| 65 |
-
### Deep Research Graph
|
| 66 |
-
|
| 67 |
-
```
|
| 68 |
-
[Input] → [Planner] → [Parallel Iterative Loops] → [Synthesizer]
|
| 69 |
-
↓ ↓ ↓
|
| 70 |
-
[Loop1] [Loop2] [Loop3]
|
| 71 |
-
```
|
| 72 |
-
|
| 73 |
-
## State Management
|
| 74 |
-
|
| 75 |
-
State is managed via `WorkflowState` using `ContextVar` for thread-safe isolation:
|
| 76 |
-
|
| 77 |
-
- **Evidence**: Collected evidence from searches
|
| 78 |
-
- **Conversation**: Iteration history (gaps, tool calls, findings, thoughts)
|
| 79 |
-
- **Embedding Service**: For semantic search
|
| 80 |
-
|
| 81 |
-
State transitions occur at state nodes, which update the global workflow state.
|
| 82 |
-
|
| 83 |
-
## Execution Flow
|
| 84 |
-
|
| 85 |
-
1. **Graph Construction**: Build graph from nodes and edges
|
| 86 |
-
2. **Graph Validation**: Ensure graph is valid (no cycles, all nodes reachable)
|
| 87 |
-
3. **Graph Execution**: Traverse graph from entry node
|
| 88 |
-
4. **Node Execution**: Execute each node based on type
|
| 89 |
-
5. **Edge Evaluation**: Determine next node(s) based on edges
|
| 90 |
-
6. **Parallel Execution**: Use `asyncio.gather()` for parallel nodes
|
| 91 |
-
7. **State Updates**: Update state at state nodes
|
| 92 |
-
8. **Event Streaming**: Yield events during execution for UI
|
| 93 |
-
|
| 94 |
-
## Conditional Routing
|
| 95 |
-
|
| 96 |
-
Decision nodes evaluate conditions and return next node IDs:
|
| 97 |
-
|
| 98 |
-
- **Knowledge Gap Decision**: If `research_complete` → writer, else → tool selector
|
| 99 |
-
- **Budget Decision**: If budget exceeded → exit, else → continue
|
| 100 |
-
- **Iteration Decision**: If max iterations → exit, else → continue
|
| 101 |
-
|
| 102 |
-
## Parallel Execution
|
| 103 |
-
|
| 104 |
-
Parallel nodes execute multiple nodes concurrently:
|
| 105 |
-
|
| 106 |
-
- Each parallel branch runs independently
|
| 107 |
-
- Results are aggregated after all branches complete
|
| 108 |
-
- State is synchronized after parallel execution
|
| 109 |
-
- Errors in one branch don't stop other branches
|
| 110 |
-
|
| 111 |
-
## Budget Enforcement
|
| 112 |
-
|
| 113 |
-
Budget constraints are enforced at decision nodes:
|
| 114 |
-
|
| 115 |
-
- **Token Budget**: Track LLM token usage
|
| 116 |
-
- **Time Budget**: Track elapsed time
|
| 117 |
-
- **Iteration Budget**: Track iteration count
|
| 118 |
-
|
| 119 |
-
If any budget is exceeded, execution routes to exit node.
|
| 120 |
-
|
| 121 |
-
## Error Handling
|
| 122 |
-
|
| 123 |
-
Errors are handled at multiple levels:
|
| 124 |
-
|
| 125 |
-
1. **Node Level**: Catch errors in individual node execution
|
| 126 |
-
2. **Graph Level**: Handle errors during graph traversal
|
| 127 |
-
3. **State Level**: Rollback state changes on error
|
| 128 |
-
|
| 129 |
-
Errors are logged and yield error events for UI.
|
| 130 |
-
|
| 131 |
-
## Backward Compatibility
|
| 132 |
-
|
| 133 |
-
Graph execution is optional via feature flag:
|
| 134 |
-
|
| 135 |
-
- `USE_GRAPH_EXECUTION=true`: Use graph-based execution
|
| 136 |
-
- `USE_GRAPH_EXECUTION=false`: Use agent chain execution (existing)
|
| 137 |
-
|
| 138 |
-
This allows gradual migration and fallback if needed.
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/graph_orchestration.md
DELETED
|
@@ -1,235 +0,0 @@
|
|
| 1 |
-
# Graph Orchestration Architecture
|
| 2 |
-
|
| 3 |
-
## Graph Patterns
|
| 4 |
-
|
| 5 |
-
### Iterative Research Graph
|
| 6 |
-
|
| 7 |
-
```
|
| 8 |
-
[Input] → [Thinking] → [Knowledge Gap] → [Decision: Complete?]
|
| 9 |
-
↓ No ↓ Yes
|
| 10 |
-
[Tool Selector] [Writer]
|
| 11 |
-
↓
|
| 12 |
-
[Execute Tools] → [Loop Back]
|
| 13 |
-
```
|
| 14 |
-
|
| 15 |
-
### Deep Research Graph
|
| 16 |
-
|
| 17 |
-
```
|
| 18 |
-
[Input] → [Planner] → [Parallel Iterative Loops] → [Synthesizer]
|
| 19 |
-
↓ ↓ ↓
|
| 20 |
-
[Loop1] [Loop2] [Loop3]
|
| 21 |
-
```
|
| 22 |
-
|
| 23 |
-
### Deep Research
|
| 24 |
-
|
| 25 |
-
```mermaid
|
| 26 |
-
|
| 27 |
-
sequenceDiagram
|
| 28 |
-
actor User
|
| 29 |
-
participant GraphOrchestrator
|
| 30 |
-
participant InputParser
|
| 31 |
-
participant GraphBuilder
|
| 32 |
-
participant GraphExecutor
|
| 33 |
-
participant Agent
|
| 34 |
-
participant BudgetTracker
|
| 35 |
-
participant WorkflowState
|
| 36 |
-
|
| 37 |
-
User->>GraphOrchestrator: run(query)
|
| 38 |
-
GraphOrchestrator->>InputParser: detect_research_mode(query)
|
| 39 |
-
InputParser-->>GraphOrchestrator: mode (iterative/deep)
|
| 40 |
-
GraphOrchestrator->>GraphBuilder: build_graph(mode)
|
| 41 |
-
GraphBuilder-->>GraphOrchestrator: ResearchGraph
|
| 42 |
-
GraphOrchestrator->>WorkflowState: init_workflow_state()
|
| 43 |
-
GraphOrchestrator->>BudgetTracker: create_budget()
|
| 44 |
-
GraphOrchestrator->>GraphExecutor: _execute_graph(graph)
|
| 45 |
-
|
| 46 |
-
loop For each node in graph
|
| 47 |
-
GraphExecutor->>Agent: execute_node(agent_node)
|
| 48 |
-
Agent->>Agent: process_input
|
| 49 |
-
Agent-->>GraphExecutor: result
|
| 50 |
-
GraphExecutor->>WorkflowState: update_state(result)
|
| 51 |
-
GraphExecutor->>BudgetTracker: add_tokens(used)
|
| 52 |
-
GraphExecutor->>BudgetTracker: check_budget()
|
| 53 |
-
alt Budget exceeded
|
| 54 |
-
GraphExecutor->>GraphOrchestrator: emit(error_event)
|
| 55 |
-
else Continue
|
| 56 |
-
GraphExecutor->>GraphOrchestrator: emit(progress_event)
|
| 57 |
-
end
|
| 58 |
-
end
|
| 59 |
-
|
| 60 |
-
GraphOrchestrator->>User: AsyncGenerator[AgentEvent]
|
| 61 |
-
|
| 62 |
-
```
|
| 63 |
-
|
| 64 |
-
### Iterative Research
|
| 65 |
-
|
| 66 |
-
```mermaid
|
| 67 |
-
sequenceDiagram
|
| 68 |
-
participant IterativeFlow
|
| 69 |
-
participant ThinkingAgent
|
| 70 |
-
participant KnowledgeGapAgent
|
| 71 |
-
participant ToolSelector
|
| 72 |
-
participant ToolExecutor
|
| 73 |
-
participant JudgeHandler
|
| 74 |
-
participant WriterAgent
|
| 75 |
-
|
| 76 |
-
IterativeFlow->>IterativeFlow: run(query)
|
| 77 |
-
|
| 78 |
-
loop Until complete or max_iterations
|
| 79 |
-
IterativeFlow->>ThinkingAgent: generate_observations()
|
| 80 |
-
ThinkingAgent-->>IterativeFlow: observations
|
| 81 |
-
|
| 82 |
-
IterativeFlow->>KnowledgeGapAgent: evaluate_gaps()
|
| 83 |
-
KnowledgeGapAgent-->>IterativeFlow: KnowledgeGapOutput
|
| 84 |
-
|
| 85 |
-
alt Research complete
|
| 86 |
-
IterativeFlow->>WriterAgent: create_final_report()
|
| 87 |
-
WriterAgent-->>IterativeFlow: final_report
|
| 88 |
-
else Gaps remain
|
| 89 |
-
IterativeFlow->>ToolSelector: select_agents(gap)
|
| 90 |
-
ToolSelector-->>IterativeFlow: AgentSelectionPlan
|
| 91 |
-
|
| 92 |
-
IterativeFlow->>ToolExecutor: execute_tool_tasks()
|
| 93 |
-
ToolExecutor-->>IterativeFlow: ToolAgentOutput[]
|
| 94 |
-
|
| 95 |
-
IterativeFlow->>JudgeHandler: assess_evidence()
|
| 96 |
-
JudgeHandler-->>IterativeFlow: should_continue
|
| 97 |
-
end
|
| 98 |
-
end
|
| 99 |
-
```
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
## Graph Structure
|
| 103 |
-
|
| 104 |
-
### Nodes
|
| 105 |
-
|
| 106 |
-
Graph nodes represent different stages in the research workflow:
|
| 107 |
-
|
| 108 |
-
1. **Agent Nodes**: Execute Pydantic AI agents
|
| 109 |
-
- Input: Prompt/query
|
| 110 |
-
- Output: Structured or unstructured response
|
| 111 |
-
- Examples: `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`
|
| 112 |
-
|
| 113 |
-
2. **State Nodes**: Update or read workflow state
|
| 114 |
-
- Input: Current state
|
| 115 |
-
- Output: Updated state
|
| 116 |
-
- Examples: Update evidence, update conversation history
|
| 117 |
-
|
| 118 |
-
3. **Decision Nodes**: Make routing decisions based on conditions
|
| 119 |
-
- Input: Current state/results
|
| 120 |
-
- Output: Next node ID
|
| 121 |
-
- Examples: Continue research vs. complete research
|
| 122 |
-
|
| 123 |
-
4. **Parallel Nodes**: Execute multiple nodes concurrently
|
| 124 |
-
- Input: List of node IDs
|
| 125 |
-
- Output: Aggregated results
|
| 126 |
-
- Examples: Parallel iterative research loops
|
| 127 |
-
|
| 128 |
-
### Edges
|
| 129 |
-
|
| 130 |
-
Edges define transitions between nodes:
|
| 131 |
-
|
| 132 |
-
1. **Sequential Edges**: Always traversed (no condition)
|
| 133 |
-
- From: Source node
|
| 134 |
-
- To: Target node
|
| 135 |
-
- Condition: None (always True)
|
| 136 |
-
|
| 137 |
-
2. **Conditional Edges**: Traversed based on condition
|
| 138 |
-
- From: Source node
|
| 139 |
-
- To: Target node
|
| 140 |
-
- Condition: Callable that returns bool
|
| 141 |
-
- Example: If research complete → go to writer, else → continue loop
|
| 142 |
-
|
| 143 |
-
3. **Parallel Edges**: Used for parallel execution branches
|
| 144 |
-
- From: Parallel node
|
| 145 |
-
- To: Multiple target nodes
|
| 146 |
-
- Execution: All targets run concurrently
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
## State Management
|
| 150 |
-
|
| 151 |
-
State is managed via `WorkflowState` using `ContextVar` for thread-safe isolation:
|
| 152 |
-
|
| 153 |
-
- **Evidence**: Collected evidence from searches
|
| 154 |
-
- **Conversation**: Iteration history (gaps, tool calls, findings, thoughts)
|
| 155 |
-
- **Embedding Service**: For semantic search
|
| 156 |
-
|
| 157 |
-
State transitions occur at state nodes, which update the global workflow state.
|
| 158 |
-
|
| 159 |
-
## Execution Flow
|
| 160 |
-
|
| 161 |
-
1. **Graph Construction**: Build graph from nodes and edges
|
| 162 |
-
2. **Graph Validation**: Ensure graph is valid (no cycles, all nodes reachable)
|
| 163 |
-
3. **Graph Execution**: Traverse graph from entry node
|
| 164 |
-
4. **Node Execution**: Execute each node based on type
|
| 165 |
-
5. **Edge Evaluation**: Determine next node(s) based on edges
|
| 166 |
-
6. **Parallel Execution**: Use `asyncio.gather()` for parallel nodes
|
| 167 |
-
7. **State Updates**: Update state at state nodes
|
| 168 |
-
8. **Event Streaming**: Yield events during execution for UI
|
| 169 |
-
|
| 170 |
-
## Conditional Routing
|
| 171 |
-
|
| 172 |
-
Decision nodes evaluate conditions and return next node IDs:
|
| 173 |
-
|
| 174 |
-
- **Knowledge Gap Decision**: If `research_complete` → writer, else → tool selector
|
| 175 |
-
- **Budget Decision**: If budget exceeded → exit, else → continue
|
| 176 |
-
- **Iteration Decision**: If max iterations → exit, else → continue
|
| 177 |
-
|
| 178 |
-
## Parallel Execution
|
| 179 |
-
|
| 180 |
-
Parallel nodes execute multiple nodes concurrently:
|
| 181 |
-
|
| 182 |
-
- Each parallel branch runs independently
|
| 183 |
-
- Results are aggregated after all branches complete
|
| 184 |
-
- State is synchronized after parallel execution
|
| 185 |
-
- Errors in one branch don't stop other branches
|
| 186 |
-
|
| 187 |
-
## Budget Enforcement
|
| 188 |
-
|
| 189 |
-
Budget constraints are enforced at decision nodes:
|
| 190 |
-
|
| 191 |
-
- **Token Budget**: Track LLM token usage
|
| 192 |
-
- **Time Budget**: Track elapsed time
|
| 193 |
-
- **Iteration Budget**: Track iteration count
|
| 194 |
-
|
| 195 |
-
If any budget is exceeded, execution routes to exit node.
|
| 196 |
-
|
| 197 |
-
## Error Handling
|
| 198 |
-
|
| 199 |
-
Errors are handled at multiple levels:
|
| 200 |
-
|
| 201 |
-
1. **Node Level**: Catch errors in individual node execution
|
| 202 |
-
2. **Graph Level**: Handle errors during graph traversal
|
| 203 |
-
3. **State Level**: Rollback state changes on error
|
| 204 |
-
|
| 205 |
-
Errors are logged and yield error events for UI.
|
| 206 |
-
|
| 207 |
-
## Backward Compatibility
|
| 208 |
-
|
| 209 |
-
Graph execution is optional via feature flag:
|
| 210 |
-
|
| 211 |
-
- `USE_GRAPH_EXECUTION=true`: Use graph-based execution
|
| 212 |
-
- `USE_GRAPH_EXECUTION=false`: Use agent chain execution (existing)
|
| 213 |
-
|
| 214 |
-
This allows gradual migration and fallback if needed.
|
| 215 |
-
|
| 216 |
-
## See Also
|
| 217 |
-
|
| 218 |
-
- [Orchestrators](orchestrators.md) - Overview of all orchestrator patterns
|
| 219 |
-
- [Workflows](workflows.md) - Workflow diagrams and patterns
|
| 220 |
-
- [Workflow Diagrams](workflow-diagrams.md) - Detailed workflow diagrams
|
| 221 |
-
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/middleware.md
DELETED
|
@@ -1,142 +0,0 @@
|
|
| 1 |
-
# Middleware Architecture
|
| 2 |
-
|
| 3 |
-
DeepCritical uses middleware for state management, budget tracking, and workflow coordination.
|
| 4 |
-
|
| 5 |
-
## State Management
|
| 6 |
-
|
| 7 |
-
### WorkflowState
|
| 8 |
-
|
| 9 |
-
**File**: `src/middleware/state_machine.py`
|
| 10 |
-
|
| 11 |
-
**Purpose**: Thread-safe state management for research workflows
|
| 12 |
-
|
| 13 |
-
**Implementation**: Uses `ContextVar` for thread-safe isolation
|
| 14 |
-
|
| 15 |
-
**State Components**:
|
| 16 |
-
- `evidence: list[Evidence]`: Collected evidence from searches
|
| 17 |
-
- `conversation: Conversation`: Iteration history (gaps, tool calls, findings, thoughts)
|
| 18 |
-
- `embedding_service: Any`: Embedding service for semantic search
|
| 19 |
-
|
| 20 |
-
**Methods**:
|
| 21 |
-
- `add_evidence(evidence: Evidence)`: Adds evidence with URL-based deduplication
|
| 22 |
-
- `async search_related(query: str, top_k: int = 5) -> list[Evidence]`: Semantic search
|
| 23 |
-
|
| 24 |
-
**Initialization**:
|
| 25 |
-
```python
|
| 26 |
-
from src.middleware.state_machine import init_workflow_state
|
| 27 |
-
|
| 28 |
-
init_workflow_state(embedding_service)
|
| 29 |
-
```
|
| 30 |
-
|
| 31 |
-
**Access**:
|
| 32 |
-
```python
|
| 33 |
-
from src.middleware.state_machine import get_workflow_state
|
| 34 |
-
|
| 35 |
-
state = get_workflow_state() # Auto-initializes if missing
|
| 36 |
-
```
|
| 37 |
-
|
| 38 |
-
## Workflow Manager
|
| 39 |
-
|
| 40 |
-
**File**: `src/middleware/workflow_manager.py`
|
| 41 |
-
|
| 42 |
-
**Purpose**: Coordinates parallel research loops
|
| 43 |
-
|
| 44 |
-
**Methods**:
|
| 45 |
-
- `add_loop(loop: ResearchLoop)`: Add a research loop to manage
|
| 46 |
-
- `async run_loops_parallel() -> list[ResearchLoop]`: Run all loops in parallel
|
| 47 |
-
- `update_loop_status(loop_id: str, status: str)`: Update loop status
|
| 48 |
-
- `sync_loop_evidence_to_state()`: Synchronize evidence from loops to global state
|
| 49 |
-
|
| 50 |
-
**Features**:
|
| 51 |
-
- Uses `asyncio.gather()` for parallel execution
|
| 52 |
-
- Handles errors per loop (doesn't fail all if one fails)
|
| 53 |
-
- Tracks loop status: `pending`, `running`, `completed`, `failed`, `cancelled`
|
| 54 |
-
- Evidence deduplication across parallel loops
|
| 55 |
-
|
| 56 |
-
**Usage**:
|
| 57 |
-
```python
|
| 58 |
-
from src.middleware.workflow_manager import WorkflowManager
|
| 59 |
-
|
| 60 |
-
manager = WorkflowManager()
|
| 61 |
-
manager.add_loop(loop1)
|
| 62 |
-
manager.add_loop(loop2)
|
| 63 |
-
completed_loops = await manager.run_loops_parallel()
|
| 64 |
-
```
|
| 65 |
-
|
| 66 |
-
## Budget Tracker
|
| 67 |
-
|
| 68 |
-
**File**: `src/middleware/budget_tracker.py`
|
| 69 |
-
|
| 70 |
-
**Purpose**: Tracks and enforces resource limits
|
| 71 |
-
|
| 72 |
-
**Budget Components**:
|
| 73 |
-
- **Tokens**: LLM token usage
|
| 74 |
-
- **Time**: Elapsed time in seconds
|
| 75 |
-
- **Iterations**: Number of iterations
|
| 76 |
-
|
| 77 |
-
**Methods**:
|
| 78 |
-
- `create_budget(token_limit, time_limit_seconds, iterations_limit) -> BudgetStatus`
|
| 79 |
-
- `add_tokens(tokens: int)`: Add token usage
|
| 80 |
-
- `start_timer()`: Start time tracking
|
| 81 |
-
- `update_timer()`: Update elapsed time
|
| 82 |
-
- `increment_iteration()`: Increment iteration count
|
| 83 |
-
- `check_budget() -> BudgetStatus`: Check current budget status
|
| 84 |
-
- `can_continue() -> bool`: Check if research can continue
|
| 85 |
-
|
| 86 |
-
**Token Estimation**:
|
| 87 |
-
- `estimate_tokens(text: str) -> int`: ~4 chars per token
|
| 88 |
-
- `estimate_llm_call_tokens(prompt: str, response: str) -> int`: Estimate LLM call tokens
|
| 89 |
-
|
| 90 |
-
**Usage**:
|
| 91 |
-
```python
|
| 92 |
-
from src.middleware.budget_tracker import BudgetTracker
|
| 93 |
-
|
| 94 |
-
tracker = BudgetTracker()
|
| 95 |
-
budget = tracker.create_budget(
|
| 96 |
-
token_limit=100000,
|
| 97 |
-
time_limit_seconds=600,
|
| 98 |
-
iterations_limit=10
|
| 99 |
-
)
|
| 100 |
-
tracker.start_timer()
|
| 101 |
-
# ... research operations ...
|
| 102 |
-
if not tracker.can_continue():
|
| 103 |
-
# Budget exceeded, stop research
|
| 104 |
-
pass
|
| 105 |
-
```
|
| 106 |
-
|
| 107 |
-
## Models
|
| 108 |
-
|
| 109 |
-
All middleware models are defined in `src/utils/models.py`:
|
| 110 |
-
|
| 111 |
-
- `IterationData`: Data for a single iteration
|
| 112 |
-
- `Conversation`: Conversation history with iterations
|
| 113 |
-
- `ResearchLoop`: Research loop state and configuration
|
| 114 |
-
- `BudgetStatus`: Current budget status
|
| 115 |
-
|
| 116 |
-
## Thread Safety
|
| 117 |
-
|
| 118 |
-
All middleware components use `ContextVar` for thread-safe isolation:
|
| 119 |
-
|
| 120 |
-
- Each request/thread has its own workflow state
|
| 121 |
-
- No global mutable state
|
| 122 |
-
- Safe for concurrent requests
|
| 123 |
-
|
| 124 |
-
## See Also
|
| 125 |
-
|
| 126 |
-
- [Orchestrators](orchestrators.md) - How middleware is used in orchestration
|
| 127 |
-
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 128 |
-
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/orchestrators.md
DELETED
|
@@ -1,198 +0,0 @@
|
|
| 1 |
-
# Orchestrators Architecture
|
| 2 |
-
|
| 3 |
-
DeepCritical supports multiple orchestration patterns for research workflows.
|
| 4 |
-
|
| 5 |
-
## Research Flows
|
| 6 |
-
|
| 7 |
-
### IterativeResearchFlow
|
| 8 |
-
|
| 9 |
-
**File**: `src/orchestrator/research_flow.py`
|
| 10 |
-
|
| 11 |
-
**Pattern**: Generate observations → Evaluate gaps → Select tools → Execute → Judge → Continue/Complete
|
| 12 |
-
|
| 13 |
-
**Agents Used**:
|
| 14 |
-
- `KnowledgeGapAgent`: Evaluates research completeness
|
| 15 |
-
- `ToolSelectorAgent`: Selects tools for addressing gaps
|
| 16 |
-
- `ThinkingAgent`: Generates observations
|
| 17 |
-
- `WriterAgent`: Creates final report
|
| 18 |
-
- `JudgeHandler`: Assesses evidence sufficiency
|
| 19 |
-
|
| 20 |
-
**Features**:
|
| 21 |
-
- Tracks iterations, time, budget
|
| 22 |
-
- Supports graph execution (`use_graph=True`) and agent chains (`use_graph=False`)
|
| 23 |
-
- Iterates until research complete or constraints met
|
| 24 |
-
|
| 25 |
-
**Usage**:
|
| 26 |
-
```python
|
| 27 |
-
from src.orchestrator.research_flow import IterativeResearchFlow
|
| 28 |
-
|
| 29 |
-
flow = IterativeResearchFlow(
|
| 30 |
-
search_handler=search_handler,
|
| 31 |
-
judge_handler=judge_handler,
|
| 32 |
-
use_graph=False
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
async for event in flow.run(query):
|
| 36 |
-
# Handle events
|
| 37 |
-
pass
|
| 38 |
-
```
|
| 39 |
-
|
| 40 |
-
### DeepResearchFlow
|
| 41 |
-
|
| 42 |
-
**File**: `src/orchestrator/research_flow.py`
|
| 43 |
-
|
| 44 |
-
**Pattern**: Planner → Parallel iterative loops per section → Synthesizer
|
| 45 |
-
|
| 46 |
-
**Agents Used**:
|
| 47 |
-
- `PlannerAgent`: Breaks query into report sections
|
| 48 |
-
- `IterativeResearchFlow`: Per-section research (parallel)
|
| 49 |
-
- `LongWriterAgent` or `ProofreaderAgent`: Final synthesis
|
| 50 |
-
|
| 51 |
-
**Features**:
|
| 52 |
-
- Uses `WorkflowManager` for parallel execution
|
| 53 |
-
- Budget tracking per section and globally
|
| 54 |
-
- State synchronization across parallel loops
|
| 55 |
-
- Supports graph execution and agent chains
|
| 56 |
-
|
| 57 |
-
**Usage**:
|
| 58 |
-
```python
|
| 59 |
-
from src.orchestrator.research_flow import DeepResearchFlow
|
| 60 |
-
|
| 61 |
-
flow = DeepResearchFlow(
|
| 62 |
-
search_handler=search_handler,
|
| 63 |
-
judge_handler=judge_handler,
|
| 64 |
-
use_graph=True
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
async for event in flow.run(query):
|
| 68 |
-
# Handle events
|
| 69 |
-
pass
|
| 70 |
-
```
|
| 71 |
-
|
| 72 |
-
## Graph Orchestrator
|
| 73 |
-
|
| 74 |
-
**File**: `src/orchestrator/graph_orchestrator.py`
|
| 75 |
-
|
| 76 |
-
**Purpose**: Graph-based execution using Pydantic AI agents as nodes
|
| 77 |
-
|
| 78 |
-
**Features**:
|
| 79 |
-
- Uses Pydantic AI Graphs (when available) or agent chains (fallback)
|
| 80 |
-
- Routes based on research mode (iterative/deep/auto)
|
| 81 |
-
- Streams `AgentEvent` objects for UI
|
| 82 |
-
|
| 83 |
-
**Node Types**:
|
| 84 |
-
- **Agent Nodes**: Execute Pydantic AI agents
|
| 85 |
-
- **State Nodes**: Update or read workflow state
|
| 86 |
-
- **Decision Nodes**: Make routing decisions
|
| 87 |
-
- **Parallel Nodes**: Execute multiple nodes concurrently
|
| 88 |
-
|
| 89 |
-
**Edge Types**:
|
| 90 |
-
- **Sequential Edges**: Always traversed
|
| 91 |
-
- **Conditional Edges**: Traversed based on condition
|
| 92 |
-
- **Parallel Edges**: Used for parallel execution branches
|
| 93 |
-
|
| 94 |
-
## Orchestrator Factory
|
| 95 |
-
|
| 96 |
-
**File**: `src/orchestrator_factory.py`
|
| 97 |
-
|
| 98 |
-
**Purpose**: Factory for creating orchestrators
|
| 99 |
-
|
| 100 |
-
**Modes**:
|
| 101 |
-
- **Simple**: Legacy orchestrator (backward compatible)
|
| 102 |
-
- **Advanced**: Magentic orchestrator (requires OpenAI API key)
|
| 103 |
-
- **Auto-detect**: Chooses based on API key availability
|
| 104 |
-
|
| 105 |
-
**Usage**:
|
| 106 |
-
```python
|
| 107 |
-
from src.orchestrator_factory import create_orchestrator
|
| 108 |
-
|
| 109 |
-
orchestrator = create_orchestrator(
|
| 110 |
-
search_handler=search_handler,
|
| 111 |
-
judge_handler=judge_handler,
|
| 112 |
-
config={},
|
| 113 |
-
mode="advanced" # or "simple" or None for auto-detect
|
| 114 |
-
)
|
| 115 |
-
```
|
| 116 |
-
|
| 117 |
-
## Magentic Orchestrator
|
| 118 |
-
|
| 119 |
-
**File**: `src/orchestrator_magentic.py`
|
| 120 |
-
|
| 121 |
-
**Purpose**: Multi-agent coordination using Microsoft Agent Framework
|
| 122 |
-
|
| 123 |
-
**Features**:
|
| 124 |
-
- Uses `agent-framework-core`
|
| 125 |
-
- ChatAgent pattern with internal LLMs per agent
|
| 126 |
-
- `MagenticBuilder` with participants: searcher, hypothesizer, judge, reporter
|
| 127 |
-
- Manager orchestrates agents via `OpenAIChatClient`
|
| 128 |
-
- Requires OpenAI API key (function calling support)
|
| 129 |
-
- Event-driven: converts Magentic events to `AgentEvent` for UI streaming
|
| 130 |
-
|
| 131 |
-
**Requirements**:
|
| 132 |
-
- `agent-framework-core` package
|
| 133 |
-
- OpenAI API key
|
| 134 |
-
|
| 135 |
-
## Hierarchical Orchestrator
|
| 136 |
-
|
| 137 |
-
**File**: `src/orchestrator_hierarchical.py`
|
| 138 |
-
|
| 139 |
-
**Purpose**: Hierarchical orchestrator using middleware and sub-teams
|
| 140 |
-
|
| 141 |
-
**Features**:
|
| 142 |
-
- Uses `SubIterationMiddleware` with `ResearchTeam` and `LLMSubIterationJudge`
|
| 143 |
-
- Adapts Magentic ChatAgent to `SubIterationTeam` protocol
|
| 144 |
-
- Event-driven via `asyncio.Queue` for coordination
|
| 145 |
-
- Supports sub-iteration patterns for complex research tasks
|
| 146 |
-
|
| 147 |
-
## Legacy Simple Mode
|
| 148 |
-
|
| 149 |
-
**File**: `src/legacy_orchestrator.py`
|
| 150 |
-
|
| 151 |
-
**Purpose**: Linear search-judge-synthesize loop
|
| 152 |
-
|
| 153 |
-
**Features**:
|
| 154 |
-
- Uses `SearchHandlerProtocol` and `JudgeHandlerProtocol`
|
| 155 |
-
- Generator-based design yielding `AgentEvent` objects
|
| 156 |
-
- Backward compatibility for simple use cases
|
| 157 |
-
|
| 158 |
-
## State Initialization
|
| 159 |
-
|
| 160 |
-
All orchestrators must initialize workflow state:
|
| 161 |
-
|
| 162 |
-
```python
|
| 163 |
-
from src.middleware.state_machine import init_workflow_state
|
| 164 |
-
from src.services.embeddings import get_embedding_service
|
| 165 |
-
|
| 166 |
-
embedding_service = get_embedding_service()
|
| 167 |
-
init_workflow_state(embedding_service)
|
| 168 |
-
```
|
| 169 |
-
|
| 170 |
-
## Event Streaming
|
| 171 |
-
|
| 172 |
-
All orchestrators yield `AgentEvent` objects:
|
| 173 |
-
|
| 174 |
-
**Event Types**:
|
| 175 |
-
- `started`: Research started
|
| 176 |
-
- `search_complete`: Search completed
|
| 177 |
-
- `judge_complete`: Evidence evaluation completed
|
| 178 |
-
- `hypothesizing`: Generating hypotheses
|
| 179 |
-
- `synthesizing`: Synthesizing results
|
| 180 |
-
- `complete`: Research completed
|
| 181 |
-
- `error`: Error occurred
|
| 182 |
-
|
| 183 |
-
**Event Structure**:
|
| 184 |
-
```python
|
| 185 |
-
class AgentEvent:
|
| 186 |
-
type: str
|
| 187 |
-
iteration: int | None
|
| 188 |
-
data: dict[str, Any]
|
| 189 |
-
```
|
| 190 |
-
|
| 191 |
-
## See Also
|
| 192 |
-
|
| 193 |
-
- [Graph Orchestration](graph-orchestration.md) - Graph-based execution details
|
| 194 |
-
- [Graph Orchestration (Detailed)](graph_orchestration.md) - Detailed graph architecture
|
| 195 |
-
- [Workflows](workflows.md) - Workflow diagrams and patterns
|
| 196 |
-
- [Workflow Diagrams](workflow-diagrams.md) - Detailed workflow diagrams
|
| 197 |
-
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/services.md
DELETED
|
@@ -1,142 +0,0 @@
|
|
| 1 |
-
# Services Architecture
|
| 2 |
-
|
| 3 |
-
DeepCritical provides several services for embeddings, RAG, and statistical analysis.
|
| 4 |
-
|
| 5 |
-
## Embedding Service
|
| 6 |
-
|
| 7 |
-
**File**: `src/services/embeddings.py`
|
| 8 |
-
|
| 9 |
-
**Purpose**: Local sentence-transformers for semantic search and deduplication
|
| 10 |
-
|
| 11 |
-
**Features**:
|
| 12 |
-
- **No API Key Required**: Uses local sentence-transformers models
|
| 13 |
-
- **Async-Safe**: All operations use `run_in_executor()` to avoid blocking
|
| 14 |
-
- **ChromaDB Storage**: Vector storage for embeddings
|
| 15 |
-
- **Deduplication**: 0.85 similarity threshold (85% similarity = duplicate)
|
| 16 |
-
|
| 17 |
-
**Model**: Configurable via `settings.local_embedding_model` (default: `all-MiniLM-L6-v2`)
|
| 18 |
-
|
| 19 |
-
**Methods**:
|
| 20 |
-
- `async def embed(text: str) -> list[float]`: Generate embeddings
|
| 21 |
-
- `async def embed_batch(texts: list[str]) -> list[list[float]]`: Batch embedding
|
| 22 |
-
- `async def similarity(text1: str, text2: str) -> float`: Calculate similarity
|
| 23 |
-
- `async def find_duplicates(texts: list[str], threshold: float = 0.85) -> list[tuple[int, int]]`: Find duplicates
|
| 24 |
-
|
| 25 |
-
**Usage**:
|
| 26 |
-
```python
|
| 27 |
-
from src.services.embeddings import get_embedding_service
|
| 28 |
-
|
| 29 |
-
service = get_embedding_service()
|
| 30 |
-
embedding = await service.embed("text to embed")
|
| 31 |
-
```
|
| 32 |
-
|
| 33 |
-
## LlamaIndex RAG Service
|
| 34 |
-
|
| 35 |
-
**File**: `src/services/rag.py`
|
| 36 |
-
|
| 37 |
-
**Purpose**: Retrieval-Augmented Generation using LlamaIndex
|
| 38 |
-
|
| 39 |
-
**Features**:
|
| 40 |
-
- **OpenAI Embeddings**: Requires `OPENAI_API_KEY`
|
| 41 |
-
- **ChromaDB Storage**: Vector database for document storage
|
| 42 |
-
- **Metadata Preservation**: Preserves source, title, URL, date, authors
|
| 43 |
-
- **Lazy Initialization**: Graceful fallback if OpenAI key not available
|
| 44 |
-
|
| 45 |
-
**Methods**:
|
| 46 |
-
- `async def ingest_evidence(evidence: list[Evidence]) -> None`: Ingest evidence into RAG
|
| 47 |
-
- `async def retrieve(query: str, top_k: int = 5) -> list[Document]`: Retrieve relevant documents
|
| 48 |
-
- `async def query(query: str, top_k: int = 5) -> str`: Query with RAG
|
| 49 |
-
|
| 50 |
-
**Usage**:
|
| 51 |
-
```python
|
| 52 |
-
from src.services.rag import get_rag_service
|
| 53 |
-
|
| 54 |
-
service = get_rag_service()
|
| 55 |
-
if service:
|
| 56 |
-
documents = await service.retrieve("query", top_k=5)
|
| 57 |
-
```
|
| 58 |
-
|
| 59 |
-
## Statistical Analyzer
|
| 60 |
-
|
| 61 |
-
**File**: `src/services/statistical_analyzer.py`
|
| 62 |
-
|
| 63 |
-
**Purpose**: Secure execution of AI-generated statistical code
|
| 64 |
-
|
| 65 |
-
**Features**:
|
| 66 |
-
- **Modal Sandbox**: Secure, isolated execution environment
|
| 67 |
-
- **Code Generation**: Generates Python code via LLM
|
| 68 |
-
- **Library Pinning**: Version-pinned libraries in `SANDBOX_LIBRARIES`
|
| 69 |
-
- **Network Isolation**: `block_network=True` by default
|
| 70 |
-
|
| 71 |
-
**Libraries Available**:
|
| 72 |
-
- pandas, numpy, scipy
|
| 73 |
-
- matplotlib, scikit-learn
|
| 74 |
-
- statsmodels
|
| 75 |
-
|
| 76 |
-
**Output**: `AnalysisResult` with:
|
| 77 |
-
- `verdict`: SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 78 |
-
- `code`: Generated analysis code
|
| 79 |
-
- `output`: Execution output
|
| 80 |
-
- `error`: Error message if execution failed
|
| 81 |
-
|
| 82 |
-
**Usage**:
|
| 83 |
-
```python
|
| 84 |
-
from src.services.statistical_analyzer import StatisticalAnalyzer
|
| 85 |
-
|
| 86 |
-
analyzer = StatisticalAnalyzer()
|
| 87 |
-
result = await analyzer.analyze(
|
| 88 |
-
hypothesis="Metformin reduces cancer risk",
|
| 89 |
-
evidence=evidence_list
|
| 90 |
-
)
|
| 91 |
-
```
|
| 92 |
-
|
| 93 |
-
## Singleton Pattern
|
| 94 |
-
|
| 95 |
-
All services use the singleton pattern with `@lru_cache(maxsize=1)`:
|
| 96 |
-
|
| 97 |
-
```python
|
| 98 |
-
@lru_cache(maxsize=1)
|
| 99 |
-
def get_embedding_service() -> EmbeddingService:
|
| 100 |
-
return EmbeddingService()
|
| 101 |
-
```
|
| 102 |
-
|
| 103 |
-
This ensures:
|
| 104 |
-
- Single instance per process
|
| 105 |
-
- Lazy initialization
|
| 106 |
-
- No dependencies required at import time
|
| 107 |
-
|
| 108 |
-
## Service Availability
|
| 109 |
-
|
| 110 |
-
Services check availability before use:
|
| 111 |
-
|
| 112 |
-
```python
|
| 113 |
-
from src.utils.config import settings
|
| 114 |
-
|
| 115 |
-
if settings.modal_available:
|
| 116 |
-
# Use Modal sandbox
|
| 117 |
-
pass
|
| 118 |
-
|
| 119 |
-
if settings.has_openai_key:
|
| 120 |
-
# Use OpenAI embeddings for RAG
|
| 121 |
-
pass
|
| 122 |
-
```
|
| 123 |
-
|
| 124 |
-
## See Also
|
| 125 |
-
|
| 126 |
-
- [Tools](tools.md) - How services are used by search tools
|
| 127 |
-
- [API Reference - Services](../api/services.md) - API documentation
|
| 128 |
-
- [Configuration](../configuration/index.md) - Service configuration
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/tools.md
DELETED
|
@@ -1,175 +0,0 @@
|
|
| 1 |
-
# Tools Architecture
|
| 2 |
-
|
| 3 |
-
DeepCritical implements a protocol-based search tool system for retrieving evidence from multiple sources.
|
| 4 |
-
|
| 5 |
-
## SearchTool Protocol
|
| 6 |
-
|
| 7 |
-
All tools implement the `SearchTool` protocol from `src/tools/base.py`:
|
| 8 |
-
|
| 9 |
-
```python
|
| 10 |
-
class SearchTool(Protocol):
|
| 11 |
-
@property
|
| 12 |
-
def name(self) -> str: ...
|
| 13 |
-
|
| 14 |
-
async def search(
|
| 15 |
-
self,
|
| 16 |
-
query: str,
|
| 17 |
-
max_results: int = 10
|
| 18 |
-
) -> list[Evidence]: ...
|
| 19 |
-
```
|
| 20 |
-
|
| 21 |
-
## Rate Limiting
|
| 22 |
-
|
| 23 |
-
All tools use the `@retry` decorator from tenacity:
|
| 24 |
-
|
| 25 |
-
```python
|
| 26 |
-
@retry(
|
| 27 |
-
stop=stop_after_attempt(3),
|
| 28 |
-
wait=wait_exponential(...)
|
| 29 |
-
)
|
| 30 |
-
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 31 |
-
# Implementation
|
| 32 |
-
```
|
| 33 |
-
|
| 34 |
-
Tools with API rate limits implement `_rate_limit()` method and use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 35 |
-
|
| 36 |
-
## Error Handling
|
| 37 |
-
|
| 38 |
-
Tools raise custom exceptions:
|
| 39 |
-
|
| 40 |
-
- `SearchError`: General search failures
|
| 41 |
-
- `RateLimitError`: Rate limit exceeded
|
| 42 |
-
|
| 43 |
-
Tools handle HTTP errors (429, 500, timeout) and return empty lists on non-critical errors (with warning logs).
|
| 44 |
-
|
| 45 |
-
## Query Preprocessing
|
| 46 |
-
|
| 47 |
-
Tools use `preprocess_query()` from `src/tools/query_utils.py` to:
|
| 48 |
-
|
| 49 |
-
- Remove noise from queries
|
| 50 |
-
- Expand synonyms
|
| 51 |
-
- Normalize query format
|
| 52 |
-
|
| 53 |
-
## Evidence Conversion
|
| 54 |
-
|
| 55 |
-
All tools convert API responses to `Evidence` objects with:
|
| 56 |
-
|
| 57 |
-
- `Citation`: Title, URL, date, authors
|
| 58 |
-
- `content`: Evidence text
|
| 59 |
-
- `relevance_score`: 0.0-1.0 relevance score
|
| 60 |
-
- `metadata`: Additional metadata
|
| 61 |
-
|
| 62 |
-
Missing fields are handled gracefully with defaults.
|
| 63 |
-
|
| 64 |
-
## Tool Implementations
|
| 65 |
-
|
| 66 |
-
### PubMed Tool
|
| 67 |
-
|
| 68 |
-
**File**: `src/tools/pubmed.py`
|
| 69 |
-
|
| 70 |
-
**API**: NCBI E-utilities (ESearch → EFetch)
|
| 71 |
-
|
| 72 |
-
**Rate Limiting**:
|
| 73 |
-
- 0.34s between requests (3 req/sec without API key)
|
| 74 |
-
- 0.1s between requests (10 req/sec with NCBI API key)
|
| 75 |
-
|
| 76 |
-
**Features**:
|
| 77 |
-
- XML parsing with `xmltodict`
|
| 78 |
-
- Handles single vs. multiple articles
|
| 79 |
-
- Query preprocessing
|
| 80 |
-
- Evidence conversion with metadata extraction
|
| 81 |
-
|
| 82 |
-
### ClinicalTrials Tool
|
| 83 |
-
|
| 84 |
-
**File**: `src/tools/clinicaltrials.py`
|
| 85 |
-
|
| 86 |
-
**API**: ClinicalTrials.gov API v2
|
| 87 |
-
|
| 88 |
-
**Important**: Uses `requests` library (NOT httpx) because WAF blocks httpx TLS fingerprint.
|
| 89 |
-
|
| 90 |
-
**Execution**: Runs in thread pool: `await asyncio.to_thread(requests.get, ...)`
|
| 91 |
-
|
| 92 |
-
**Filtering**:
|
| 93 |
-
- Only interventional studies
|
| 94 |
-
- Status: `COMPLETED`, `ACTIVE_NOT_RECRUITING`, `RECRUITING`, `ENROLLING_BY_INVITATION`
|
| 95 |
-
|
| 96 |
-
**Features**:
|
| 97 |
-
- Parses nested JSON structure
|
| 98 |
-
- Extracts trial metadata
|
| 99 |
-
- Evidence conversion
|
| 100 |
-
|
| 101 |
-
### Europe PMC Tool
|
| 102 |
-
|
| 103 |
-
**File**: `src/tools/europepmc.py`
|
| 104 |
-
|
| 105 |
-
**API**: Europe PMC REST API
|
| 106 |
-
|
| 107 |
-
**Features**:
|
| 108 |
-
- Handles preprint markers: `[PREPRINT - Not peer-reviewed]`
|
| 109 |
-
- Builds URLs from DOI or PMID
|
| 110 |
-
- Checks `pubTypeList` for preprint detection
|
| 111 |
-
- Includes both preprints and peer-reviewed articles
|
| 112 |
-
|
| 113 |
-
### RAG Tool
|
| 114 |
-
|
| 115 |
-
**File**: `src/tools/rag_tool.py`
|
| 116 |
-
|
| 117 |
-
**Purpose**: Semantic search within collected evidence
|
| 118 |
-
|
| 119 |
-
**Implementation**: Wraps `LlamaIndexRAGService`
|
| 120 |
-
|
| 121 |
-
**Features**:
|
| 122 |
-
- Returns Evidence from RAG results
|
| 123 |
-
- Handles evidence ingestion
|
| 124 |
-
- Semantic similarity search
|
| 125 |
-
- Metadata preservation
|
| 126 |
-
|
| 127 |
-
### Search Handler
|
| 128 |
-
|
| 129 |
-
**File**: `src/tools/search_handler.py`
|
| 130 |
-
|
| 131 |
-
**Purpose**: Orchestrates parallel searches across multiple tools
|
| 132 |
-
|
| 133 |
-
**Features**:
|
| 134 |
-
- Uses `asyncio.gather()` with `return_exceptions=True`
|
| 135 |
-
- Aggregates results into `SearchResult`
|
| 136 |
-
- Handles tool failures gracefully
|
| 137 |
-
- Deduplicates results by URL
|
| 138 |
-
|
| 139 |
-
## Tool Registration
|
| 140 |
-
|
| 141 |
-
Tools are registered in the search handler:
|
| 142 |
-
|
| 143 |
-
```python
|
| 144 |
-
from src.tools.pubmed import PubMedTool
|
| 145 |
-
from src.tools.clinicaltrials import ClinicalTrialsTool
|
| 146 |
-
from src.tools.europepmc import EuropePMCTool
|
| 147 |
-
|
| 148 |
-
search_handler = SearchHandler(
|
| 149 |
-
tools=[
|
| 150 |
-
PubMedTool(),
|
| 151 |
-
ClinicalTrialsTool(),
|
| 152 |
-
EuropePMCTool(),
|
| 153 |
-
]
|
| 154 |
-
)
|
| 155 |
-
```
|
| 156 |
-
|
| 157 |
-
## See Also
|
| 158 |
-
|
| 159 |
-
- [Services](services.md) - RAG and embedding services
|
| 160 |
-
- [API Reference - Tools](../api/tools.md) - API documentation
|
| 161 |
-
- [Contributing - Implementation Patterns](../contributing/implementation-patterns.md) - Development guidelines
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/workflow-diagrams.md
DELETED
|
@@ -1,670 +0,0 @@
|
|
| 1 |
-
# DeepCritical Workflow - Simplified Magentic Architecture
|
| 2 |
-
|
| 3 |
-
> **Architecture Pattern**: Microsoft Magentic Orchestration
|
| 4 |
-
> **Design Philosophy**: Simple, dynamic, manager-driven coordination
|
| 5 |
-
> **Key Innovation**: Intelligent manager replaces rigid sequential phases
|
| 6 |
-
|
| 7 |
-
---
|
| 8 |
-
|
| 9 |
-
## 1. High-Level Magentic Workflow
|
| 10 |
-
|
| 11 |
-
```mermaid
|
| 12 |
-
flowchart TD
|
| 13 |
-
Start([User Query]) --> Manager[Magentic Manager<br/>Plan • Select • Assess • Adapt]
|
| 14 |
-
|
| 15 |
-
Manager -->|Plans| Task1[Task Decomposition]
|
| 16 |
-
Task1 --> Manager
|
| 17 |
-
|
| 18 |
-
Manager -->|Selects & Executes| HypAgent[Hypothesis Agent]
|
| 19 |
-
Manager -->|Selects & Executes| SearchAgent[Search Agent]
|
| 20 |
-
Manager -->|Selects & Executes| AnalysisAgent[Analysis Agent]
|
| 21 |
-
Manager -->|Selects & Executes| ReportAgent[Report Agent]
|
| 22 |
-
|
| 23 |
-
HypAgent -->|Results| Manager
|
| 24 |
-
SearchAgent -->|Results| Manager
|
| 25 |
-
AnalysisAgent -->|Results| Manager
|
| 26 |
-
ReportAgent -->|Results| Manager
|
| 27 |
-
|
| 28 |
-
Manager -->|Assesses Quality| Decision{Good Enough?}
|
| 29 |
-
Decision -->|No - Refine| Manager
|
| 30 |
-
Decision -->|No - Different Agent| Manager
|
| 31 |
-
Decision -->|No - Stalled| Replan[Reset Plan]
|
| 32 |
-
Replan --> Manager
|
| 33 |
-
|
| 34 |
-
Decision -->|Yes| Synthesis[Synthesize Final Result]
|
| 35 |
-
Synthesis --> Output([Research Report])
|
| 36 |
-
|
| 37 |
-
style Start fill:#e1f5e1
|
| 38 |
-
style Manager fill:#ffe6e6
|
| 39 |
-
style HypAgent fill:#fff4e6
|
| 40 |
-
style SearchAgent fill:#fff4e6
|
| 41 |
-
style AnalysisAgent fill:#fff4e6
|
| 42 |
-
style ReportAgent fill:#fff4e6
|
| 43 |
-
style Decision fill:#ffd6d6
|
| 44 |
-
style Synthesis fill:#d4edda
|
| 45 |
-
style Output fill:#e1f5e1
|
| 46 |
-
```
|
| 47 |
-
|
| 48 |
-
## 2. Magentic Manager: The 6-Phase Cycle
|
| 49 |
-
|
| 50 |
-
```mermaid
|
| 51 |
-
flowchart LR
|
| 52 |
-
P1[1. Planning<br/>Analyze task<br/>Create strategy] --> P2[2. Agent Selection<br/>Pick best agent<br/>for subtask]
|
| 53 |
-
P2 --> P3[3. Execution<br/>Run selected<br/>agent with tools]
|
| 54 |
-
P3 --> P4[4. Assessment<br/>Evaluate quality<br/>Check progress]
|
| 55 |
-
P4 --> Decision{Quality OK?<br/>Progress made?}
|
| 56 |
-
Decision -->|Yes| P6[6. Synthesis<br/>Combine results<br/>Generate report]
|
| 57 |
-
Decision -->|No| P5[5. Iteration<br/>Adjust plan<br/>Try again]
|
| 58 |
-
P5 --> P2
|
| 59 |
-
P6 --> Done([Complete])
|
| 60 |
-
|
| 61 |
-
style P1 fill:#fff4e6
|
| 62 |
-
style P2 fill:#ffe6e6
|
| 63 |
-
style P3 fill:#e6f3ff
|
| 64 |
-
style P4 fill:#ffd6d6
|
| 65 |
-
style P5 fill:#fff3cd
|
| 66 |
-
style P6 fill:#d4edda
|
| 67 |
-
style Done fill:#e1f5e1
|
| 68 |
-
```
|
| 69 |
-
|
| 70 |
-
## 3. Simplified Agent Architecture
|
| 71 |
-
|
| 72 |
-
```mermaid
|
| 73 |
-
graph TB
|
| 74 |
-
subgraph "Orchestration Layer"
|
| 75 |
-
Manager[Magentic Manager<br/>• Plans workflow<br/>• Selects agents<br/>• Assesses quality<br/>• Adapts strategy]
|
| 76 |
-
SharedContext[(Shared Context<br/>• Hypotheses<br/>• Search Results<br/>• Analysis<br/>• Progress)]
|
| 77 |
-
Manager <--> SharedContext
|
| 78 |
-
end
|
| 79 |
-
|
| 80 |
-
subgraph "Specialist Agents"
|
| 81 |
-
HypAgent[Hypothesis Agent<br/>• Domain understanding<br/>• Hypothesis generation<br/>• Testability refinement]
|
| 82 |
-
SearchAgent[Search Agent<br/>• Multi-source search<br/>• RAG retrieval<br/>• Result ranking]
|
| 83 |
-
AnalysisAgent[Analysis Agent<br/>• Evidence extraction<br/>• Statistical analysis<br/>• Code execution]
|
| 84 |
-
ReportAgent[Report Agent<br/>• Report assembly<br/>• Visualization<br/>• Citation formatting]
|
| 85 |
-
end
|
| 86 |
-
|
| 87 |
-
subgraph "MCP Tools"
|
| 88 |
-
WebSearch[Web Search<br/>PubMed • arXiv • bioRxiv]
|
| 89 |
-
CodeExec[Code Execution<br/>Sandboxed Python]
|
| 90 |
-
RAG[RAG Retrieval<br/>Vector DB • Embeddings]
|
| 91 |
-
Viz[Visualization<br/>Charts • Graphs]
|
| 92 |
-
end
|
| 93 |
-
|
| 94 |
-
Manager -->|Selects & Directs| HypAgent
|
| 95 |
-
Manager -->|Selects & Directs| SearchAgent
|
| 96 |
-
Manager -->|Selects & Directs| AnalysisAgent
|
| 97 |
-
Manager -->|Selects & Directs| ReportAgent
|
| 98 |
-
|
| 99 |
-
HypAgent --> SharedContext
|
| 100 |
-
SearchAgent --> SharedContext
|
| 101 |
-
AnalysisAgent --> SharedContext
|
| 102 |
-
ReportAgent --> SharedContext
|
| 103 |
-
|
| 104 |
-
SearchAgent --> WebSearch
|
| 105 |
-
SearchAgent --> RAG
|
| 106 |
-
AnalysisAgent --> CodeExec
|
| 107 |
-
ReportAgent --> CodeExec
|
| 108 |
-
ReportAgent --> Viz
|
| 109 |
-
|
| 110 |
-
style Manager fill:#ffe6e6
|
| 111 |
-
style SharedContext fill:#ffe6f0
|
| 112 |
-
style HypAgent fill:#fff4e6
|
| 113 |
-
style SearchAgent fill:#fff4e6
|
| 114 |
-
style AnalysisAgent fill:#fff4e6
|
| 115 |
-
style ReportAgent fill:#fff4e6
|
| 116 |
-
style WebSearch fill:#e6f3ff
|
| 117 |
-
style CodeExec fill:#e6f3ff
|
| 118 |
-
style RAG fill:#e6f3ff
|
| 119 |
-
style Viz fill:#e6f3ff
|
| 120 |
-
```
|
| 121 |
-
|
| 122 |
-
## 4. Dynamic Workflow Example
|
| 123 |
-
|
| 124 |
-
```mermaid
|
| 125 |
-
sequenceDiagram
|
| 126 |
-
participant User
|
| 127 |
-
participant Manager
|
| 128 |
-
participant HypAgent
|
| 129 |
-
participant SearchAgent
|
| 130 |
-
participant AnalysisAgent
|
| 131 |
-
participant ReportAgent
|
| 132 |
-
|
| 133 |
-
User->>Manager: "Research protein folding in Alzheimer's"
|
| 134 |
-
|
| 135 |
-
Note over Manager: PLAN: Generate hypotheses → Search → Analyze → Report
|
| 136 |
-
|
| 137 |
-
Manager->>HypAgent: Generate 3 hypotheses
|
| 138 |
-
HypAgent-->>Manager: Returns 3 hypotheses
|
| 139 |
-
Note over Manager: ASSESS: Good quality, proceed
|
| 140 |
-
|
| 141 |
-
Manager->>SearchAgent: Search literature for hypothesis 1
|
| 142 |
-
SearchAgent-->>Manager: Returns 15 papers
|
| 143 |
-
Note over Manager: ASSESS: Good results, continue
|
| 144 |
-
|
| 145 |
-
Manager->>SearchAgent: Search for hypothesis 2
|
| 146 |
-
SearchAgent-->>Manager: Only 2 papers found
|
| 147 |
-
Note over Manager: ASSESS: Insufficient, refine search
|
| 148 |
-
|
| 149 |
-
Manager->>SearchAgent: Refined query for hypothesis 2
|
| 150 |
-
SearchAgent-->>Manager: Returns 12 papers
|
| 151 |
-
Note over Manager: ASSESS: Better, proceed
|
| 152 |
-
|
| 153 |
-
Manager->>AnalysisAgent: Analyze evidence for all hypotheses
|
| 154 |
-
AnalysisAgent-->>Manager: Returns analysis with code
|
| 155 |
-
Note over Manager: ASSESS: Complete, generate report
|
| 156 |
-
|
| 157 |
-
Manager->>ReportAgent: Create comprehensive report
|
| 158 |
-
ReportAgent-->>Manager: Returns formatted report
|
| 159 |
-
Note over Manager: SYNTHESIZE: Combine all results
|
| 160 |
-
|
| 161 |
-
Manager->>User: Final Research Report
|
| 162 |
-
```
|
| 163 |
-
|
| 164 |
-
## 5. Manager Decision Logic
|
| 165 |
-
|
| 166 |
-
```mermaid
|
| 167 |
-
flowchart TD
|
| 168 |
-
Start([Manager Receives Task]) --> Plan[Create Initial Plan]
|
| 169 |
-
|
| 170 |
-
Plan --> Select[Select Agent for Next Subtask]
|
| 171 |
-
Select --> Execute[Execute Agent]
|
| 172 |
-
Execute --> Collect[Collect Results]
|
| 173 |
-
|
| 174 |
-
Collect --> Assess[Assess Quality & Progress]
|
| 175 |
-
|
| 176 |
-
Assess --> Q1{Quality Sufficient?}
|
| 177 |
-
Q1 -->|No| Q2{Same Agent Can Fix?}
|
| 178 |
-
Q2 -->|Yes| Feedback[Provide Specific Feedback]
|
| 179 |
-
Feedback --> Execute
|
| 180 |
-
Q2 -->|No| Different[Try Different Agent]
|
| 181 |
-
Different --> Select
|
| 182 |
-
|
| 183 |
-
Q1 -->|Yes| Q3{Task Complete?}
|
| 184 |
-
Q3 -->|No| Q4{Making Progress?}
|
| 185 |
-
Q4 -->|Yes| Select
|
| 186 |
-
Q4 -->|No - Stalled| Replan[Reset Plan & Approach]
|
| 187 |
-
Replan --> Plan
|
| 188 |
-
|
| 189 |
-
Q3 -->|Yes| Synth[Synthesize Final Result]
|
| 190 |
-
Synth --> Done([Return Report])
|
| 191 |
-
|
| 192 |
-
style Start fill:#e1f5e1
|
| 193 |
-
style Plan fill:#fff4e6
|
| 194 |
-
style Select fill:#ffe6e6
|
| 195 |
-
style Execute fill:#e6f3ff
|
| 196 |
-
style Assess fill:#ffd6d6
|
| 197 |
-
style Q1 fill:#ffe6e6
|
| 198 |
-
style Q2 fill:#ffe6e6
|
| 199 |
-
style Q3 fill:#ffe6e6
|
| 200 |
-
style Q4 fill:#ffe6e6
|
| 201 |
-
style Synth fill:#d4edda
|
| 202 |
-
style Done fill:#e1f5e1
|
| 203 |
-
```
|
| 204 |
-
|
| 205 |
-
## 6. Hypothesis Agent Workflow
|
| 206 |
-
|
| 207 |
-
```mermaid
|
| 208 |
-
flowchart LR
|
| 209 |
-
Input[Research Query] --> Domain[Identify Domain<br/>& Key Concepts]
|
| 210 |
-
Domain --> Context[Retrieve Background<br/>Knowledge]
|
| 211 |
-
Context --> Generate[Generate 3-5<br/>Initial Hypotheses]
|
| 212 |
-
Generate --> Refine[Refine for<br/>Testability]
|
| 213 |
-
Refine --> Rank[Rank by<br/>Quality Score]
|
| 214 |
-
Rank --> Output[Return Top<br/>Hypotheses]
|
| 215 |
-
|
| 216 |
-
Output --> Struct[Hypothesis Structure:<br/>• Statement<br/>• Rationale<br/>• Testability Score<br/>• Data Requirements<br/>• Expected Outcomes]
|
| 217 |
-
|
| 218 |
-
style Input fill:#e1f5e1
|
| 219 |
-
style Output fill:#fff4e6
|
| 220 |
-
style Struct fill:#e6f3ff
|
| 221 |
-
```
|
| 222 |
-
|
| 223 |
-
## 7. Search Agent Workflow
|
| 224 |
-
|
| 225 |
-
```mermaid
|
| 226 |
-
flowchart TD
|
| 227 |
-
Input[Hypotheses] --> Strategy[Formulate Search<br/>Strategy per Hypothesis]
|
| 228 |
-
|
| 229 |
-
Strategy --> Multi[Multi-Source Search]
|
| 230 |
-
|
| 231 |
-
Multi --> PubMed[PubMed Search<br/>via MCP]
|
| 232 |
-
Multi --> ArXiv[arXiv Search<br/>via MCP]
|
| 233 |
-
Multi --> BioRxiv[bioRxiv Search<br/>via MCP]
|
| 234 |
-
|
| 235 |
-
PubMed --> Aggregate[Aggregate Results]
|
| 236 |
-
ArXiv --> Aggregate
|
| 237 |
-
BioRxiv --> Aggregate
|
| 238 |
-
|
| 239 |
-
Aggregate --> Filter[Filter & Rank<br/>by Relevance]
|
| 240 |
-
Filter --> Dedup[Deduplicate<br/>Cross-Reference]
|
| 241 |
-
Dedup --> Embed[Embed Documents<br/>via MCP]
|
| 242 |
-
Embed --> Vector[(Vector DB)]
|
| 243 |
-
Vector --> RAGRetrieval[RAG Retrieval<br/>Top-K per Hypothesis]
|
| 244 |
-
RAGRetrieval --> Output[Return Contextualized<br/>Search Results]
|
| 245 |
-
|
| 246 |
-
style Input fill:#fff4e6
|
| 247 |
-
style Multi fill:#ffe6e6
|
| 248 |
-
style Vector fill:#ffe6f0
|
| 249 |
-
style Output fill:#e6f3ff
|
| 250 |
-
```
|
| 251 |
-
|
| 252 |
-
## 8. Analysis Agent Workflow
|
| 253 |
-
|
| 254 |
-
```mermaid
|
| 255 |
-
flowchart TD
|
| 256 |
-
Input1[Hypotheses] --> Extract
|
| 257 |
-
Input2[Search Results] --> Extract[Extract Evidence<br/>per Hypothesis]
|
| 258 |
-
|
| 259 |
-
Extract --> Methods[Determine Analysis<br/>Methods Needed]
|
| 260 |
-
|
| 261 |
-
Methods --> Branch{Requires<br/>Computation?}
|
| 262 |
-
Branch -->|Yes| GenCode[Generate Python<br/>Analysis Code]
|
| 263 |
-
Branch -->|No| Qual[Qualitative<br/>Synthesis]
|
| 264 |
-
|
| 265 |
-
GenCode --> Execute[Execute Code<br/>via MCP Sandbox]
|
| 266 |
-
Execute --> Interpret1[Interpret<br/>Results]
|
| 267 |
-
Qual --> Interpret2[Interpret<br/>Findings]
|
| 268 |
-
|
| 269 |
-
Interpret1 --> Synthesize[Synthesize Evidence<br/>Across Sources]
|
| 270 |
-
Interpret2 --> Synthesize
|
| 271 |
-
|
| 272 |
-
Synthesize --> Verdict[Determine Verdict<br/>per Hypothesis]
|
| 273 |
-
Verdict --> Support[• Supported<br/>• Refuted<br/>• Inconclusive]
|
| 274 |
-
Support --> Gaps[Identify Knowledge<br/>Gaps & Limitations]
|
| 275 |
-
Gaps --> Output[Return Analysis<br/>Report]
|
| 276 |
-
|
| 277 |
-
style Input1 fill:#fff4e6
|
| 278 |
-
style Input2 fill:#e6f3ff
|
| 279 |
-
style Execute fill:#ffe6e6
|
| 280 |
-
style Output fill:#e6ffe6
|
| 281 |
-
```
|
| 282 |
-
|
| 283 |
-
## 9. Report Agent Workflow
|
| 284 |
-
|
| 285 |
-
```mermaid
|
| 286 |
-
flowchart TD
|
| 287 |
-
Input1[Query] --> Assemble
|
| 288 |
-
Input2[Hypotheses] --> Assemble
|
| 289 |
-
Input3[Search Results] --> Assemble
|
| 290 |
-
Input4[Analysis] --> Assemble[Assemble Report<br/>Sections]
|
| 291 |
-
|
| 292 |
-
Assemble --> Exec[Executive Summary]
|
| 293 |
-
Assemble --> Intro[Introduction]
|
| 294 |
-
Assemble --> Methods[Methods]
|
| 295 |
-
Assemble --> Results[Results per<br/>Hypothesis]
|
| 296 |
-
Assemble --> Discussion[Discussion]
|
| 297 |
-
Assemble --> Future[Future Directions]
|
| 298 |
-
Assemble --> Refs[References]
|
| 299 |
-
|
| 300 |
-
Results --> VizCheck{Needs<br/>Visualization?}
|
| 301 |
-
VizCheck -->|Yes| GenViz[Generate Viz Code]
|
| 302 |
-
GenViz --> ExecViz[Execute via MCP<br/>Create Charts]
|
| 303 |
-
ExecViz --> Combine
|
| 304 |
-
VizCheck -->|No| Combine[Combine All<br/>Sections]
|
| 305 |
-
|
| 306 |
-
Exec --> Combine
|
| 307 |
-
Intro --> Combine
|
| 308 |
-
Methods --> Combine
|
| 309 |
-
Discussion --> Combine
|
| 310 |
-
Future --> Combine
|
| 311 |
-
Refs --> Combine
|
| 312 |
-
|
| 313 |
-
Combine --> Format[Format Output]
|
| 314 |
-
Format --> MD[Markdown]
|
| 315 |
-
Format --> PDF[PDF]
|
| 316 |
-
Format --> JSON[JSON]
|
| 317 |
-
|
| 318 |
-
MD --> Output[Return Final<br/>Report]
|
| 319 |
-
PDF --> Output
|
| 320 |
-
JSON --> Output
|
| 321 |
-
|
| 322 |
-
style Input1 fill:#e1f5e1
|
| 323 |
-
style Input2 fill:#fff4e6
|
| 324 |
-
style Input3 fill:#e6f3ff
|
| 325 |
-
style Input4 fill:#e6ffe6
|
| 326 |
-
style Output fill:#d4edda
|
| 327 |
-
```
|
| 328 |
-
|
| 329 |
-
## 10. Data Flow & Event Streaming
|
| 330 |
-
|
| 331 |
-
```mermaid
|
| 332 |
-
flowchart TD
|
| 333 |
-
User[👤 User] -->|Research Query| UI[Gradio UI]
|
| 334 |
-
UI -->|Submit| Manager[Magentic Manager]
|
| 335 |
-
|
| 336 |
-
Manager -->|Event: Planning| UI
|
| 337 |
-
Manager -->|Select Agent| HypAgent[Hypothesis Agent]
|
| 338 |
-
HypAgent -->|Event: Delta/Message| UI
|
| 339 |
-
HypAgent -->|Hypotheses| Context[(Shared Context)]
|
| 340 |
-
|
| 341 |
-
Context -->|Retrieved by| Manager
|
| 342 |
-
Manager -->|Select Agent| SearchAgent[Search Agent]
|
| 343 |
-
SearchAgent -->|MCP Request| WebSearch[Web Search Tool]
|
| 344 |
-
WebSearch -->|Results| SearchAgent
|
| 345 |
-
SearchAgent -->|Event: Delta/Message| UI
|
| 346 |
-
SearchAgent -->|Documents| Context
|
| 347 |
-
SearchAgent -->|Embeddings| VectorDB[(Vector DB)]
|
| 348 |
-
|
| 349 |
-
Context -->|Retrieved by| Manager
|
| 350 |
-
Manager -->|Select Agent| AnalysisAgent[Analysis Agent]
|
| 351 |
-
AnalysisAgent -->|MCP Request| CodeExec[Code Execution Tool]
|
| 352 |
-
CodeExec -->|Results| AnalysisAgent
|
| 353 |
-
AnalysisAgent -->|Event: Delta/Message| UI
|
| 354 |
-
AnalysisAgent -->|Analysis| Context
|
| 355 |
-
|
| 356 |
-
Context -->|Retrieved by| Manager
|
| 357 |
-
Manager -->|Select Agent| ReportAgent[Report Agent]
|
| 358 |
-
ReportAgent -->|MCP Request| CodeExec
|
| 359 |
-
ReportAgent -->|Event: Delta/Message| UI
|
| 360 |
-
ReportAgent -->|Report| Context
|
| 361 |
-
|
| 362 |
-
Manager -->|Event: Final Result| UI
|
| 363 |
-
UI -->|Display| User
|
| 364 |
-
|
| 365 |
-
style User fill:#e1f5e1
|
| 366 |
-
style UI fill:#e6f3ff
|
| 367 |
-
style Manager fill:#ffe6e6
|
| 368 |
-
style Context fill:#ffe6f0
|
| 369 |
-
style VectorDB fill:#ffe6f0
|
| 370 |
-
style WebSearch fill:#f0f0f0
|
| 371 |
-
style CodeExec fill:#f0f0f0
|
| 372 |
-
```
|
| 373 |
-
|
| 374 |
-
## 11. MCP Tool Architecture
|
| 375 |
-
|
| 376 |
-
```mermaid
|
| 377 |
-
graph TB
|
| 378 |
-
subgraph "Agent Layer"
|
| 379 |
-
Manager[Magentic Manager]
|
| 380 |
-
HypAgent[Hypothesis Agent]
|
| 381 |
-
SearchAgent[Search Agent]
|
| 382 |
-
AnalysisAgent[Analysis Agent]
|
| 383 |
-
ReportAgent[Report Agent]
|
| 384 |
-
end
|
| 385 |
-
|
| 386 |
-
subgraph "MCP Protocol Layer"
|
| 387 |
-
Registry[MCP Tool Registry<br/>• Discovers tools<br/>• Routes requests<br/>• Manages connections]
|
| 388 |
-
end
|
| 389 |
-
|
| 390 |
-
subgraph "MCP Servers"
|
| 391 |
-
Server1[Web Search Server<br/>localhost:8001<br/>• PubMed<br/>• arXiv<br/>• bioRxiv]
|
| 392 |
-
Server2[Code Execution Server<br/>localhost:8002<br/>• Sandboxed Python<br/>• Package management]
|
| 393 |
-
Server3[RAG Server<br/>localhost:8003<br/>• Vector embeddings<br/>• Similarity search]
|
| 394 |
-
Server4[Visualization Server<br/>localhost:8004<br/>• Chart generation<br/>• Plot rendering]
|
| 395 |
-
end
|
| 396 |
-
|
| 397 |
-
subgraph "External Services"
|
| 398 |
-
PubMed[PubMed API]
|
| 399 |
-
ArXiv[arXiv API]
|
| 400 |
-
BioRxiv[bioRxiv API]
|
| 401 |
-
Modal[Modal Sandbox]
|
| 402 |
-
ChromaDB[(ChromaDB)]
|
| 403 |
-
end
|
| 404 |
-
|
| 405 |
-
SearchAgent -->|Request| Registry
|
| 406 |
-
AnalysisAgent -->|Request| Registry
|
| 407 |
-
ReportAgent -->|Request| Registry
|
| 408 |
-
|
| 409 |
-
Registry --> Server1
|
| 410 |
-
Registry --> Server2
|
| 411 |
-
Registry --> Server3
|
| 412 |
-
Registry --> Server4
|
| 413 |
-
|
| 414 |
-
Server1 --> PubMed
|
| 415 |
-
Server1 --> ArXiv
|
| 416 |
-
Server1 --> BioRxiv
|
| 417 |
-
Server2 --> Modal
|
| 418 |
-
Server3 --> ChromaDB
|
| 419 |
-
|
| 420 |
-
style Manager fill:#ffe6e6
|
| 421 |
-
style Registry fill:#fff4e6
|
| 422 |
-
style Server1 fill:#e6f3ff
|
| 423 |
-
style Server2 fill:#e6f3ff
|
| 424 |
-
style Server3 fill:#e6f3ff
|
| 425 |
-
style Server4 fill:#e6f3ff
|
| 426 |
-
```
|
| 427 |
-
|
| 428 |
-
## 12. Progress Tracking & Stall Detection
|
| 429 |
-
|
| 430 |
-
```mermaid
|
| 431 |
-
stateDiagram-v2
|
| 432 |
-
[*] --> Initialization: User Query
|
| 433 |
-
|
| 434 |
-
Initialization --> Planning: Manager starts
|
| 435 |
-
|
| 436 |
-
Planning --> AgentExecution: Select agent
|
| 437 |
-
|
| 438 |
-
AgentExecution --> Assessment: Collect results
|
| 439 |
-
|
| 440 |
-
Assessment --> QualityCheck: Evaluate output
|
| 441 |
-
|
| 442 |
-
QualityCheck --> AgentExecution: Poor quality<br/>(retry < max_rounds)
|
| 443 |
-
QualityCheck --> Planning: Poor quality<br/>(try different agent)
|
| 444 |
-
QualityCheck --> NextAgent: Good quality<br/>(task incomplete)
|
| 445 |
-
QualityCheck --> Synthesis: Good quality<br/>(task complete)
|
| 446 |
-
|
| 447 |
-
NextAgent --> AgentExecution: Select next agent
|
| 448 |
-
|
| 449 |
-
state StallDetection <<choice>>
|
| 450 |
-
Assessment --> StallDetection: Check progress
|
| 451 |
-
StallDetection --> Planning: No progress<br/>(stall count < max)
|
| 452 |
-
StallDetection --> ErrorRecovery: No progress<br/>(max stalls reached)
|
| 453 |
-
|
| 454 |
-
ErrorRecovery --> PartialReport: Generate partial results
|
| 455 |
-
PartialReport --> [*]
|
| 456 |
-
|
| 457 |
-
Synthesis --> FinalReport: Combine all outputs
|
| 458 |
-
FinalReport --> [*]
|
| 459 |
-
|
| 460 |
-
note right of QualityCheck
|
| 461 |
-
Manager assesses:
|
| 462 |
-
• Output completeness
|
| 463 |
-
• Quality metrics
|
| 464 |
-
• Progress made
|
| 465 |
-
end note
|
| 466 |
-
|
| 467 |
-
note right of StallDetection
|
| 468 |
-
Stall = no new progress
|
| 469 |
-
after agent execution
|
| 470 |
-
Triggers plan reset
|
| 471 |
-
end note
|
| 472 |
-
```
|
| 473 |
-
|
| 474 |
-
## 13. Gradio UI Integration
|
| 475 |
-
|
| 476 |
-
```mermaid
|
| 477 |
-
graph TD
|
| 478 |
-
App[Gradio App<br/>DeepCritical Research Agent]
|
| 479 |
-
|
| 480 |
-
App --> Input[Input Section]
|
| 481 |
-
App --> Status[Status Section]
|
| 482 |
-
App --> Output[Output Section]
|
| 483 |
-
|
| 484 |
-
Input --> Query[Research Question<br/>Text Area]
|
| 485 |
-
Input --> Controls[Controls]
|
| 486 |
-
Controls --> MaxHyp[Max Hypotheses: 1-10]
|
| 487 |
-
Controls --> MaxRounds[Max Rounds: 5-20]
|
| 488 |
-
Controls --> Submit[Start Research Button]
|
| 489 |
-
|
| 490 |
-
Status --> Log[Real-time Event Log<br/>• Manager planning<br/>• Agent selection<br/>• Execution updates<br/>• Quality assessment]
|
| 491 |
-
Status --> Progress[Progress Tracker<br/>• Current agent<br/>• Round count<br/>• Stall count]
|
| 492 |
-
|
| 493 |
-
Output --> Tabs[Tabbed Results]
|
| 494 |
-
Tabs --> Tab1[Hypotheses Tab<br/>Generated hypotheses with scores]
|
| 495 |
-
Tabs --> Tab2[Search Results Tab<br/>Papers & sources found]
|
| 496 |
-
Tabs --> Tab3[Analysis Tab<br/>Evidence & verdicts]
|
| 497 |
-
Tabs --> Tab4[Report Tab<br/>Final research report]
|
| 498 |
-
Tab4 --> Download[Download Report<br/>MD / PDF / JSON]
|
| 499 |
-
|
| 500 |
-
Submit -.->|Triggers| Workflow[Magentic Workflow]
|
| 501 |
-
Workflow -.->|MagenticOrchestratorMessageEvent| Log
|
| 502 |
-
Workflow -.->|MagenticAgentDeltaEvent| Log
|
| 503 |
-
Workflow -.->|MagenticAgentMessageEvent| Log
|
| 504 |
-
Workflow -.->|MagenticFinalResultEvent| Tab4
|
| 505 |
-
|
| 506 |
-
style App fill:#e1f5e1
|
| 507 |
-
style Input fill:#fff4e6
|
| 508 |
-
style Status fill:#e6f3ff
|
| 509 |
-
style Output fill:#e6ffe6
|
| 510 |
-
style Workflow fill:#ffe6e6
|
| 511 |
-
```
|
| 512 |
-
|
| 513 |
-
## 14. Complete System Context
|
| 514 |
-
|
| 515 |
-
```mermaid
|
| 516 |
-
graph LR
|
| 517 |
-
User[👤 Researcher<br/>Asks research questions] -->|Submits query| DC[DeepCritical<br/>Magentic Workflow]
|
| 518 |
-
|
| 519 |
-
DC -->|Literature search| PubMed[PubMed API<br/>Medical papers]
|
| 520 |
-
DC -->|Preprint search| ArXiv[arXiv API<br/>Scientific preprints]
|
| 521 |
-
DC -->|Biology search| BioRxiv[bioRxiv API<br/>Biology preprints]
|
| 522 |
-
DC -->|Agent reasoning| Claude[Claude API<br/>Sonnet 4 / Opus]
|
| 523 |
-
DC -->|Code execution| Modal[Modal Sandbox<br/>Safe Python env]
|
| 524 |
-
DC -->|Vector storage| Chroma[ChromaDB<br/>Embeddings & RAG]
|
| 525 |
-
|
| 526 |
-
DC -->|Deployed on| HF[HuggingFace Spaces<br/>Gradio 6.0]
|
| 527 |
-
|
| 528 |
-
PubMed -->|Results| DC
|
| 529 |
-
ArXiv -->|Results| DC
|
| 530 |
-
BioRxiv -->|Results| DC
|
| 531 |
-
Claude -->|Responses| DC
|
| 532 |
-
Modal -->|Output| DC
|
| 533 |
-
Chroma -->|Context| DC
|
| 534 |
-
|
| 535 |
-
DC -->|Research report| User
|
| 536 |
-
|
| 537 |
-
style User fill:#e1f5e1
|
| 538 |
-
style DC fill:#ffe6e6
|
| 539 |
-
style PubMed fill:#e6f3ff
|
| 540 |
-
style ArXiv fill:#e6f3ff
|
| 541 |
-
style BioRxiv fill:#e6f3ff
|
| 542 |
-
style Claude fill:#ffd6d6
|
| 543 |
-
style Modal fill:#f0f0f0
|
| 544 |
-
style Chroma fill:#ffe6f0
|
| 545 |
-
style HF fill:#d4edda
|
| 546 |
-
```
|
| 547 |
-
|
| 548 |
-
## 15. Workflow Timeline (Simplified)
|
| 549 |
-
|
| 550 |
-
```mermaid
|
| 551 |
-
gantt
|
| 552 |
-
title DeepCritical Magentic Workflow - Typical Execution
|
| 553 |
-
dateFormat mm:ss
|
| 554 |
-
axisFormat %M:%S
|
| 555 |
-
|
| 556 |
-
section Manager Planning
|
| 557 |
-
Initial planning :p1, 00:00, 10s
|
| 558 |
-
|
| 559 |
-
section Hypothesis Agent
|
| 560 |
-
Generate hypotheses :h1, after p1, 30s
|
| 561 |
-
Manager assessment :h2, after h1, 5s
|
| 562 |
-
|
| 563 |
-
section Search Agent
|
| 564 |
-
Search hypothesis 1 :s1, after h2, 20s
|
| 565 |
-
Search hypothesis 2 :s2, after s1, 20s
|
| 566 |
-
Search hypothesis 3 :s3, after s2, 20s
|
| 567 |
-
RAG processing :s4, after s3, 15s
|
| 568 |
-
Manager assessment :s5, after s4, 5s
|
| 569 |
-
|
| 570 |
-
section Analysis Agent
|
| 571 |
-
Evidence extraction :a1, after s5, 15s
|
| 572 |
-
Code generation :a2, after a1, 20s
|
| 573 |
-
Code execution :a3, after a2, 25s
|
| 574 |
-
Synthesis :a4, after a3, 20s
|
| 575 |
-
Manager assessment :a5, after a4, 5s
|
| 576 |
-
|
| 577 |
-
section Report Agent
|
| 578 |
-
Report assembly :r1, after a5, 30s
|
| 579 |
-
Visualization :r2, after r1, 15s
|
| 580 |
-
Formatting :r3, after r2, 10s
|
| 581 |
-
|
| 582 |
-
section Manager Synthesis
|
| 583 |
-
Final synthesis :f1, after r3, 10s
|
| 584 |
-
```
|
| 585 |
-
|
| 586 |
-
---
|
| 587 |
-
|
| 588 |
-
## Key Differences from Original Design
|
| 589 |
-
|
| 590 |
-
| Aspect | Original (Judge-in-Loop) | New (Magentic) |
|
| 591 |
-
|--------|-------------------------|----------------|
|
| 592 |
-
| **Control Flow** | Fixed sequential phases | Dynamic agent selection |
|
| 593 |
-
| **Quality Control** | Separate Judge Agent | Manager assessment built-in |
|
| 594 |
-
| **Retry Logic** | Phase-level with feedback | Agent-level with adaptation |
|
| 595 |
-
| **Flexibility** | Rigid 4-phase pipeline | Adaptive workflow |
|
| 596 |
-
| **Complexity** | 5 agents (including Judge) | 4 agents (no Judge) |
|
| 597 |
-
| **Progress Tracking** | Manual state management | Built-in round/stall detection |
|
| 598 |
-
| **Agent Coordination** | Sequential handoff | Manager-driven dynamic selection |
|
| 599 |
-
| **Error Recovery** | Retry same phase | Try different agent or replan |
|
| 600 |
-
|
| 601 |
-
---
|
| 602 |
-
|
| 603 |
-
## Simplified Design Principles
|
| 604 |
-
|
| 605 |
-
1. **Manager is Intelligent**: LLM-powered manager handles planning, selection, and quality assessment
|
| 606 |
-
2. **No Separate Judge**: Manager's assessment phase replaces dedicated Judge Agent
|
| 607 |
-
3. **Dynamic Workflow**: Agents can be called multiple times in any order based on need
|
| 608 |
-
4. **Built-in Safety**: max_round_count (15) and max_stall_count (3) prevent infinite loops
|
| 609 |
-
5. **Event-Driven UI**: Real-time streaming updates to Gradio interface
|
| 610 |
-
6. **MCP-Powered Tools**: All external capabilities via Model Context Protocol
|
| 611 |
-
7. **Shared Context**: Centralized state accessible to all agents
|
| 612 |
-
8. **Progress Awareness**: Manager tracks what's been done and what's needed
|
| 613 |
-
|
| 614 |
-
---
|
| 615 |
-
|
| 616 |
-
## Legend
|
| 617 |
-
|
| 618 |
-
- 🔴 **Red/Pink**: Manager, orchestration, decision-making
|
| 619 |
-
- 🟡 **Yellow/Orange**: Specialist agents, processing
|
| 620 |
-
- 🔵 **Blue**: Data, tools, MCP services
|
| 621 |
-
- 🟣 **Purple/Pink**: Storage, databases, state
|
| 622 |
-
- 🟢 **Green**: User interactions, final outputs
|
| 623 |
-
- ⚪ **Gray**: External services, APIs
|
| 624 |
-
|
| 625 |
-
---
|
| 626 |
-
|
| 627 |
-
## Implementation Highlights
|
| 628 |
-
|
| 629 |
-
**Simple 4-Agent Setup:**
|
| 630 |
-
```python
|
| 631 |
-
workflow = (
|
| 632 |
-
MagenticBuilder()
|
| 633 |
-
.participants(
|
| 634 |
-
hypothesis=HypothesisAgent(tools=[background_tool]),
|
| 635 |
-
search=SearchAgent(tools=[web_search, rag_tool]),
|
| 636 |
-
analysis=AnalysisAgent(tools=[code_execution]),
|
| 637 |
-
report=ReportAgent(tools=[code_execution, visualization])
|
| 638 |
-
)
|
| 639 |
-
.with_standard_manager(
|
| 640 |
-
chat_client=AnthropicClient(model="claude-sonnet-4"),
|
| 641 |
-
max_round_count=15, # Prevent infinite loops
|
| 642 |
-
max_stall_count=3 # Detect stuck workflows
|
| 643 |
-
)
|
| 644 |
-
.build()
|
| 645 |
-
)
|
| 646 |
-
```
|
| 647 |
-
|
| 648 |
-
**Manager handles quality assessment in its instructions:**
|
| 649 |
-
- Checks hypothesis quality (testable, novel, clear)
|
| 650 |
-
- Validates search results (relevant, authoritative, recent)
|
| 651 |
-
- Assesses analysis soundness (methodology, evidence, conclusions)
|
| 652 |
-
- Ensures report completeness (all sections, proper citations)
|
| 653 |
-
|
| 654 |
-
No separate Judge Agent needed - manager does it all!
|
| 655 |
-
|
| 656 |
-
---
|
| 657 |
-
|
| 658 |
-
**Document Version**: 2.0 (Magentic Simplified)
|
| 659 |
-
**Last Updated**: 2025-11-24
|
| 660 |
-
**Architecture**: Microsoft Magentic Orchestration Pattern
|
| 661 |
-
**Agents**: 4 (Hypothesis, Search, Analysis, Report) + 1 Manager
|
| 662 |
-
**License**: MIT
|
| 663 |
-
|
| 664 |
-
## See Also
|
| 665 |
-
|
| 666 |
-
- [Orchestrators](orchestrators.md) - Overview of all orchestrator patterns
|
| 667 |
-
- [Graph Orchestration](graph-orchestration.md) - Graph-based execution overview
|
| 668 |
-
- [Graph Orchestration (Detailed)](graph_orchestration.md) - Detailed graph architecture
|
| 669 |
-
- [Workflows](workflows.md) - Workflow patterns summary
|
| 670 |
-
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/architecture/workflows.md
DELETED
|
@@ -1,662 +0,0 @@
|
|
| 1 |
-
# DeepCritical Workflow - Simplified Magentic Architecture
|
| 2 |
-
|
| 3 |
-
> **Architecture Pattern**: Microsoft Magentic Orchestration
|
| 4 |
-
> **Design Philosophy**: Simple, dynamic, manager-driven coordination
|
| 5 |
-
> **Key Innovation**: Intelligent manager replaces rigid sequential phases
|
| 6 |
-
|
| 7 |
-
---
|
| 8 |
-
|
| 9 |
-
## 1. High-Level Magentic Workflow
|
| 10 |
-
|
| 11 |
-
```mermaid
|
| 12 |
-
flowchart TD
|
| 13 |
-
Start([User Query]) --> Manager[Magentic Manager<br/>Plan • Select • Assess • Adapt]
|
| 14 |
-
|
| 15 |
-
Manager -->|Plans| Task1[Task Decomposition]
|
| 16 |
-
Task1 --> Manager
|
| 17 |
-
|
| 18 |
-
Manager -->|Selects & Executes| HypAgent[Hypothesis Agent]
|
| 19 |
-
Manager -->|Selects & Executes| SearchAgent[Search Agent]
|
| 20 |
-
Manager -->|Selects & Executes| AnalysisAgent[Analysis Agent]
|
| 21 |
-
Manager -->|Selects & Executes| ReportAgent[Report Agent]
|
| 22 |
-
|
| 23 |
-
HypAgent -->|Results| Manager
|
| 24 |
-
SearchAgent -->|Results| Manager
|
| 25 |
-
AnalysisAgent -->|Results| Manager
|
| 26 |
-
ReportAgent -->|Results| Manager
|
| 27 |
-
|
| 28 |
-
Manager -->|Assesses Quality| Decision{Good Enough?}
|
| 29 |
-
Decision -->|No - Refine| Manager
|
| 30 |
-
Decision -->|No - Different Agent| Manager
|
| 31 |
-
Decision -->|No - Stalled| Replan[Reset Plan]
|
| 32 |
-
Replan --> Manager
|
| 33 |
-
|
| 34 |
-
Decision -->|Yes| Synthesis[Synthesize Final Result]
|
| 35 |
-
Synthesis --> Output([Research Report])
|
| 36 |
-
|
| 37 |
-
style Start fill:#e1f5e1
|
| 38 |
-
style Manager fill:#ffe6e6
|
| 39 |
-
style HypAgent fill:#fff4e6
|
| 40 |
-
style SearchAgent fill:#fff4e6
|
| 41 |
-
style AnalysisAgent fill:#fff4e6
|
| 42 |
-
style ReportAgent fill:#fff4e6
|
| 43 |
-
style Decision fill:#ffd6d6
|
| 44 |
-
style Synthesis fill:#d4edda
|
| 45 |
-
style Output fill:#e1f5e1
|
| 46 |
-
```
|
| 47 |
-
|
| 48 |
-
## 2. Magentic Manager: The 6-Phase Cycle
|
| 49 |
-
|
| 50 |
-
```mermaid
|
| 51 |
-
flowchart LR
|
| 52 |
-
P1[1. Planning<br/>Analyze task<br/>Create strategy] --> P2[2. Agent Selection<br/>Pick best agent<br/>for subtask]
|
| 53 |
-
P2 --> P3[3. Execution<br/>Run selected<br/>agent with tools]
|
| 54 |
-
P3 --> P4[4. Assessment<br/>Evaluate quality<br/>Check progress]
|
| 55 |
-
P4 --> Decision{Quality OK?<br/>Progress made?}
|
| 56 |
-
Decision -->|Yes| P6[6. Synthesis<br/>Combine results<br/>Generate report]
|
| 57 |
-
Decision -->|No| P5[5. Iteration<br/>Adjust plan<br/>Try again]
|
| 58 |
-
P5 --> P2
|
| 59 |
-
P6 --> Done([Complete])
|
| 60 |
-
|
| 61 |
-
style P1 fill:#fff4e6
|
| 62 |
-
style P2 fill:#ffe6e6
|
| 63 |
-
style P3 fill:#e6f3ff
|
| 64 |
-
style P4 fill:#ffd6d6
|
| 65 |
-
style P5 fill:#fff3cd
|
| 66 |
-
style P6 fill:#d4edda
|
| 67 |
-
style Done fill:#e1f5e1
|
| 68 |
-
```
|
| 69 |
-
|
| 70 |
-
## 3. Simplified Agent Architecture
|
| 71 |
-
|
| 72 |
-
```mermaid
|
| 73 |
-
graph TB
|
| 74 |
-
subgraph "Orchestration Layer"
|
| 75 |
-
Manager[Magentic Manager<br/>• Plans workflow<br/>• Selects agents<br/>• Assesses quality<br/>• Adapts strategy]
|
| 76 |
-
SharedContext[(Shared Context<br/>• Hypotheses<br/>• Search Results<br/>• Analysis<br/>• Progress)]
|
| 77 |
-
Manager <--> SharedContext
|
| 78 |
-
end
|
| 79 |
-
|
| 80 |
-
subgraph "Specialist Agents"
|
| 81 |
-
HypAgent[Hypothesis Agent<br/>• Domain understanding<br/>• Hypothesis generation<br/>• Testability refinement]
|
| 82 |
-
SearchAgent[Search Agent<br/>• Multi-source search<br/>• RAG retrieval<br/>• Result ranking]
|
| 83 |
-
AnalysisAgent[Analysis Agent<br/>• Evidence extraction<br/>• Statistical analysis<br/>• Code execution]
|
| 84 |
-
ReportAgent[Report Agent<br/>• Report assembly<br/>• Visualization<br/>• Citation formatting]
|
| 85 |
-
end
|
| 86 |
-
|
| 87 |
-
subgraph "MCP Tools"
|
| 88 |
-
WebSearch[Web Search<br/>PubMed • arXiv • bioRxiv]
|
| 89 |
-
CodeExec[Code Execution<br/>Sandboxed Python]
|
| 90 |
-
RAG[RAG Retrieval<br/>Vector DB • Embeddings]
|
| 91 |
-
Viz[Visualization<br/>Charts • Graphs]
|
| 92 |
-
end
|
| 93 |
-
|
| 94 |
-
Manager -->|Selects & Directs| HypAgent
|
| 95 |
-
Manager -->|Selects & Directs| SearchAgent
|
| 96 |
-
Manager -->|Selects & Directs| AnalysisAgent
|
| 97 |
-
Manager -->|Selects & Directs| ReportAgent
|
| 98 |
-
|
| 99 |
-
HypAgent --> SharedContext
|
| 100 |
-
SearchAgent --> SharedContext
|
| 101 |
-
AnalysisAgent --> SharedContext
|
| 102 |
-
ReportAgent --> SharedContext
|
| 103 |
-
|
| 104 |
-
SearchAgent --> WebSearch
|
| 105 |
-
SearchAgent --> RAG
|
| 106 |
-
AnalysisAgent --> CodeExec
|
| 107 |
-
ReportAgent --> CodeExec
|
| 108 |
-
ReportAgent --> Viz
|
| 109 |
-
|
| 110 |
-
style Manager fill:#ffe6e6
|
| 111 |
-
style SharedContext fill:#ffe6f0
|
| 112 |
-
style HypAgent fill:#fff4e6
|
| 113 |
-
style SearchAgent fill:#fff4e6
|
| 114 |
-
style AnalysisAgent fill:#fff4e6
|
| 115 |
-
style ReportAgent fill:#fff4e6
|
| 116 |
-
style WebSearch fill:#e6f3ff
|
| 117 |
-
style CodeExec fill:#e6f3ff
|
| 118 |
-
style RAG fill:#e6f3ff
|
| 119 |
-
style Viz fill:#e6f3ff
|
| 120 |
-
```
|
| 121 |
-
|
| 122 |
-
## 4. Dynamic Workflow Example
|
| 123 |
-
|
| 124 |
-
```mermaid
|
| 125 |
-
sequenceDiagram
|
| 126 |
-
participant User
|
| 127 |
-
participant Manager
|
| 128 |
-
participant HypAgent
|
| 129 |
-
participant SearchAgent
|
| 130 |
-
participant AnalysisAgent
|
| 131 |
-
participant ReportAgent
|
| 132 |
-
|
| 133 |
-
User->>Manager: "Research protein folding in Alzheimer's"
|
| 134 |
-
|
| 135 |
-
Note over Manager: PLAN: Generate hypotheses → Search → Analyze → Report
|
| 136 |
-
|
| 137 |
-
Manager->>HypAgent: Generate 3 hypotheses
|
| 138 |
-
HypAgent-->>Manager: Returns 3 hypotheses
|
| 139 |
-
Note over Manager: ASSESS: Good quality, proceed
|
| 140 |
-
|
| 141 |
-
Manager->>SearchAgent: Search literature for hypothesis 1
|
| 142 |
-
SearchAgent-->>Manager: Returns 15 papers
|
| 143 |
-
Note over Manager: ASSESS: Good results, continue
|
| 144 |
-
|
| 145 |
-
Manager->>SearchAgent: Search for hypothesis 2
|
| 146 |
-
SearchAgent-->>Manager: Only 2 papers found
|
| 147 |
-
Note over Manager: ASSESS: Insufficient, refine search
|
| 148 |
-
|
| 149 |
-
Manager->>SearchAgent: Refined query for hypothesis 2
|
| 150 |
-
SearchAgent-->>Manager: Returns 12 papers
|
| 151 |
-
Note over Manager: ASSESS: Better, proceed
|
| 152 |
-
|
| 153 |
-
Manager->>AnalysisAgent: Analyze evidence for all hypotheses
|
| 154 |
-
AnalysisAgent-->>Manager: Returns analysis with code
|
| 155 |
-
Note over Manager: ASSESS: Complete, generate report
|
| 156 |
-
|
| 157 |
-
Manager->>ReportAgent: Create comprehensive report
|
| 158 |
-
ReportAgent-->>Manager: Returns formatted report
|
| 159 |
-
Note over Manager: SYNTHESIZE: Combine all results
|
| 160 |
-
|
| 161 |
-
Manager->>User: Final Research Report
|
| 162 |
-
```
|
| 163 |
-
|
| 164 |
-
## 5. Manager Decision Logic
|
| 165 |
-
|
| 166 |
-
```mermaid
|
| 167 |
-
flowchart TD
|
| 168 |
-
Start([Manager Receives Task]) --> Plan[Create Initial Plan]
|
| 169 |
-
|
| 170 |
-
Plan --> Select[Select Agent for Next Subtask]
|
| 171 |
-
Select --> Execute[Execute Agent]
|
| 172 |
-
Execute --> Collect[Collect Results]
|
| 173 |
-
|
| 174 |
-
Collect --> Assess[Assess Quality & Progress]
|
| 175 |
-
|
| 176 |
-
Assess --> Q1{Quality Sufficient?}
|
| 177 |
-
Q1 -->|No| Q2{Same Agent Can Fix?}
|
| 178 |
-
Q2 -->|Yes| Feedback[Provide Specific Feedback]
|
| 179 |
-
Feedback --> Execute
|
| 180 |
-
Q2 -->|No| Different[Try Different Agent]
|
| 181 |
-
Different --> Select
|
| 182 |
-
|
| 183 |
-
Q1 -->|Yes| Q3{Task Complete?}
|
| 184 |
-
Q3 -->|No| Q4{Making Progress?}
|
| 185 |
-
Q4 -->|Yes| Select
|
| 186 |
-
Q4 -->|No - Stalled| Replan[Reset Plan & Approach]
|
| 187 |
-
Replan --> Plan
|
| 188 |
-
|
| 189 |
-
Q3 -->|Yes| Synth[Synthesize Final Result]
|
| 190 |
-
Synth --> Done([Return Report])
|
| 191 |
-
|
| 192 |
-
style Start fill:#e1f5e1
|
| 193 |
-
style Plan fill:#fff4e6
|
| 194 |
-
style Select fill:#ffe6e6
|
| 195 |
-
style Execute fill:#e6f3ff
|
| 196 |
-
style Assess fill:#ffd6d6
|
| 197 |
-
style Q1 fill:#ffe6e6
|
| 198 |
-
style Q2 fill:#ffe6e6
|
| 199 |
-
style Q3 fill:#ffe6e6
|
| 200 |
-
style Q4 fill:#ffe6e6
|
| 201 |
-
style Synth fill:#d4edda
|
| 202 |
-
style Done fill:#e1f5e1
|
| 203 |
-
```
|
| 204 |
-
|
| 205 |
-
## 6. Hypothesis Agent Workflow
|
| 206 |
-
|
| 207 |
-
```mermaid
|
| 208 |
-
flowchart LR
|
| 209 |
-
Input[Research Query] --> Domain[Identify Domain<br/>& Key Concepts]
|
| 210 |
-
Domain --> Context[Retrieve Background<br/>Knowledge]
|
| 211 |
-
Context --> Generate[Generate 3-5<br/>Initial Hypotheses]
|
| 212 |
-
Generate --> Refine[Refine for<br/>Testability]
|
| 213 |
-
Refine --> Rank[Rank by<br/>Quality Score]
|
| 214 |
-
Rank --> Output[Return Top<br/>Hypotheses]
|
| 215 |
-
|
| 216 |
-
Output --> Struct[Hypothesis Structure:<br/>• Statement<br/>• Rationale<br/>• Testability Score<br/>• Data Requirements<br/>• Expected Outcomes]
|
| 217 |
-
|
| 218 |
-
style Input fill:#e1f5e1
|
| 219 |
-
style Output fill:#fff4e6
|
| 220 |
-
style Struct fill:#e6f3ff
|
| 221 |
-
```
|
| 222 |
-
|
| 223 |
-
## 7. Search Agent Workflow
|
| 224 |
-
|
| 225 |
-
```mermaid
|
| 226 |
-
flowchart TD
|
| 227 |
-
Input[Hypotheses] --> Strategy[Formulate Search<br/>Strategy per Hypothesis]
|
| 228 |
-
|
| 229 |
-
Strategy --> Multi[Multi-Source Search]
|
| 230 |
-
|
| 231 |
-
Multi --> PubMed[PubMed Search<br/>via MCP]
|
| 232 |
-
Multi --> ArXiv[arXiv Search<br/>via MCP]
|
| 233 |
-
Multi --> BioRxiv[bioRxiv Search<br/>via MCP]
|
| 234 |
-
|
| 235 |
-
PubMed --> Aggregate[Aggregate Results]
|
| 236 |
-
ArXiv --> Aggregate
|
| 237 |
-
BioRxiv --> Aggregate
|
| 238 |
-
|
| 239 |
-
Aggregate --> Filter[Filter & Rank<br/>by Relevance]
|
| 240 |
-
Filter --> Dedup[Deduplicate<br/>Cross-Reference]
|
| 241 |
-
Dedup --> Embed[Embed Documents<br/>via MCP]
|
| 242 |
-
Embed --> Vector[(Vector DB)]
|
| 243 |
-
Vector --> RAGRetrieval[RAG Retrieval<br/>Top-K per Hypothesis]
|
| 244 |
-
RAGRetrieval --> Output[Return Contextualized<br/>Search Results]
|
| 245 |
-
|
| 246 |
-
style Input fill:#fff4e6
|
| 247 |
-
style Multi fill:#ffe6e6
|
| 248 |
-
style Vector fill:#ffe6f0
|
| 249 |
-
style Output fill:#e6f3ff
|
| 250 |
-
```
|
| 251 |
-
|
| 252 |
-
## 8. Analysis Agent Workflow
|
| 253 |
-
|
| 254 |
-
```mermaid
|
| 255 |
-
flowchart TD
|
| 256 |
-
Input1[Hypotheses] --> Extract
|
| 257 |
-
Input2[Search Results] --> Extract[Extract Evidence<br/>per Hypothesis]
|
| 258 |
-
|
| 259 |
-
Extract --> Methods[Determine Analysis<br/>Methods Needed]
|
| 260 |
-
|
| 261 |
-
Methods --> Branch{Requires<br/>Computation?}
|
| 262 |
-
Branch -->|Yes| GenCode[Generate Python<br/>Analysis Code]
|
| 263 |
-
Branch -->|No| Qual[Qualitative<br/>Synthesis]
|
| 264 |
-
|
| 265 |
-
GenCode --> Execute[Execute Code<br/>via MCP Sandbox]
|
| 266 |
-
Execute --> Interpret1[Interpret<br/>Results]
|
| 267 |
-
Qual --> Interpret2[Interpret<br/>Findings]
|
| 268 |
-
|
| 269 |
-
Interpret1 --> Synthesize[Synthesize Evidence<br/>Across Sources]
|
| 270 |
-
Interpret2 --> Synthesize
|
| 271 |
-
|
| 272 |
-
Synthesize --> Verdict[Determine Verdict<br/>per Hypothesis]
|
| 273 |
-
Verdict --> Support[• Supported<br/>• Refuted<br/>• Inconclusive]
|
| 274 |
-
Support --> Gaps[Identify Knowledge<br/>Gaps & Limitations]
|
| 275 |
-
Gaps --> Output[Return Analysis<br/>Report]
|
| 276 |
-
|
| 277 |
-
style Input1 fill:#fff4e6
|
| 278 |
-
style Input2 fill:#e6f3ff
|
| 279 |
-
style Execute fill:#ffe6e6
|
| 280 |
-
style Output fill:#e6ffe6
|
| 281 |
-
```
|
| 282 |
-
|
| 283 |
-
## 9. Report Agent Workflow
|
| 284 |
-
|
| 285 |
-
```mermaid
|
| 286 |
-
flowchart TD
|
| 287 |
-
Input1[Query] --> Assemble
|
| 288 |
-
Input2[Hypotheses] --> Assemble
|
| 289 |
-
Input3[Search Results] --> Assemble
|
| 290 |
-
Input4[Analysis] --> Assemble[Assemble Report<br/>Sections]
|
| 291 |
-
|
| 292 |
-
Assemble --> Exec[Executive Summary]
|
| 293 |
-
Assemble --> Intro[Introduction]
|
| 294 |
-
Assemble --> Methods[Methods]
|
| 295 |
-
Assemble --> Results[Results per<br/>Hypothesis]
|
| 296 |
-
Assemble --> Discussion[Discussion]
|
| 297 |
-
Assemble --> Future[Future Directions]
|
| 298 |
-
Assemble --> Refs[References]
|
| 299 |
-
|
| 300 |
-
Results --> VizCheck{Needs<br/>Visualization?}
|
| 301 |
-
VizCheck -->|Yes| GenViz[Generate Viz Code]
|
| 302 |
-
GenViz --> ExecViz[Execute via MCP<br/>Create Charts]
|
| 303 |
-
ExecViz --> Combine
|
| 304 |
-
VizCheck -->|No| Combine[Combine All<br/>Sections]
|
| 305 |
-
|
| 306 |
-
Exec --> Combine
|
| 307 |
-
Intro --> Combine
|
| 308 |
-
Methods --> Combine
|
| 309 |
-
Discussion --> Combine
|
| 310 |
-
Future --> Combine
|
| 311 |
-
Refs --> Combine
|
| 312 |
-
|
| 313 |
-
Combine --> Format[Format Output]
|
| 314 |
-
Format --> MD[Markdown]
|
| 315 |
-
Format --> PDF[PDF]
|
| 316 |
-
Format --> JSON[JSON]
|
| 317 |
-
|
| 318 |
-
MD --> Output[Return Final<br/>Report]
|
| 319 |
-
PDF --> Output
|
| 320 |
-
JSON --> Output
|
| 321 |
-
|
| 322 |
-
style Input1 fill:#e1f5e1
|
| 323 |
-
style Input2 fill:#fff4e6
|
| 324 |
-
style Input3 fill:#e6f3ff
|
| 325 |
-
style Input4 fill:#e6ffe6
|
| 326 |
-
style Output fill:#d4edda
|
| 327 |
-
```
|
| 328 |
-
|
| 329 |
-
## 10. Data Flow & Event Streaming
|
| 330 |
-
|
| 331 |
-
```mermaid
|
| 332 |
-
flowchart TD
|
| 333 |
-
User[👤 User] -->|Research Query| UI[Gradio UI]
|
| 334 |
-
UI -->|Submit| Manager[Magentic Manager]
|
| 335 |
-
|
| 336 |
-
Manager -->|Event: Planning| UI
|
| 337 |
-
Manager -->|Select Agent| HypAgent[Hypothesis Agent]
|
| 338 |
-
HypAgent -->|Event: Delta/Message| UI
|
| 339 |
-
HypAgent -->|Hypotheses| Context[(Shared Context)]
|
| 340 |
-
|
| 341 |
-
Context -->|Retrieved by| Manager
|
| 342 |
-
Manager -->|Select Agent| SearchAgent[Search Agent]
|
| 343 |
-
SearchAgent -->|MCP Request| WebSearch[Web Search Tool]
|
| 344 |
-
WebSearch -->|Results| SearchAgent
|
| 345 |
-
SearchAgent -->|Event: Delta/Message| UI
|
| 346 |
-
SearchAgent -->|Documents| Context
|
| 347 |
-
SearchAgent -->|Embeddings| VectorDB[(Vector DB)]
|
| 348 |
-
|
| 349 |
-
Context -->|Retrieved by| Manager
|
| 350 |
-
Manager -->|Select Agent| AnalysisAgent[Analysis Agent]
|
| 351 |
-
AnalysisAgent -->|MCP Request| CodeExec[Code Execution Tool]
|
| 352 |
-
CodeExec -->|Results| AnalysisAgent
|
| 353 |
-
AnalysisAgent -->|Event: Delta/Message| UI
|
| 354 |
-
AnalysisAgent -->|Analysis| Context
|
| 355 |
-
|
| 356 |
-
Context -->|Retrieved by| Manager
|
| 357 |
-
Manager -->|Select Agent| ReportAgent[Report Agent]
|
| 358 |
-
ReportAgent -->|MCP Request| CodeExec
|
| 359 |
-
ReportAgent -->|Event: Delta/Message| UI
|
| 360 |
-
ReportAgent -->|Report| Context
|
| 361 |
-
|
| 362 |
-
Manager -->|Event: Final Result| UI
|
| 363 |
-
UI -->|Display| User
|
| 364 |
-
|
| 365 |
-
style User fill:#e1f5e1
|
| 366 |
-
style UI fill:#e6f3ff
|
| 367 |
-
style Manager fill:#ffe6e6
|
| 368 |
-
style Context fill:#ffe6f0
|
| 369 |
-
style VectorDB fill:#ffe6f0
|
| 370 |
-
style WebSearch fill:#f0f0f0
|
| 371 |
-
style CodeExec fill:#f0f0f0
|
| 372 |
-
```
|
| 373 |
-
|
| 374 |
-
## 11. MCP Tool Architecture
|
| 375 |
-
|
| 376 |
-
```mermaid
|
| 377 |
-
graph TB
|
| 378 |
-
subgraph "Agent Layer"
|
| 379 |
-
Manager[Magentic Manager]
|
| 380 |
-
HypAgent[Hypothesis Agent]
|
| 381 |
-
SearchAgent[Search Agent]
|
| 382 |
-
AnalysisAgent[Analysis Agent]
|
| 383 |
-
ReportAgent[Report Agent]
|
| 384 |
-
end
|
| 385 |
-
|
| 386 |
-
subgraph "MCP Protocol Layer"
|
| 387 |
-
Registry[MCP Tool Registry<br/>• Discovers tools<br/>• Routes requests<br/>• Manages connections]
|
| 388 |
-
end
|
| 389 |
-
|
| 390 |
-
subgraph "MCP Servers"
|
| 391 |
-
Server1[Web Search Server<br/>localhost:8001<br/>• PubMed<br/>• arXiv<br/>• bioRxiv]
|
| 392 |
-
Server2[Code Execution Server<br/>localhost:8002<br/>• Sandboxed Python<br/>• Package management]
|
| 393 |
-
Server3[RAG Server<br/>localhost:8003<br/>• Vector embeddings<br/>• Similarity search]
|
| 394 |
-
Server4[Visualization Server<br/>localhost:8004<br/>• Chart generation<br/>• Plot rendering]
|
| 395 |
-
end
|
| 396 |
-
|
| 397 |
-
subgraph "External Services"
|
| 398 |
-
PubMed[PubMed API]
|
| 399 |
-
ArXiv[arXiv API]
|
| 400 |
-
BioRxiv[bioRxiv API]
|
| 401 |
-
Modal[Modal Sandbox]
|
| 402 |
-
ChromaDB[(ChromaDB)]
|
| 403 |
-
end
|
| 404 |
-
|
| 405 |
-
SearchAgent -->|Request| Registry
|
| 406 |
-
AnalysisAgent -->|Request| Registry
|
| 407 |
-
ReportAgent -->|Request| Registry
|
| 408 |
-
|
| 409 |
-
Registry --> Server1
|
| 410 |
-
Registry --> Server2
|
| 411 |
-
Registry --> Server3
|
| 412 |
-
Registry --> Server4
|
| 413 |
-
|
| 414 |
-
Server1 --> PubMed
|
| 415 |
-
Server1 --> ArXiv
|
| 416 |
-
Server1 --> BioRxiv
|
| 417 |
-
Server2 --> Modal
|
| 418 |
-
Server3 --> ChromaDB
|
| 419 |
-
|
| 420 |
-
style Manager fill:#ffe6e6
|
| 421 |
-
style Registry fill:#fff4e6
|
| 422 |
-
style Server1 fill:#e6f3ff
|
| 423 |
-
style Server2 fill:#e6f3ff
|
| 424 |
-
style Server3 fill:#e6f3ff
|
| 425 |
-
style Server4 fill:#e6f3ff
|
| 426 |
-
```
|
| 427 |
-
|
| 428 |
-
## 12. Progress Tracking & Stall Detection
|
| 429 |
-
|
| 430 |
-
```mermaid
|
| 431 |
-
stateDiagram-v2
|
| 432 |
-
[*] --> Initialization: User Query
|
| 433 |
-
|
| 434 |
-
Initialization --> Planning: Manager starts
|
| 435 |
-
|
| 436 |
-
Planning --> AgentExecution: Select agent
|
| 437 |
-
|
| 438 |
-
AgentExecution --> Assessment: Collect results
|
| 439 |
-
|
| 440 |
-
Assessment --> QualityCheck: Evaluate output
|
| 441 |
-
|
| 442 |
-
QualityCheck --> AgentExecution: Poor quality<br/>(retry < max_rounds)
|
| 443 |
-
QualityCheck --> Planning: Poor quality<br/>(try different agent)
|
| 444 |
-
QualityCheck --> NextAgent: Good quality<br/>(task incomplete)
|
| 445 |
-
QualityCheck --> Synthesis: Good quality<br/>(task complete)
|
| 446 |
-
|
| 447 |
-
NextAgent --> AgentExecution: Select next agent
|
| 448 |
-
|
| 449 |
-
state StallDetection <<choice>>
|
| 450 |
-
Assessment --> StallDetection: Check progress
|
| 451 |
-
StallDetection --> Planning: No progress<br/>(stall count < max)
|
| 452 |
-
StallDetection --> ErrorRecovery: No progress<br/>(max stalls reached)
|
| 453 |
-
|
| 454 |
-
ErrorRecovery --> PartialReport: Generate partial results
|
| 455 |
-
PartialReport --> [*]
|
| 456 |
-
|
| 457 |
-
Synthesis --> FinalReport: Combine all outputs
|
| 458 |
-
FinalReport --> [*]
|
| 459 |
-
|
| 460 |
-
note right of QualityCheck
|
| 461 |
-
Manager assesses:
|
| 462 |
-
• Output completeness
|
| 463 |
-
• Quality metrics
|
| 464 |
-
• Progress made
|
| 465 |
-
end note
|
| 466 |
-
|
| 467 |
-
note right of StallDetection
|
| 468 |
-
Stall = no new progress
|
| 469 |
-
after agent execution
|
| 470 |
-
Triggers plan reset
|
| 471 |
-
end note
|
| 472 |
-
```
|
| 473 |
-
|
| 474 |
-
## 13. Gradio UI Integration
|
| 475 |
-
|
| 476 |
-
```mermaid
|
| 477 |
-
graph TD
|
| 478 |
-
App[Gradio App<br/>DeepCritical Research Agent]
|
| 479 |
-
|
| 480 |
-
App --> Input[Input Section]
|
| 481 |
-
App --> Status[Status Section]
|
| 482 |
-
App --> Output[Output Section]
|
| 483 |
-
|
| 484 |
-
Input --> Query[Research Question<br/>Text Area]
|
| 485 |
-
Input --> Controls[Controls]
|
| 486 |
-
Controls --> MaxHyp[Max Hypotheses: 1-10]
|
| 487 |
-
Controls --> MaxRounds[Max Rounds: 5-20]
|
| 488 |
-
Controls --> Submit[Start Research Button]
|
| 489 |
-
|
| 490 |
-
Status --> Log[Real-time Event Log<br/>• Manager planning<br/>• Agent selection<br/>• Execution updates<br/>• Quality assessment]
|
| 491 |
-
Status --> Progress[Progress Tracker<br/>• Current agent<br/>• Round count<br/>• Stall count]
|
| 492 |
-
|
| 493 |
-
Output --> Tabs[Tabbed Results]
|
| 494 |
-
Tabs --> Tab1[Hypotheses Tab<br/>Generated hypotheses with scores]
|
| 495 |
-
Tabs --> Tab2[Search Results Tab<br/>Papers & sources found]
|
| 496 |
-
Tabs --> Tab3[Analysis Tab<br/>Evidence & verdicts]
|
| 497 |
-
Tabs --> Tab4[Report Tab<br/>Final research report]
|
| 498 |
-
Tab4 --> Download[Download Report<br/>MD / PDF / JSON]
|
| 499 |
-
|
| 500 |
-
Submit -.->|Triggers| Workflow[Magentic Workflow]
|
| 501 |
-
Workflow -.->|MagenticOrchestratorMessageEvent| Log
|
| 502 |
-
Workflow -.->|MagenticAgentDeltaEvent| Log
|
| 503 |
-
Workflow -.->|MagenticAgentMessageEvent| Log
|
| 504 |
-
Workflow -.->|MagenticFinalResultEvent| Tab4
|
| 505 |
-
|
| 506 |
-
style App fill:#e1f5e1
|
| 507 |
-
style Input fill:#fff4e6
|
| 508 |
-
style Status fill:#e6f3ff
|
| 509 |
-
style Output fill:#e6ffe6
|
| 510 |
-
style Workflow fill:#ffe6e6
|
| 511 |
-
```
|
| 512 |
-
|
| 513 |
-
## 14. Complete System Context
|
| 514 |
-
|
| 515 |
-
```mermaid
|
| 516 |
-
graph LR
|
| 517 |
-
User[👤 Researcher<br/>Asks research questions] -->|Submits query| DC[DeepCritical<br/>Magentic Workflow]
|
| 518 |
-
|
| 519 |
-
DC -->|Literature search| PubMed[PubMed API<br/>Medical papers]
|
| 520 |
-
DC -->|Preprint search| ArXiv[arXiv API<br/>Scientific preprints]
|
| 521 |
-
DC -->|Biology search| BioRxiv[bioRxiv API<br/>Biology preprints]
|
| 522 |
-
DC -->|Agent reasoning| Claude[Claude API<br/>Sonnet 4 / Opus]
|
| 523 |
-
DC -->|Code execution| Modal[Modal Sandbox<br/>Safe Python env]
|
| 524 |
-
DC -->|Vector storage| Chroma[ChromaDB<br/>Embeddings & RAG]
|
| 525 |
-
|
| 526 |
-
DC -->|Deployed on| HF[HuggingFace Spaces<br/>Gradio 6.0]
|
| 527 |
-
|
| 528 |
-
PubMed -->|Results| DC
|
| 529 |
-
ArXiv -->|Results| DC
|
| 530 |
-
BioRxiv -->|Results| DC
|
| 531 |
-
Claude -->|Responses| DC
|
| 532 |
-
Modal -->|Output| DC
|
| 533 |
-
Chroma -->|Context| DC
|
| 534 |
-
|
| 535 |
-
DC -->|Research report| User
|
| 536 |
-
|
| 537 |
-
style User fill:#e1f5e1
|
| 538 |
-
style DC fill:#ffe6e6
|
| 539 |
-
style PubMed fill:#e6f3ff
|
| 540 |
-
style ArXiv fill:#e6f3ff
|
| 541 |
-
style BioRxiv fill:#e6f3ff
|
| 542 |
-
style Claude fill:#ffd6d6
|
| 543 |
-
style Modal fill:#f0f0f0
|
| 544 |
-
style Chroma fill:#ffe6f0
|
| 545 |
-
style HF fill:#d4edda
|
| 546 |
-
```
|
| 547 |
-
|
| 548 |
-
## 15. Workflow Timeline (Simplified)
|
| 549 |
-
|
| 550 |
-
```mermaid
|
| 551 |
-
gantt
|
| 552 |
-
title DeepCritical Magentic Workflow - Typical Execution
|
| 553 |
-
dateFormat mm:ss
|
| 554 |
-
axisFormat %M:%S
|
| 555 |
-
|
| 556 |
-
section Manager Planning
|
| 557 |
-
Initial planning :p1, 00:00, 10s
|
| 558 |
-
|
| 559 |
-
section Hypothesis Agent
|
| 560 |
-
Generate hypotheses :h1, after p1, 30s
|
| 561 |
-
Manager assessment :h2, after h1, 5s
|
| 562 |
-
|
| 563 |
-
section Search Agent
|
| 564 |
-
Search hypothesis 1 :s1, after h2, 20s
|
| 565 |
-
Search hypothesis 2 :s2, after s1, 20s
|
| 566 |
-
Search hypothesis 3 :s3, after s2, 20s
|
| 567 |
-
RAG processing :s4, after s3, 15s
|
| 568 |
-
Manager assessment :s5, after s4, 5s
|
| 569 |
-
|
| 570 |
-
section Analysis Agent
|
| 571 |
-
Evidence extraction :a1, after s5, 15s
|
| 572 |
-
Code generation :a2, after a1, 20s
|
| 573 |
-
Code execution :a3, after a2, 25s
|
| 574 |
-
Synthesis :a4, after a3, 20s
|
| 575 |
-
Manager assessment :a5, after a4, 5s
|
| 576 |
-
|
| 577 |
-
section Report Agent
|
| 578 |
-
Report assembly :r1, after a5, 30s
|
| 579 |
-
Visualization :r2, after r1, 15s
|
| 580 |
-
Formatting :r3, after r2, 10s
|
| 581 |
-
|
| 582 |
-
section Manager Synthesis
|
| 583 |
-
Final synthesis :f1, after r3, 10s
|
| 584 |
-
```
|
| 585 |
-
|
| 586 |
-
---
|
| 587 |
-
|
| 588 |
-
## Key Differences from Original Design
|
| 589 |
-
|
| 590 |
-
| Aspect | Original (Judge-in-Loop) | New (Magentic) |
|
| 591 |
-
|--------|-------------------------|----------------|
|
| 592 |
-
| **Control Flow** | Fixed sequential phases | Dynamic agent selection |
|
| 593 |
-
| **Quality Control** | Separate Judge Agent | Manager assessment built-in |
|
| 594 |
-
| **Retry Logic** | Phase-level with feedback | Agent-level with adaptation |
|
| 595 |
-
| **Flexibility** | Rigid 4-phase pipeline | Adaptive workflow |
|
| 596 |
-
| **Complexity** | 5 agents (including Judge) | 4 agents (no Judge) |
|
| 597 |
-
| **Progress Tracking** | Manual state management | Built-in round/stall detection |
|
| 598 |
-
| **Agent Coordination** | Sequential handoff | Manager-driven dynamic selection |
|
| 599 |
-
| **Error Recovery** | Retry same phase | Try different agent or replan |
|
| 600 |
-
|
| 601 |
-
---
|
| 602 |
-
|
| 603 |
-
## Simplified Design Principles
|
| 604 |
-
|
| 605 |
-
1. **Manager is Intelligent**: LLM-powered manager handles planning, selection, and quality assessment
|
| 606 |
-
2. **No Separate Judge**: Manager's assessment phase replaces dedicated Judge Agent
|
| 607 |
-
3. **Dynamic Workflow**: Agents can be called multiple times in any order based on need
|
| 608 |
-
4. **Built-in Safety**: max_round_count (15) and max_stall_count (3) prevent infinite loops
|
| 609 |
-
5. **Event-Driven UI**: Real-time streaming updates to Gradio interface
|
| 610 |
-
6. **MCP-Powered Tools**: All external capabilities via Model Context Protocol
|
| 611 |
-
7. **Shared Context**: Centralized state accessible to all agents
|
| 612 |
-
8. **Progress Awareness**: Manager tracks what's been done and what's needed
|
| 613 |
-
|
| 614 |
-
---
|
| 615 |
-
|
| 616 |
-
## Legend
|
| 617 |
-
|
| 618 |
-
- 🔴 **Red/Pink**: Manager, orchestration, decision-making
|
| 619 |
-
- 🟡 **Yellow/Orange**: Specialist agents, processing
|
| 620 |
-
- 🔵 **Blue**: Data, tools, MCP services
|
| 621 |
-
- 🟣 **Purple/Pink**: Storage, databases, state
|
| 622 |
-
- 🟢 **Green**: User interactions, final outputs
|
| 623 |
-
- ⚪ **Gray**: External services, APIs
|
| 624 |
-
|
| 625 |
-
---
|
| 626 |
-
|
| 627 |
-
## Implementation Highlights
|
| 628 |
-
|
| 629 |
-
**Simple 4-Agent Setup:**
|
| 630 |
-
```python
|
| 631 |
-
workflow = (
|
| 632 |
-
MagenticBuilder()
|
| 633 |
-
.participants(
|
| 634 |
-
hypothesis=HypothesisAgent(tools=[background_tool]),
|
| 635 |
-
search=SearchAgent(tools=[web_search, rag_tool]),
|
| 636 |
-
analysis=AnalysisAgent(tools=[code_execution]),
|
| 637 |
-
report=ReportAgent(tools=[code_execution, visualization])
|
| 638 |
-
)
|
| 639 |
-
.with_standard_manager(
|
| 640 |
-
chat_client=AnthropicClient(model="claude-sonnet-4"),
|
| 641 |
-
max_round_count=15, # Prevent infinite loops
|
| 642 |
-
max_stall_count=3 # Detect stuck workflows
|
| 643 |
-
)
|
| 644 |
-
.build()
|
| 645 |
-
)
|
| 646 |
-
```
|
| 647 |
-
|
| 648 |
-
**Manager handles quality assessment in its instructions:**
|
| 649 |
-
- Checks hypothesis quality (testable, novel, clear)
|
| 650 |
-
- Validates search results (relevant, authoritative, recent)
|
| 651 |
-
- Assesses analysis soundness (methodology, evidence, conclusions)
|
| 652 |
-
- Ensures report completeness (all sections, proper citations)
|
| 653 |
-
|
| 654 |
-
No separate Judge Agent needed - manager does it all!
|
| 655 |
-
|
| 656 |
-
---
|
| 657 |
-
|
| 658 |
-
**Document Version**: 2.0 (Magentic Simplified)
|
| 659 |
-
**Last Updated**: 2025-11-24
|
| 660 |
-
**Architecture**: Microsoft Magentic Orchestration Pattern
|
| 661 |
-
**Agents**: 4 (Hypothesis, Search, Analysis, Report) + 1 Manager
|
| 662 |
-
**License**: MIT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/configuration/CONFIGURATION.md
DELETED
|
@@ -1,743 +0,0 @@
|
|
| 1 |
-
# Configuration Guide
|
| 2 |
-
|
| 3 |
-
## Overview
|
| 4 |
-
|
| 5 |
-
DeepCritical uses **Pydantic Settings** for centralized configuration management. All settings are defined in the `Settings` class in `src/utils/config.py` and can be configured via environment variables or a `.env` file.
|
| 6 |
-
|
| 7 |
-
The configuration system provides:
|
| 8 |
-
|
| 9 |
-
- **Type Safety**: Strongly-typed fields with Pydantic validation
|
| 10 |
-
- **Environment File Support**: Automatically loads from `.env` file (if present)
|
| 11 |
-
- **Case-Insensitive**: Environment variables are case-insensitive
|
| 12 |
-
- **Singleton Pattern**: Global `settings` instance for easy access throughout the codebase
|
| 13 |
-
- **Validation**: Automatic validation on load with helpful error messages
|
| 14 |
-
|
| 15 |
-
## Quick Start
|
| 16 |
-
|
| 17 |
-
1. Create a `.env` file in the project root
|
| 18 |
-
2. Set at least one LLM API key (`OPENAI_API_KEY`, `ANTHROPIC_API_KEY`, or `HF_TOKEN`)
|
| 19 |
-
3. Optionally configure other services as needed
|
| 20 |
-
4. The application will automatically load and validate your configuration
|
| 21 |
-
|
| 22 |
-
## Configuration System Architecture
|
| 23 |
-
|
| 24 |
-
### Settings Class
|
| 25 |
-
|
| 26 |
-
The `Settings` class extends `BaseSettings` from `pydantic_settings` and defines all application configuration:
|
| 27 |
-
|
| 28 |
-
```13:21:src/utils/config.py
|
| 29 |
-
class Settings(BaseSettings):
|
| 30 |
-
"""Strongly-typed application settings."""
|
| 31 |
-
|
| 32 |
-
model_config = SettingsConfigDict(
|
| 33 |
-
env_file=".env",
|
| 34 |
-
env_file_encoding="utf-8",
|
| 35 |
-
case_sensitive=False,
|
| 36 |
-
extra="ignore",
|
| 37 |
-
)
|
| 38 |
-
```
|
| 39 |
-
|
| 40 |
-
### Singleton Instance
|
| 41 |
-
|
| 42 |
-
A global `settings` instance is available for import:
|
| 43 |
-
|
| 44 |
-
```234:235:src/utils/config.py
|
| 45 |
-
# Singleton for easy import
|
| 46 |
-
settings = get_settings()
|
| 47 |
-
```
|
| 48 |
-
|
| 49 |
-
### Usage Pattern
|
| 50 |
-
|
| 51 |
-
Access configuration throughout the codebase:
|
| 52 |
-
|
| 53 |
-
```python
|
| 54 |
-
from src.utils.config import settings
|
| 55 |
-
|
| 56 |
-
# Check if API keys are available
|
| 57 |
-
if settings.has_openai_key:
|
| 58 |
-
# Use OpenAI
|
| 59 |
-
pass
|
| 60 |
-
|
| 61 |
-
# Access configuration values
|
| 62 |
-
max_iterations = settings.max_iterations
|
| 63 |
-
web_search_provider = settings.web_search_provider
|
| 64 |
-
```
|
| 65 |
-
|
| 66 |
-
## Required Configuration
|
| 67 |
-
|
| 68 |
-
### LLM Provider
|
| 69 |
-
|
| 70 |
-
You must configure at least one LLM provider. The system supports:
|
| 71 |
-
|
| 72 |
-
- **OpenAI**: Requires `OPENAI_API_KEY`
|
| 73 |
-
- **Anthropic**: Requires `ANTHROPIC_API_KEY`
|
| 74 |
-
- **HuggingFace**: Optional `HF_TOKEN` or `HUGGINGFACE_API_KEY` (can work without key for public models)
|
| 75 |
-
|
| 76 |
-
#### OpenAI Configuration
|
| 77 |
-
|
| 78 |
-
```bash
|
| 79 |
-
LLM_PROVIDER=openai
|
| 80 |
-
OPENAI_API_KEY=your_openai_api_key_here
|
| 81 |
-
OPENAI_MODEL=gpt-5.1
|
| 82 |
-
```
|
| 83 |
-
|
| 84 |
-
The default model is defined in the `Settings` class:
|
| 85 |
-
|
| 86 |
-
```29:29:src/utils/config.py
|
| 87 |
-
openai_model: str = Field(default="gpt-5.1", description="OpenAI model name")
|
| 88 |
-
```
|
| 89 |
-
|
| 90 |
-
#### Anthropic Configuration
|
| 91 |
-
|
| 92 |
-
```bash
|
| 93 |
-
LLM_PROVIDER=anthropic
|
| 94 |
-
ANTHROPIC_API_KEY=your_anthropic_api_key_here
|
| 95 |
-
ANTHROPIC_MODEL=claude-sonnet-4-5-20250929
|
| 96 |
-
```
|
| 97 |
-
|
| 98 |
-
The default model is defined in the `Settings` class:
|
| 99 |
-
|
| 100 |
-
```30:32:src/utils/config.py
|
| 101 |
-
anthropic_model: str = Field(
|
| 102 |
-
default="claude-sonnet-4-5-20250929", description="Anthropic model"
|
| 103 |
-
)
|
| 104 |
-
```
|
| 105 |
-
|
| 106 |
-
#### HuggingFace Configuration
|
| 107 |
-
|
| 108 |
-
HuggingFace can work without an API key for public models, but an API key provides higher rate limits:
|
| 109 |
-
|
| 110 |
-
```bash
|
| 111 |
-
# Option 1: Using HF_TOKEN (preferred)
|
| 112 |
-
HF_TOKEN=your_huggingface_token_here
|
| 113 |
-
|
| 114 |
-
# Option 2: Using HUGGINGFACE_API_KEY (alternative)
|
| 115 |
-
HUGGINGFACE_API_KEY=your_huggingface_api_key_here
|
| 116 |
-
|
| 117 |
-
# Default model
|
| 118 |
-
HUGGINGFACE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
| 119 |
-
```
|
| 120 |
-
|
| 121 |
-
The HuggingFace token can be set via either environment variable:
|
| 122 |
-
|
| 123 |
-
```33:35:src/utils/config.py
|
| 124 |
-
hf_token: str | None = Field(
|
| 125 |
-
default=None, alias="HF_TOKEN", description="HuggingFace API token"
|
| 126 |
-
)
|
| 127 |
-
```
|
| 128 |
-
|
| 129 |
-
```57:59:src/utils/config.py
|
| 130 |
-
huggingface_api_key: str | None = Field(
|
| 131 |
-
default=None, description="HuggingFace API token (HF_TOKEN or HUGGINGFACE_API_KEY)"
|
| 132 |
-
)
|
| 133 |
-
```
|
| 134 |
-
|
| 135 |
-
## Optional Configuration
|
| 136 |
-
|
| 137 |
-
### Embedding Configuration
|
| 138 |
-
|
| 139 |
-
DeepCritical supports multiple embedding providers for semantic search and RAG:
|
| 140 |
-
|
| 141 |
-
```bash
|
| 142 |
-
# Embedding Provider: "openai", "local", or "huggingface"
|
| 143 |
-
EMBEDDING_PROVIDER=local
|
| 144 |
-
|
| 145 |
-
# OpenAI Embedding Model (used by LlamaIndex RAG)
|
| 146 |
-
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
|
| 147 |
-
|
| 148 |
-
# Local Embedding Model (sentence-transformers, used by EmbeddingService)
|
| 149 |
-
LOCAL_EMBEDDING_MODEL=all-MiniLM-L6-v2
|
| 150 |
-
|
| 151 |
-
# HuggingFace Embedding Model
|
| 152 |
-
HUGGINGFACE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
| 153 |
-
```
|
| 154 |
-
|
| 155 |
-
The embedding provider configuration:
|
| 156 |
-
|
| 157 |
-
```47:50:src/utils/config.py
|
| 158 |
-
embedding_provider: Literal["openai", "local", "huggingface"] = Field(
|
| 159 |
-
default="local",
|
| 160 |
-
description="Embedding provider to use",
|
| 161 |
-
)
|
| 162 |
-
```
|
| 163 |
-
|
| 164 |
-
**Note**: OpenAI embeddings require `OPENAI_API_KEY`. The local provider (default) uses sentence-transformers and requires no API key.
|
| 165 |
-
|
| 166 |
-
### Web Search Configuration
|
| 167 |
-
|
| 168 |
-
DeepCritical supports multiple web search providers:
|
| 169 |
-
|
| 170 |
-
```bash
|
| 171 |
-
# Web Search Provider: "serper", "searchxng", "brave", "tavily", or "duckduckgo"
|
| 172 |
-
# Default: "duckduckgo" (no API key required)
|
| 173 |
-
WEB_SEARCH_PROVIDER=duckduckgo
|
| 174 |
-
|
| 175 |
-
# Serper API Key (for Google search via Serper)
|
| 176 |
-
SERPER_API_KEY=your_serper_api_key_here
|
| 177 |
-
|
| 178 |
-
# SearchXNG Host URL (for self-hosted search)
|
| 179 |
-
SEARCHXNG_HOST=http://localhost:8080
|
| 180 |
-
|
| 181 |
-
# Brave Search API Key
|
| 182 |
-
BRAVE_API_KEY=your_brave_api_key_here
|
| 183 |
-
|
| 184 |
-
# Tavily API Key
|
| 185 |
-
TAVILY_API_KEY=your_tavily_api_key_here
|
| 186 |
-
```
|
| 187 |
-
|
| 188 |
-
The web search provider configuration:
|
| 189 |
-
|
| 190 |
-
```71:74:src/utils/config.py
|
| 191 |
-
web_search_provider: Literal["serper", "searchxng", "brave", "tavily", "duckduckgo"] = Field(
|
| 192 |
-
default="duckduckgo",
|
| 193 |
-
description="Web search provider to use",
|
| 194 |
-
)
|
| 195 |
-
```
|
| 196 |
-
|
| 197 |
-
**Note**: DuckDuckGo is the default and requires no API key, making it ideal for development and testing.
|
| 198 |
-
|
| 199 |
-
### PubMed Configuration
|
| 200 |
-
|
| 201 |
-
PubMed search supports optional NCBI API key for higher rate limits:
|
| 202 |
-
|
| 203 |
-
```bash
|
| 204 |
-
# NCBI API Key (optional, for higher rate limits: 10 req/sec vs 3 req/sec)
|
| 205 |
-
NCBI_API_KEY=your_ncbi_api_key_here
|
| 206 |
-
```
|
| 207 |
-
|
| 208 |
-
The PubMed tool uses this configuration:
|
| 209 |
-
|
| 210 |
-
```22:29:src/tools/pubmed.py
|
| 211 |
-
def __init__(self, api_key: str | None = None) -> None:
|
| 212 |
-
self.api_key = api_key or settings.ncbi_api_key
|
| 213 |
-
# Ignore placeholder values from .env.example
|
| 214 |
-
if self.api_key == "your-ncbi-key-here":
|
| 215 |
-
self.api_key = None
|
| 216 |
-
|
| 217 |
-
# Use shared rate limiter
|
| 218 |
-
self._limiter = get_pubmed_limiter(self.api_key)
|
| 219 |
-
```
|
| 220 |
-
|
| 221 |
-
### Agent Configuration
|
| 222 |
-
|
| 223 |
-
Control agent behavior and research loop execution:
|
| 224 |
-
|
| 225 |
-
```bash
|
| 226 |
-
# Maximum iterations per research loop (1-50, default: 10)
|
| 227 |
-
MAX_ITERATIONS=10
|
| 228 |
-
|
| 229 |
-
# Search timeout in seconds
|
| 230 |
-
SEARCH_TIMEOUT=30
|
| 231 |
-
|
| 232 |
-
# Use graph-based execution for research flows
|
| 233 |
-
USE_GRAPH_EXECUTION=false
|
| 234 |
-
```
|
| 235 |
-
|
| 236 |
-
The agent configuration fields:
|
| 237 |
-
|
| 238 |
-
```80:85:src/utils/config.py
|
| 239 |
-
# Agent Configuration
|
| 240 |
-
max_iterations: int = Field(default=10, ge=1, le=50)
|
| 241 |
-
search_timeout: int = Field(default=30, description="Seconds to wait for search")
|
| 242 |
-
use_graph_execution: bool = Field(
|
| 243 |
-
default=False, description="Use graph-based execution for research flows"
|
| 244 |
-
)
|
| 245 |
-
```
|
| 246 |
-
|
| 247 |
-
### Budget & Rate Limiting Configuration
|
| 248 |
-
|
| 249 |
-
Control resource limits for research loops:
|
| 250 |
-
|
| 251 |
-
```bash
|
| 252 |
-
# Default token budget per research loop (1000-1000000, default: 100000)
|
| 253 |
-
DEFAULT_TOKEN_LIMIT=100000
|
| 254 |
-
|
| 255 |
-
# Default time limit per research loop in minutes (1-120, default: 10)
|
| 256 |
-
DEFAULT_TIME_LIMIT_MINUTES=10
|
| 257 |
-
|
| 258 |
-
# Default iterations limit per research loop (1-50, default: 10)
|
| 259 |
-
DEFAULT_ITERATIONS_LIMIT=10
|
| 260 |
-
```
|
| 261 |
-
|
| 262 |
-
The budget configuration with validation:
|
| 263 |
-
|
| 264 |
-
```87:105:src/utils/config.py
|
| 265 |
-
# Budget & Rate Limiting Configuration
|
| 266 |
-
default_token_limit: int = Field(
|
| 267 |
-
default=100000,
|
| 268 |
-
ge=1000,
|
| 269 |
-
le=1000000,
|
| 270 |
-
description="Default token budget per research loop",
|
| 271 |
-
)
|
| 272 |
-
default_time_limit_minutes: int = Field(
|
| 273 |
-
default=10,
|
| 274 |
-
ge=1,
|
| 275 |
-
le=120,
|
| 276 |
-
description="Default time limit per research loop (minutes)",
|
| 277 |
-
)
|
| 278 |
-
default_iterations_limit: int = Field(
|
| 279 |
-
default=10,
|
| 280 |
-
ge=1,
|
| 281 |
-
le=50,
|
| 282 |
-
description="Default iterations limit per research loop",
|
| 283 |
-
)
|
| 284 |
-
```
|
| 285 |
-
|
| 286 |
-
### RAG Service Configuration
|
| 287 |
-
|
| 288 |
-
Configure the Retrieval-Augmented Generation service:
|
| 289 |
-
|
| 290 |
-
```bash
|
| 291 |
-
# ChromaDB collection name for RAG
|
| 292 |
-
RAG_COLLECTION_NAME=deepcritical_evidence
|
| 293 |
-
|
| 294 |
-
# Number of top results to retrieve from RAG (1-50, default: 5)
|
| 295 |
-
RAG_SIMILARITY_TOP_K=5
|
| 296 |
-
|
| 297 |
-
# Automatically ingest evidence into RAG
|
| 298 |
-
RAG_AUTO_INGEST=true
|
| 299 |
-
```
|
| 300 |
-
|
| 301 |
-
The RAG configuration:
|
| 302 |
-
|
| 303 |
-
```127:141:src/utils/config.py
|
| 304 |
-
# RAG Service Configuration
|
| 305 |
-
rag_collection_name: str = Field(
|
| 306 |
-
default="deepcritical_evidence",
|
| 307 |
-
description="ChromaDB collection name for RAG",
|
| 308 |
-
)
|
| 309 |
-
rag_similarity_top_k: int = Field(
|
| 310 |
-
default=5,
|
| 311 |
-
ge=1,
|
| 312 |
-
le=50,
|
| 313 |
-
description="Number of top results to retrieve from RAG",
|
| 314 |
-
)
|
| 315 |
-
rag_auto_ingest: bool = Field(
|
| 316 |
-
default=True,
|
| 317 |
-
description="Automatically ingest evidence into RAG",
|
| 318 |
-
)
|
| 319 |
-
```
|
| 320 |
-
|
| 321 |
-
### ChromaDB Configuration
|
| 322 |
-
|
| 323 |
-
Configure the vector database for embeddings and RAG:
|
| 324 |
-
|
| 325 |
-
```bash
|
| 326 |
-
# ChromaDB storage path
|
| 327 |
-
CHROMA_DB_PATH=./chroma_db
|
| 328 |
-
|
| 329 |
-
# Whether to persist ChromaDB to disk
|
| 330 |
-
CHROMA_DB_PERSIST=true
|
| 331 |
-
|
| 332 |
-
# ChromaDB server host (for remote ChromaDB, optional)
|
| 333 |
-
CHROMA_DB_HOST=localhost
|
| 334 |
-
|
| 335 |
-
# ChromaDB server port (for remote ChromaDB, optional)
|
| 336 |
-
CHROMA_DB_PORT=8000
|
| 337 |
-
```
|
| 338 |
-
|
| 339 |
-
The ChromaDB configuration:
|
| 340 |
-
|
| 341 |
-
```113:125:src/utils/config.py
|
| 342 |
-
chroma_db_path: str = Field(default="./chroma_db", description="ChromaDB storage path")
|
| 343 |
-
chroma_db_persist: bool = Field(
|
| 344 |
-
default=True,
|
| 345 |
-
description="Whether to persist ChromaDB to disk",
|
| 346 |
-
)
|
| 347 |
-
chroma_db_host: str | None = Field(
|
| 348 |
-
default=None,
|
| 349 |
-
description="ChromaDB server host (for remote ChromaDB)",
|
| 350 |
-
)
|
| 351 |
-
chroma_db_port: int | None = Field(
|
| 352 |
-
default=None,
|
| 353 |
-
description="ChromaDB server port (for remote ChromaDB)",
|
| 354 |
-
)
|
| 355 |
-
```
|
| 356 |
-
|
| 357 |
-
### External Services
|
| 358 |
-
|
| 359 |
-
#### Modal Configuration
|
| 360 |
-
|
| 361 |
-
Modal is used for secure sandbox execution of statistical analysis:
|
| 362 |
-
|
| 363 |
-
```bash
|
| 364 |
-
# Modal Token ID (for Modal sandbox execution)
|
| 365 |
-
MODAL_TOKEN_ID=your_modal_token_id_here
|
| 366 |
-
|
| 367 |
-
# Modal Token Secret
|
| 368 |
-
MODAL_TOKEN_SECRET=your_modal_token_secret_here
|
| 369 |
-
```
|
| 370 |
-
|
| 371 |
-
The Modal configuration:
|
| 372 |
-
|
| 373 |
-
```110:112:src/utils/config.py
|
| 374 |
-
# External Services
|
| 375 |
-
modal_token_id: str | None = Field(default=None, description="Modal token ID")
|
| 376 |
-
modal_token_secret: str | None = Field(default=None, description="Modal token secret")
|
| 377 |
-
```
|
| 378 |
-
|
| 379 |
-
### Logging Configuration
|
| 380 |
-
|
| 381 |
-
Configure structured logging:
|
| 382 |
-
|
| 383 |
-
```bash
|
| 384 |
-
# Log Level: "DEBUG", "INFO", "WARNING", or "ERROR"
|
| 385 |
-
LOG_LEVEL=INFO
|
| 386 |
-
```
|
| 387 |
-
|
| 388 |
-
The logging configuration:
|
| 389 |
-
|
| 390 |
-
```107:108:src/utils/config.py
|
| 391 |
-
# Logging
|
| 392 |
-
log_level: Literal["DEBUG", "INFO", "WARNING", "ERROR"] = "INFO"
|
| 393 |
-
```
|
| 394 |
-
|
| 395 |
-
Logging is configured via the `configure_logging()` function:
|
| 396 |
-
|
| 397 |
-
```212:231:src/utils/config.py
|
| 398 |
-
def configure_logging(settings: Settings) -> None:
|
| 399 |
-
"""Configure structured logging with the configured log level."""
|
| 400 |
-
# Set stdlib logging level from settings
|
| 401 |
-
logging.basicConfig(
|
| 402 |
-
level=getattr(logging, settings.log_level),
|
| 403 |
-
format="%(message)s",
|
| 404 |
-
)
|
| 405 |
-
|
| 406 |
-
structlog.configure(
|
| 407 |
-
processors=[
|
| 408 |
-
structlog.stdlib.filter_by_level,
|
| 409 |
-
structlog.stdlib.add_logger_name,
|
| 410 |
-
structlog.stdlib.add_log_level,
|
| 411 |
-
structlog.processors.TimeStamper(fmt="iso"),
|
| 412 |
-
structlog.processors.JSONRenderer(),
|
| 413 |
-
],
|
| 414 |
-
wrapper_class=structlog.stdlib.BoundLogger,
|
| 415 |
-
context_class=dict,
|
| 416 |
-
logger_factory=structlog.stdlib.LoggerFactory(),
|
| 417 |
-
)
|
| 418 |
-
```
|
| 419 |
-
|
| 420 |
-
## Configuration Properties
|
| 421 |
-
|
| 422 |
-
The `Settings` class provides helpful properties for checking configuration state:
|
| 423 |
-
|
| 424 |
-
### API Key Availability
|
| 425 |
-
|
| 426 |
-
Check which API keys are available:
|
| 427 |
-
|
| 428 |
-
```171:189:src/utils/config.py
|
| 429 |
-
@property
|
| 430 |
-
def has_openai_key(self) -> bool:
|
| 431 |
-
"""Check if OpenAI API key is available."""
|
| 432 |
-
return bool(self.openai_api_key)
|
| 433 |
-
|
| 434 |
-
@property
|
| 435 |
-
def has_anthropic_key(self) -> bool:
|
| 436 |
-
"""Check if Anthropic API key is available."""
|
| 437 |
-
return bool(self.anthropic_api_key)
|
| 438 |
-
|
| 439 |
-
@property
|
| 440 |
-
def has_huggingface_key(self) -> bool:
|
| 441 |
-
"""Check if HuggingFace API key is available."""
|
| 442 |
-
return bool(self.huggingface_api_key or self.hf_token)
|
| 443 |
-
|
| 444 |
-
@property
|
| 445 |
-
def has_any_llm_key(self) -> bool:
|
| 446 |
-
"""Check if any LLM API key is available."""
|
| 447 |
-
return self.has_openai_key or self.has_anthropic_key or self.has_huggingface_key
|
| 448 |
-
```
|
| 449 |
-
|
| 450 |
-
**Usage:**
|
| 451 |
-
|
| 452 |
-
```python
|
| 453 |
-
from src.utils.config import settings
|
| 454 |
-
|
| 455 |
-
# Check API key availability
|
| 456 |
-
if settings.has_openai_key:
|
| 457 |
-
# Use OpenAI
|
| 458 |
-
pass
|
| 459 |
-
|
| 460 |
-
if settings.has_anthropic_key:
|
| 461 |
-
# Use Anthropic
|
| 462 |
-
pass
|
| 463 |
-
|
| 464 |
-
if settings.has_huggingface_key:
|
| 465 |
-
# Use HuggingFace
|
| 466 |
-
pass
|
| 467 |
-
|
| 468 |
-
if settings.has_any_llm_key:
|
| 469 |
-
# At least one LLM is available
|
| 470 |
-
pass
|
| 471 |
-
```
|
| 472 |
-
|
| 473 |
-
### Service Availability
|
| 474 |
-
|
| 475 |
-
Check if external services are configured:
|
| 476 |
-
|
| 477 |
-
```143:146:src/utils/config.py
|
| 478 |
-
@property
|
| 479 |
-
def modal_available(self) -> bool:
|
| 480 |
-
"""Check if Modal credentials are configured."""
|
| 481 |
-
return bool(self.modal_token_id and self.modal_token_secret)
|
| 482 |
-
```
|
| 483 |
-
|
| 484 |
-
```191:204:src/utils/config.py
|
| 485 |
-
@property
|
| 486 |
-
def web_search_available(self) -> bool:
|
| 487 |
-
"""Check if web search is available (either no-key provider or API key present)."""
|
| 488 |
-
if self.web_search_provider == "duckduckgo":
|
| 489 |
-
return True # No API key required
|
| 490 |
-
if self.web_search_provider == "serper":
|
| 491 |
-
return bool(self.serper_api_key)
|
| 492 |
-
if self.web_search_provider == "searchxng":
|
| 493 |
-
return bool(self.searchxng_host)
|
| 494 |
-
if self.web_search_provider == "brave":
|
| 495 |
-
return bool(self.brave_api_key)
|
| 496 |
-
if self.web_search_provider == "tavily":
|
| 497 |
-
return bool(self.tavily_api_key)
|
| 498 |
-
return False
|
| 499 |
-
```
|
| 500 |
-
|
| 501 |
-
**Usage:**
|
| 502 |
-
|
| 503 |
-
```python
|
| 504 |
-
from src.utils.config import settings
|
| 505 |
-
|
| 506 |
-
# Check service availability
|
| 507 |
-
if settings.modal_available:
|
| 508 |
-
# Use Modal sandbox
|
| 509 |
-
pass
|
| 510 |
-
|
| 511 |
-
if settings.web_search_available:
|
| 512 |
-
# Web search is configured
|
| 513 |
-
pass
|
| 514 |
-
```
|
| 515 |
-
|
| 516 |
-
### API Key Retrieval
|
| 517 |
-
|
| 518 |
-
Get the API key for the configured provider:
|
| 519 |
-
|
| 520 |
-
```148:160:src/utils/config.py
|
| 521 |
-
def get_api_key(self) -> str:
|
| 522 |
-
"""Get the API key for the configured provider."""
|
| 523 |
-
if self.llm_provider == "openai":
|
| 524 |
-
if not self.openai_api_key:
|
| 525 |
-
raise ConfigurationError("OPENAI_API_KEY not set")
|
| 526 |
-
return self.openai_api_key
|
| 527 |
-
|
| 528 |
-
if self.llm_provider == "anthropic":
|
| 529 |
-
if not self.anthropic_api_key:
|
| 530 |
-
raise ConfigurationError("ANTHROPIC_API_KEY not set")
|
| 531 |
-
return self.anthropic_api_key
|
| 532 |
-
|
| 533 |
-
raise ConfigurationError(f"Unknown LLM provider: {self.llm_provider}")
|
| 534 |
-
```
|
| 535 |
-
|
| 536 |
-
For OpenAI-specific operations (e.g., Magentic mode):
|
| 537 |
-
|
| 538 |
-
```162:169:src/utils/config.py
|
| 539 |
-
def get_openai_api_key(self) -> str:
|
| 540 |
-
"""Get OpenAI API key (required for Magentic function calling)."""
|
| 541 |
-
if not self.openai_api_key:
|
| 542 |
-
raise ConfigurationError(
|
| 543 |
-
"OPENAI_API_KEY not set. Magentic mode requires OpenAI for function calling. "
|
| 544 |
-
"Use mode='simple' for other providers."
|
| 545 |
-
)
|
| 546 |
-
return self.openai_api_key
|
| 547 |
-
```
|
| 548 |
-
|
| 549 |
-
## Configuration Usage in Codebase
|
| 550 |
-
|
| 551 |
-
The configuration system is used throughout the codebase:
|
| 552 |
-
|
| 553 |
-
### LLM Factory
|
| 554 |
-
|
| 555 |
-
The LLM factory uses settings to create appropriate models:
|
| 556 |
-
|
| 557 |
-
```129:144:src/utils/llm_factory.py
|
| 558 |
-
if settings.llm_provider == "huggingface":
|
| 559 |
-
model_name = settings.huggingface_model or "meta-llama/Llama-3.1-8B-Instruct"
|
| 560 |
-
hf_provider = HuggingFaceProvider(api_key=settings.hf_token)
|
| 561 |
-
return HuggingFaceModel(model_name, provider=hf_provider)
|
| 562 |
-
|
| 563 |
-
if settings.llm_provider == "openai":
|
| 564 |
-
if not settings.openai_api_key:
|
| 565 |
-
raise ConfigurationError("OPENAI_API_KEY not set for pydantic-ai")
|
| 566 |
-
provider = OpenAIProvider(api_key=settings.openai_api_key)
|
| 567 |
-
return OpenAIModel(settings.openai_model, provider=provider)
|
| 568 |
-
|
| 569 |
-
if settings.llm_provider == "anthropic":
|
| 570 |
-
if not settings.anthropic_api_key:
|
| 571 |
-
raise ConfigurationError("ANTHROPIC_API_KEY not set for pydantic-ai")
|
| 572 |
-
anthropic_provider = AnthropicProvider(api_key=settings.anthropic_api_key)
|
| 573 |
-
return AnthropicModel(settings.anthropic_model, provider=anthropic_provider)
|
| 574 |
-
```
|
| 575 |
-
|
| 576 |
-
### Embedding Service
|
| 577 |
-
|
| 578 |
-
The embedding service uses local embedding model configuration:
|
| 579 |
-
|
| 580 |
-
```29:31:src/services/embeddings.py
|
| 581 |
-
def __init__(self, model_name: str | None = None):
|
| 582 |
-
self._model_name = model_name or settings.local_embedding_model
|
| 583 |
-
self._model = SentenceTransformer(self._model_name)
|
| 584 |
-
```
|
| 585 |
-
|
| 586 |
-
### Orchestrator Factory
|
| 587 |
-
|
| 588 |
-
The orchestrator factory uses settings to determine mode:
|
| 589 |
-
|
| 590 |
-
```69:80:src/orchestrator_factory.py
|
| 591 |
-
def _determine_mode(explicit_mode: str | None) -> str:
|
| 592 |
-
"""Determine which mode to use."""
|
| 593 |
-
if explicit_mode:
|
| 594 |
-
if explicit_mode in ("magentic", "advanced"):
|
| 595 |
-
return "advanced"
|
| 596 |
-
return "simple"
|
| 597 |
-
|
| 598 |
-
# Auto-detect: advanced if paid API key available
|
| 599 |
-
if settings.has_openai_key:
|
| 600 |
-
return "advanced"
|
| 601 |
-
|
| 602 |
-
return "simple"
|
| 603 |
-
```
|
| 604 |
-
|
| 605 |
-
## Environment Variables Reference
|
| 606 |
-
|
| 607 |
-
### Required (at least one LLM)
|
| 608 |
-
|
| 609 |
-
- `OPENAI_API_KEY` - OpenAI API key (required for OpenAI provider)
|
| 610 |
-
- `ANTHROPIC_API_KEY` - Anthropic API key (required for Anthropic provider)
|
| 611 |
-
- `HF_TOKEN` or `HUGGINGFACE_API_KEY` - HuggingFace API token (optional, can work without for public models)
|
| 612 |
-
|
| 613 |
-
#### LLM Configuration Variables
|
| 614 |
-
|
| 615 |
-
- `LLM_PROVIDER` - Provider to use: `"openai"`, `"anthropic"`, or `"huggingface"` (default: `"huggingface"`)
|
| 616 |
-
- `OPENAI_MODEL` - OpenAI model name (default: `"gpt-5.1"`)
|
| 617 |
-
- `ANTHROPIC_MODEL` - Anthropic model name (default: `"claude-sonnet-4-5-20250929"`)
|
| 618 |
-
- `HUGGINGFACE_MODEL` - HuggingFace model ID (default: `"meta-llama/Llama-3.1-8B-Instruct"`)
|
| 619 |
-
|
| 620 |
-
#### Embedding Configuration Variables
|
| 621 |
-
|
| 622 |
-
- `EMBEDDING_PROVIDER` - Provider: `"openai"`, `"local"`, or `"huggingface"` (default: `"local"`)
|
| 623 |
-
- `OPENAI_EMBEDDING_MODEL` - OpenAI embedding model (default: `"text-embedding-3-small"`)
|
| 624 |
-
- `LOCAL_EMBEDDING_MODEL` - Local sentence-transformers model (default: `"all-MiniLM-L6-v2"`)
|
| 625 |
-
- `HUGGINGFACE_EMBEDDING_MODEL` - HuggingFace embedding model (default: `"sentence-transformers/all-MiniLM-L6-v2"`)
|
| 626 |
-
|
| 627 |
-
#### Web Search Configuration Variables
|
| 628 |
-
|
| 629 |
-
- `WEB_SEARCH_PROVIDER` - Provider: `"serper"`, `"searchxng"`, `"brave"`, `"tavily"`, or `"duckduckgo"` (default: `"duckduckgo"`)
|
| 630 |
-
- `SERPER_API_KEY` - Serper API key (required for Serper provider)
|
| 631 |
-
- `SEARCHXNG_HOST` - SearchXNG host URL (required for SearchXNG provider)
|
| 632 |
-
- `BRAVE_API_KEY` - Brave Search API key (required for Brave provider)
|
| 633 |
-
- `TAVILY_API_KEY` - Tavily API key (required for Tavily provider)
|
| 634 |
-
|
| 635 |
-
#### PubMed Configuration Variables
|
| 636 |
-
|
| 637 |
-
- `NCBI_API_KEY` - NCBI API key (optional, increases rate limit from 3 to 10 req/sec)
|
| 638 |
-
|
| 639 |
-
#### Agent Configuration Variables
|
| 640 |
-
|
| 641 |
-
- `MAX_ITERATIONS` - Maximum iterations per research loop (1-50, default: `10`)
|
| 642 |
-
- `SEARCH_TIMEOUT` - Search timeout in seconds (default: `30`)
|
| 643 |
-
- `USE_GRAPH_EXECUTION` - Use graph-based execution (default: `false`)
|
| 644 |
-
|
| 645 |
-
#### Budget Configuration Variables
|
| 646 |
-
|
| 647 |
-
- `DEFAULT_TOKEN_LIMIT` - Default token budget per research loop (1000-1000000, default: `100000`)
|
| 648 |
-
- `DEFAULT_TIME_LIMIT_MINUTES` - Default time limit in minutes (1-120, default: `10`)
|
| 649 |
-
- `DEFAULT_ITERATIONS_LIMIT` - Default iterations limit (1-50, default: `10`)
|
| 650 |
-
|
| 651 |
-
#### RAG Configuration Variables
|
| 652 |
-
|
| 653 |
-
- `RAG_COLLECTION_NAME` - ChromaDB collection name (default: `"deepcritical_evidence"`)
|
| 654 |
-
- `RAG_SIMILARITY_TOP_K` - Number of top results to retrieve (1-50, default: `5`)
|
| 655 |
-
- `RAG_AUTO_INGEST` - Automatically ingest evidence into RAG (default: `true`)
|
| 656 |
-
|
| 657 |
-
#### ChromaDB Configuration Variables
|
| 658 |
-
|
| 659 |
-
- `CHROMA_DB_PATH` - ChromaDB storage path (default: `"./chroma_db"`)
|
| 660 |
-
- `CHROMA_DB_PERSIST` - Whether to persist ChromaDB to disk (default: `true`)
|
| 661 |
-
- `CHROMA_DB_HOST` - ChromaDB server host (optional, for remote ChromaDB)
|
| 662 |
-
- `CHROMA_DB_PORT` - ChromaDB server port (optional, for remote ChromaDB)
|
| 663 |
-
|
| 664 |
-
#### External Services Variables
|
| 665 |
-
|
| 666 |
-
- `MODAL_TOKEN_ID` - Modal token ID (optional, for Modal sandbox execution)
|
| 667 |
-
- `MODAL_TOKEN_SECRET` - Modal token secret (optional, for Modal sandbox execution)
|
| 668 |
-
|
| 669 |
-
#### Logging Configuration Variables
|
| 670 |
-
|
| 671 |
-
- `LOG_LEVEL` - Log level: `"DEBUG"`, `"INFO"`, `"WARNING"`, or `"ERROR"` (default: `"INFO"`)
|
| 672 |
-
|
| 673 |
-
## Validation
|
| 674 |
-
|
| 675 |
-
Settings are validated on load using Pydantic validation:
|
| 676 |
-
|
| 677 |
-
- **Type Checking**: All fields are strongly typed
|
| 678 |
-
- **Range Validation**: Numeric fields have min/max constraints (e.g., `ge=1, le=50` for `max_iterations`)
|
| 679 |
-
- **Literal Validation**: Enum fields only accept specific values (e.g., `Literal["openai", "anthropic", "huggingface"]`)
|
| 680 |
-
- **Required Fields**: API keys are checked when accessed via `get_api_key()` or `get_openai_api_key()`
|
| 681 |
-
|
| 682 |
-
### Validation Examples
|
| 683 |
-
|
| 684 |
-
The `max_iterations` field has range validation:
|
| 685 |
-
|
| 686 |
-
```81:81:src/utils/config.py
|
| 687 |
-
max_iterations: int = Field(default=10, ge=1, le=50)
|
| 688 |
-
```
|
| 689 |
-
|
| 690 |
-
The `llm_provider` field has literal validation:
|
| 691 |
-
|
| 692 |
-
```26:28:src/utils/config.py
|
| 693 |
-
llm_provider: Literal["openai", "anthropic", "huggingface"] = Field(
|
| 694 |
-
default="openai", description="Which LLM provider to use"
|
| 695 |
-
)
|
| 696 |
-
```
|
| 697 |
-
|
| 698 |
-
## Error Handling
|
| 699 |
-
|
| 700 |
-
Configuration errors raise `ConfigurationError` from `src/utils/exceptions.py`:
|
| 701 |
-
|
| 702 |
-
```22:25:src/utils/exceptions.py
|
| 703 |
-
class ConfigurationError(DeepCriticalError):
|
| 704 |
-
"""Raised when configuration is invalid."""
|
| 705 |
-
|
| 706 |
-
pass
|
| 707 |
-
```
|
| 708 |
-
|
| 709 |
-
### Error Handling Example
|
| 710 |
-
|
| 711 |
-
```python
|
| 712 |
-
from src.utils.config import settings
|
| 713 |
-
from src.utils.exceptions import ConfigurationError
|
| 714 |
-
|
| 715 |
-
try:
|
| 716 |
-
api_key = settings.get_api_key()
|
| 717 |
-
except ConfigurationError as e:
|
| 718 |
-
print(f"Configuration error: {e}")
|
| 719 |
-
```
|
| 720 |
-
|
| 721 |
-
### Common Configuration Errors
|
| 722 |
-
|
| 723 |
-
1. **Missing API Key**: When `get_api_key()` is called but the required API key is not set
|
| 724 |
-
2. **Invalid Provider**: When `llm_provider` is set to an unsupported value
|
| 725 |
-
3. **Out of Range**: When numeric values exceed their min/max constraints
|
| 726 |
-
4. **Invalid Literal**: When enum fields receive unsupported values
|
| 727 |
-
|
| 728 |
-
## Configuration Best Practices
|
| 729 |
-
|
| 730 |
-
1. **Use `.env` File**: Store sensitive keys in `.env` file (add to `.gitignore`)
|
| 731 |
-
2. **Check Availability**: Use properties like `has_openai_key` before accessing API keys
|
| 732 |
-
3. **Handle Errors**: Always catch `ConfigurationError` when calling `get_api_key()`
|
| 733 |
-
4. **Validate Early**: Configuration is validated on import, so errors surface immediately
|
| 734 |
-
5. **Use Defaults**: Leverage sensible defaults for optional configuration
|
| 735 |
-
|
| 736 |
-
## Future Enhancements
|
| 737 |
-
|
| 738 |
-
The following configurations are planned for future phases:
|
| 739 |
-
|
| 740 |
-
1. **Additional LLM Providers**: DeepSeek, OpenRouter, Gemini, Perplexity, Azure OpenAI, Local models
|
| 741 |
-
2. **Model Selection**: Reasoning/main/fast model configuration
|
| 742 |
-
3. **Service Integration**: Additional service integrations and configurations
|
| 743 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/configuration/index.md
DELETED
|
@@ -1,746 +0,0 @@
|
|
| 1 |
-
# Configuration Guide
|
| 2 |
-
|
| 3 |
-
## Overview
|
| 4 |
-
|
| 5 |
-
DeepCritical uses **Pydantic Settings** for centralized configuration management. All settings are defined in the `Settings` class in `src/utils/config.py` and can be configured via environment variables or a `.env` file.
|
| 6 |
-
|
| 7 |
-
The configuration system provides:
|
| 8 |
-
|
| 9 |
-
- **Type Safety**: Strongly-typed fields with Pydantic validation
|
| 10 |
-
- **Environment File Support**: Automatically loads from `.env` file (if present)
|
| 11 |
-
- **Case-Insensitive**: Environment variables are case-insensitive
|
| 12 |
-
- **Singleton Pattern**: Global `settings` instance for easy access throughout the codebase
|
| 13 |
-
- **Validation**: Automatic validation on load with helpful error messages
|
| 14 |
-
|
| 15 |
-
## Quick Start
|
| 16 |
-
|
| 17 |
-
1. Create a `.env` file in the project root
|
| 18 |
-
2. Set at least one LLM API key (`OPENAI_API_KEY`, `ANTHROPIC_API_KEY`, or `HF_TOKEN`)
|
| 19 |
-
3. Optionally configure other services as needed
|
| 20 |
-
4. The application will automatically load and validate your configuration
|
| 21 |
-
|
| 22 |
-
## Configuration System Architecture
|
| 23 |
-
|
| 24 |
-
### Settings Class
|
| 25 |
-
|
| 26 |
-
The [`Settings`][settings-class] class extends `BaseSettings` from `pydantic_settings` and defines all application configuration:
|
| 27 |
-
|
| 28 |
-
```13:21:src/utils/config.py
|
| 29 |
-
class Settings(BaseSettings):
|
| 30 |
-
"""Strongly-typed application settings."""
|
| 31 |
-
|
| 32 |
-
model_config = SettingsConfigDict(
|
| 33 |
-
env_file=".env",
|
| 34 |
-
env_file_encoding="utf-8",
|
| 35 |
-
case_sensitive=False,
|
| 36 |
-
extra="ignore",
|
| 37 |
-
)
|
| 38 |
-
```
|
| 39 |
-
|
| 40 |
-
[View source](https://github.com/DeepCritical/GradioDemo/blob/main/src/utils/config.py#L13-L21)
|
| 41 |
-
|
| 42 |
-
### Singleton Instance
|
| 43 |
-
|
| 44 |
-
A global `settings` instance is available for import:
|
| 45 |
-
|
| 46 |
-
```234:235:src/utils/config.py
|
| 47 |
-
# Singleton for easy import
|
| 48 |
-
settings = get_settings()
|
| 49 |
-
```
|
| 50 |
-
|
| 51 |
-
[View source](https://github.com/DeepCritical/GradioDemo/blob/main/src/utils/config.py#L234-L235)
|
| 52 |
-
|
| 53 |
-
### Usage Pattern
|
| 54 |
-
|
| 55 |
-
Access configuration throughout the codebase:
|
| 56 |
-
|
| 57 |
-
```python
|
| 58 |
-
from src.utils.config import settings
|
| 59 |
-
|
| 60 |
-
# Check if API keys are available
|
| 61 |
-
if settings.has_openai_key:
|
| 62 |
-
# Use OpenAI
|
| 63 |
-
pass
|
| 64 |
-
|
| 65 |
-
# Access configuration values
|
| 66 |
-
max_iterations = settings.max_iterations
|
| 67 |
-
web_search_provider = settings.web_search_provider
|
| 68 |
-
```
|
| 69 |
-
|
| 70 |
-
## Required Configuration
|
| 71 |
-
|
| 72 |
-
### LLM Provider
|
| 73 |
-
|
| 74 |
-
You must configure at least one LLM provider. The system supports:
|
| 75 |
-
|
| 76 |
-
- **OpenAI**: Requires `OPENAI_API_KEY`
|
| 77 |
-
- **Anthropic**: Requires `ANTHROPIC_API_KEY`
|
| 78 |
-
- **HuggingFace**: Optional `HF_TOKEN` or `HUGGINGFACE_API_KEY` (can work without key for public models)
|
| 79 |
-
|
| 80 |
-
#### OpenAI Configuration
|
| 81 |
-
|
| 82 |
-
```bash
|
| 83 |
-
LLM_PROVIDER=openai
|
| 84 |
-
OPENAI_API_KEY=your_openai_api_key_here
|
| 85 |
-
OPENAI_MODEL=gpt-5.1
|
| 86 |
-
```
|
| 87 |
-
|
| 88 |
-
The default model is defined in the `Settings` class:
|
| 89 |
-
|
| 90 |
-
```29:29:src/utils/config.py
|
| 91 |
-
openai_model: str = Field(default="gpt-5.1", description="OpenAI model name")
|
| 92 |
-
```
|
| 93 |
-
|
| 94 |
-
#### Anthropic Configuration
|
| 95 |
-
|
| 96 |
-
```bash
|
| 97 |
-
LLM_PROVIDER=anthropic
|
| 98 |
-
ANTHROPIC_API_KEY=your_anthropic_api_key_here
|
| 99 |
-
ANTHROPIC_MODEL=claude-sonnet-4-5-20250929
|
| 100 |
-
```
|
| 101 |
-
|
| 102 |
-
The default model is defined in the `Settings` class:
|
| 103 |
-
|
| 104 |
-
```30:32:src/utils/config.py
|
| 105 |
-
anthropic_model: str = Field(
|
| 106 |
-
default="claude-sonnet-4-5-20250929", description="Anthropic model"
|
| 107 |
-
)
|
| 108 |
-
```
|
| 109 |
-
|
| 110 |
-
#### HuggingFace Configuration
|
| 111 |
-
|
| 112 |
-
HuggingFace can work without an API key for public models, but an API key provides higher rate limits:
|
| 113 |
-
|
| 114 |
-
```bash
|
| 115 |
-
# Option 1: Using HF_TOKEN (preferred)
|
| 116 |
-
HF_TOKEN=your_huggingface_token_here
|
| 117 |
-
|
| 118 |
-
# Option 2: Using HUGGINGFACE_API_KEY (alternative)
|
| 119 |
-
HUGGINGFACE_API_KEY=your_huggingface_api_key_here
|
| 120 |
-
|
| 121 |
-
# Default model
|
| 122 |
-
HUGGINGFACE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
| 123 |
-
```
|
| 124 |
-
|
| 125 |
-
The HuggingFace token can be set via either environment variable:
|
| 126 |
-
|
| 127 |
-
```33:35:src/utils/config.py
|
| 128 |
-
hf_token: str | None = Field(
|
| 129 |
-
default=None, alias="HF_TOKEN", description="HuggingFace API token"
|
| 130 |
-
)
|
| 131 |
-
```
|
| 132 |
-
|
| 133 |
-
```57:59:src/utils/config.py
|
| 134 |
-
huggingface_api_key: str | None = Field(
|
| 135 |
-
default=None, description="HuggingFace API token (HF_TOKEN or HUGGINGFACE_API_KEY)"
|
| 136 |
-
)
|
| 137 |
-
```
|
| 138 |
-
|
| 139 |
-
## Optional Configuration
|
| 140 |
-
|
| 141 |
-
### Embedding Configuration
|
| 142 |
-
|
| 143 |
-
DeepCritical supports multiple embedding providers for semantic search and RAG:
|
| 144 |
-
|
| 145 |
-
```bash
|
| 146 |
-
# Embedding Provider: "openai", "local", or "huggingface"
|
| 147 |
-
EMBEDDING_PROVIDER=local
|
| 148 |
-
|
| 149 |
-
# OpenAI Embedding Model (used by LlamaIndex RAG)
|
| 150 |
-
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
|
| 151 |
-
|
| 152 |
-
# Local Embedding Model (sentence-transformers, used by EmbeddingService)
|
| 153 |
-
LOCAL_EMBEDDING_MODEL=all-MiniLM-L6-v2
|
| 154 |
-
|
| 155 |
-
# HuggingFace Embedding Model
|
| 156 |
-
HUGGINGFACE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
| 157 |
-
```
|
| 158 |
-
|
| 159 |
-
The embedding provider configuration:
|
| 160 |
-
|
| 161 |
-
```47:50:src/utils/config.py
|
| 162 |
-
embedding_provider: Literal["openai", "local", "huggingface"] = Field(
|
| 163 |
-
default="local",
|
| 164 |
-
description="Embedding provider to use",
|
| 165 |
-
)
|
| 166 |
-
```
|
| 167 |
-
|
| 168 |
-
**Note**: OpenAI embeddings require `OPENAI_API_KEY`. The local provider (default) uses sentence-transformers and requires no API key.
|
| 169 |
-
|
| 170 |
-
### Web Search Configuration
|
| 171 |
-
|
| 172 |
-
DeepCritical supports multiple web search providers:
|
| 173 |
-
|
| 174 |
-
```bash
|
| 175 |
-
# Web Search Provider: "serper", "searchxng", "brave", "tavily", or "duckduckgo"
|
| 176 |
-
# Default: "duckduckgo" (no API key required)
|
| 177 |
-
WEB_SEARCH_PROVIDER=duckduckgo
|
| 178 |
-
|
| 179 |
-
# Serper API Key (for Google search via Serper)
|
| 180 |
-
SERPER_API_KEY=your_serper_api_key_here
|
| 181 |
-
|
| 182 |
-
# SearchXNG Host URL (for self-hosted search)
|
| 183 |
-
SEARCHXNG_HOST=http://localhost:8080
|
| 184 |
-
|
| 185 |
-
# Brave Search API Key
|
| 186 |
-
BRAVE_API_KEY=your_brave_api_key_here
|
| 187 |
-
|
| 188 |
-
# Tavily API Key
|
| 189 |
-
TAVILY_API_KEY=your_tavily_api_key_here
|
| 190 |
-
```
|
| 191 |
-
|
| 192 |
-
The web search provider configuration:
|
| 193 |
-
|
| 194 |
-
```71:74:src/utils/config.py
|
| 195 |
-
web_search_provider: Literal["serper", "searchxng", "brave", "tavily", "duckduckgo"] = Field(
|
| 196 |
-
default="duckduckgo",
|
| 197 |
-
description="Web search provider to use",
|
| 198 |
-
)
|
| 199 |
-
```
|
| 200 |
-
|
| 201 |
-
**Note**: DuckDuckGo is the default and requires no API key, making it ideal for development and testing.
|
| 202 |
-
|
| 203 |
-
### PubMed Configuration
|
| 204 |
-
|
| 205 |
-
PubMed search supports optional NCBI API key for higher rate limits:
|
| 206 |
-
|
| 207 |
-
```bash
|
| 208 |
-
# NCBI API Key (optional, for higher rate limits: 10 req/sec vs 3 req/sec)
|
| 209 |
-
NCBI_API_KEY=your_ncbi_api_key_here
|
| 210 |
-
```
|
| 211 |
-
|
| 212 |
-
The PubMed tool uses this configuration:
|
| 213 |
-
|
| 214 |
-
```22:29:src/tools/pubmed.py
|
| 215 |
-
def __init__(self, api_key: str | None = None) -> None:
|
| 216 |
-
self.api_key = api_key or settings.ncbi_api_key
|
| 217 |
-
# Ignore placeholder values from .env.example
|
| 218 |
-
if self.api_key == "your-ncbi-key-here":
|
| 219 |
-
self.api_key = None
|
| 220 |
-
|
| 221 |
-
# Use shared rate limiter
|
| 222 |
-
self._limiter = get_pubmed_limiter(self.api_key)
|
| 223 |
-
```
|
| 224 |
-
|
| 225 |
-
### Agent Configuration
|
| 226 |
-
|
| 227 |
-
Control agent behavior and research loop execution:
|
| 228 |
-
|
| 229 |
-
```bash
|
| 230 |
-
# Maximum iterations per research loop (1-50, default: 10)
|
| 231 |
-
MAX_ITERATIONS=10
|
| 232 |
-
|
| 233 |
-
# Search timeout in seconds
|
| 234 |
-
SEARCH_TIMEOUT=30
|
| 235 |
-
|
| 236 |
-
# Use graph-based execution for research flows
|
| 237 |
-
USE_GRAPH_EXECUTION=false
|
| 238 |
-
```
|
| 239 |
-
|
| 240 |
-
The agent configuration fields:
|
| 241 |
-
|
| 242 |
-
```80:85:src/utils/config.py
|
| 243 |
-
# Agent Configuration
|
| 244 |
-
max_iterations: int = Field(default=10, ge=1, le=50)
|
| 245 |
-
search_timeout: int = Field(default=30, description="Seconds to wait for search")
|
| 246 |
-
use_graph_execution: bool = Field(
|
| 247 |
-
default=False, description="Use graph-based execution for research flows"
|
| 248 |
-
)
|
| 249 |
-
```
|
| 250 |
-
|
| 251 |
-
### Budget & Rate Limiting Configuration
|
| 252 |
-
|
| 253 |
-
Control resource limits for research loops:
|
| 254 |
-
|
| 255 |
-
```bash
|
| 256 |
-
# Default token budget per research loop (1000-1000000, default: 100000)
|
| 257 |
-
DEFAULT_TOKEN_LIMIT=100000
|
| 258 |
-
|
| 259 |
-
# Default time limit per research loop in minutes (1-120, default: 10)
|
| 260 |
-
DEFAULT_TIME_LIMIT_MINUTES=10
|
| 261 |
-
|
| 262 |
-
# Default iterations limit per research loop (1-50, default: 10)
|
| 263 |
-
DEFAULT_ITERATIONS_LIMIT=10
|
| 264 |
-
```
|
| 265 |
-
|
| 266 |
-
The budget configuration with validation:
|
| 267 |
-
|
| 268 |
-
```87:105:src/utils/config.py
|
| 269 |
-
# Budget & Rate Limiting Configuration
|
| 270 |
-
default_token_limit: int = Field(
|
| 271 |
-
default=100000,
|
| 272 |
-
ge=1000,
|
| 273 |
-
le=1000000,
|
| 274 |
-
description="Default token budget per research loop",
|
| 275 |
-
)
|
| 276 |
-
default_time_limit_minutes: int = Field(
|
| 277 |
-
default=10,
|
| 278 |
-
ge=1,
|
| 279 |
-
le=120,
|
| 280 |
-
description="Default time limit per research loop (minutes)",
|
| 281 |
-
)
|
| 282 |
-
default_iterations_limit: int = Field(
|
| 283 |
-
default=10,
|
| 284 |
-
ge=1,
|
| 285 |
-
le=50,
|
| 286 |
-
description="Default iterations limit per research loop",
|
| 287 |
-
)
|
| 288 |
-
```
|
| 289 |
-
|
| 290 |
-
### RAG Service Configuration
|
| 291 |
-
|
| 292 |
-
Configure the Retrieval-Augmented Generation service:
|
| 293 |
-
|
| 294 |
-
```bash
|
| 295 |
-
# ChromaDB collection name for RAG
|
| 296 |
-
RAG_COLLECTION_NAME=deepcritical_evidence
|
| 297 |
-
|
| 298 |
-
# Number of top results to retrieve from RAG (1-50, default: 5)
|
| 299 |
-
RAG_SIMILARITY_TOP_K=5
|
| 300 |
-
|
| 301 |
-
# Automatically ingest evidence into RAG
|
| 302 |
-
RAG_AUTO_INGEST=true
|
| 303 |
-
```
|
| 304 |
-
|
| 305 |
-
The RAG configuration:
|
| 306 |
-
|
| 307 |
-
```127:141:src/utils/config.py
|
| 308 |
-
# RAG Service Configuration
|
| 309 |
-
rag_collection_name: str = Field(
|
| 310 |
-
default="deepcritical_evidence",
|
| 311 |
-
description="ChromaDB collection name for RAG",
|
| 312 |
-
)
|
| 313 |
-
rag_similarity_top_k: int = Field(
|
| 314 |
-
default=5,
|
| 315 |
-
ge=1,
|
| 316 |
-
le=50,
|
| 317 |
-
description="Number of top results to retrieve from RAG",
|
| 318 |
-
)
|
| 319 |
-
rag_auto_ingest: bool = Field(
|
| 320 |
-
default=True,
|
| 321 |
-
description="Automatically ingest evidence into RAG",
|
| 322 |
-
)
|
| 323 |
-
```
|
| 324 |
-
|
| 325 |
-
### ChromaDB Configuration
|
| 326 |
-
|
| 327 |
-
Configure the vector database for embeddings and RAG:
|
| 328 |
-
|
| 329 |
-
```bash
|
| 330 |
-
# ChromaDB storage path
|
| 331 |
-
CHROMA_DB_PATH=./chroma_db
|
| 332 |
-
|
| 333 |
-
# Whether to persist ChromaDB to disk
|
| 334 |
-
CHROMA_DB_PERSIST=true
|
| 335 |
-
|
| 336 |
-
# ChromaDB server host (for remote ChromaDB, optional)
|
| 337 |
-
CHROMA_DB_HOST=localhost
|
| 338 |
-
|
| 339 |
-
# ChromaDB server port (for remote ChromaDB, optional)
|
| 340 |
-
CHROMA_DB_PORT=8000
|
| 341 |
-
```
|
| 342 |
-
|
| 343 |
-
The ChromaDB configuration:
|
| 344 |
-
|
| 345 |
-
```113:125:src/utils/config.py
|
| 346 |
-
chroma_db_path: str = Field(default="./chroma_db", description="ChromaDB storage path")
|
| 347 |
-
chroma_db_persist: bool = Field(
|
| 348 |
-
default=True,
|
| 349 |
-
description="Whether to persist ChromaDB to disk",
|
| 350 |
-
)
|
| 351 |
-
chroma_db_host: str | None = Field(
|
| 352 |
-
default=None,
|
| 353 |
-
description="ChromaDB server host (for remote ChromaDB)",
|
| 354 |
-
)
|
| 355 |
-
chroma_db_port: int | None = Field(
|
| 356 |
-
default=None,
|
| 357 |
-
description="ChromaDB server port (for remote ChromaDB)",
|
| 358 |
-
)
|
| 359 |
-
```
|
| 360 |
-
|
| 361 |
-
### External Services
|
| 362 |
-
|
| 363 |
-
#### Modal Configuration
|
| 364 |
-
|
| 365 |
-
Modal is used for secure sandbox execution of statistical analysis:
|
| 366 |
-
|
| 367 |
-
```bash
|
| 368 |
-
# Modal Token ID (for Modal sandbox execution)
|
| 369 |
-
MODAL_TOKEN_ID=your_modal_token_id_here
|
| 370 |
-
|
| 371 |
-
# Modal Token Secret
|
| 372 |
-
MODAL_TOKEN_SECRET=your_modal_token_secret_here
|
| 373 |
-
```
|
| 374 |
-
|
| 375 |
-
The Modal configuration:
|
| 376 |
-
|
| 377 |
-
```110:112:src/utils/config.py
|
| 378 |
-
# External Services
|
| 379 |
-
modal_token_id: str | None = Field(default=None, description="Modal token ID")
|
| 380 |
-
modal_token_secret: str | None = Field(default=None, description="Modal token secret")
|
| 381 |
-
```
|
| 382 |
-
|
| 383 |
-
### Logging Configuration
|
| 384 |
-
|
| 385 |
-
Configure structured logging:
|
| 386 |
-
|
| 387 |
-
```bash
|
| 388 |
-
# Log Level: "DEBUG", "INFO", "WARNING", or "ERROR"
|
| 389 |
-
LOG_LEVEL=INFO
|
| 390 |
-
```
|
| 391 |
-
|
| 392 |
-
The logging configuration:
|
| 393 |
-
|
| 394 |
-
```107:108:src/utils/config.py
|
| 395 |
-
# Logging
|
| 396 |
-
log_level: Literal["DEBUG", "INFO", "WARNING", "ERROR"] = "INFO"
|
| 397 |
-
```
|
| 398 |
-
|
| 399 |
-
Logging is configured via the `configure_logging()` function:
|
| 400 |
-
|
| 401 |
-
```212:231:src/utils/config.py
|
| 402 |
-
def configure_logging(settings: Settings) -> None:
|
| 403 |
-
"""Configure structured logging with the configured log level."""
|
| 404 |
-
# Set stdlib logging level from settings
|
| 405 |
-
logging.basicConfig(
|
| 406 |
-
level=getattr(logging, settings.log_level),
|
| 407 |
-
format="%(message)s",
|
| 408 |
-
)
|
| 409 |
-
|
| 410 |
-
structlog.configure(
|
| 411 |
-
processors=[
|
| 412 |
-
structlog.stdlib.filter_by_level,
|
| 413 |
-
structlog.stdlib.add_logger_name,
|
| 414 |
-
structlog.stdlib.add_log_level,
|
| 415 |
-
structlog.processors.TimeStamper(fmt="iso"),
|
| 416 |
-
structlog.processors.JSONRenderer(),
|
| 417 |
-
],
|
| 418 |
-
wrapper_class=structlog.stdlib.BoundLogger,
|
| 419 |
-
context_class=dict,
|
| 420 |
-
logger_factory=structlog.stdlib.LoggerFactory(),
|
| 421 |
-
)
|
| 422 |
-
```
|
| 423 |
-
|
| 424 |
-
## Configuration Properties
|
| 425 |
-
|
| 426 |
-
The `Settings` class provides helpful properties for checking configuration state:
|
| 427 |
-
|
| 428 |
-
### API Key Availability
|
| 429 |
-
|
| 430 |
-
Check which API keys are available:
|
| 431 |
-
|
| 432 |
-
```171:189:src/utils/config.py
|
| 433 |
-
@property
|
| 434 |
-
def has_openai_key(self) -> bool:
|
| 435 |
-
"""Check if OpenAI API key is available."""
|
| 436 |
-
return bool(self.openai_api_key)
|
| 437 |
-
|
| 438 |
-
@property
|
| 439 |
-
def has_anthropic_key(self) -> bool:
|
| 440 |
-
"""Check if Anthropic API key is available."""
|
| 441 |
-
return bool(self.anthropic_api_key)
|
| 442 |
-
|
| 443 |
-
@property
|
| 444 |
-
def has_huggingface_key(self) -> bool:
|
| 445 |
-
"""Check if HuggingFace API key is available."""
|
| 446 |
-
return bool(self.huggingface_api_key or self.hf_token)
|
| 447 |
-
|
| 448 |
-
@property
|
| 449 |
-
def has_any_llm_key(self) -> bool:
|
| 450 |
-
"""Check if any LLM API key is available."""
|
| 451 |
-
return self.has_openai_key or self.has_anthropic_key or self.has_huggingface_key
|
| 452 |
-
```
|
| 453 |
-
|
| 454 |
-
**Usage:**
|
| 455 |
-
|
| 456 |
-
```python
|
| 457 |
-
from src.utils.config import settings
|
| 458 |
-
|
| 459 |
-
# Check API key availability
|
| 460 |
-
if settings.has_openai_key:
|
| 461 |
-
# Use OpenAI
|
| 462 |
-
pass
|
| 463 |
-
|
| 464 |
-
if settings.has_anthropic_key:
|
| 465 |
-
# Use Anthropic
|
| 466 |
-
pass
|
| 467 |
-
|
| 468 |
-
if settings.has_huggingface_key:
|
| 469 |
-
# Use HuggingFace
|
| 470 |
-
pass
|
| 471 |
-
|
| 472 |
-
if settings.has_any_llm_key:
|
| 473 |
-
# At least one LLM is available
|
| 474 |
-
pass
|
| 475 |
-
```
|
| 476 |
-
|
| 477 |
-
### Service Availability
|
| 478 |
-
|
| 479 |
-
Check if external services are configured:
|
| 480 |
-
|
| 481 |
-
```143:146:src/utils/config.py
|
| 482 |
-
@property
|
| 483 |
-
def modal_available(self) -> bool:
|
| 484 |
-
"""Check if Modal credentials are configured."""
|
| 485 |
-
return bool(self.modal_token_id and self.modal_token_secret)
|
| 486 |
-
```
|
| 487 |
-
|
| 488 |
-
```191:204:src/utils/config.py
|
| 489 |
-
@property
|
| 490 |
-
def web_search_available(self) -> bool:
|
| 491 |
-
"""Check if web search is available (either no-key provider or API key present)."""
|
| 492 |
-
if self.web_search_provider == "duckduckgo":
|
| 493 |
-
return True # No API key required
|
| 494 |
-
if self.web_search_provider == "serper":
|
| 495 |
-
return bool(self.serper_api_key)
|
| 496 |
-
if self.web_search_provider == "searchxng":
|
| 497 |
-
return bool(self.searchxng_host)
|
| 498 |
-
if self.web_search_provider == "brave":
|
| 499 |
-
return bool(self.brave_api_key)
|
| 500 |
-
if self.web_search_provider == "tavily":
|
| 501 |
-
return bool(self.tavily_api_key)
|
| 502 |
-
return False
|
| 503 |
-
```
|
| 504 |
-
|
| 505 |
-
**Usage:**
|
| 506 |
-
|
| 507 |
-
```python
|
| 508 |
-
from src.utils.config import settings
|
| 509 |
-
|
| 510 |
-
# Check service availability
|
| 511 |
-
if settings.modal_available:
|
| 512 |
-
# Use Modal sandbox
|
| 513 |
-
pass
|
| 514 |
-
|
| 515 |
-
if settings.web_search_available:
|
| 516 |
-
# Web search is configured
|
| 517 |
-
pass
|
| 518 |
-
```
|
| 519 |
-
|
| 520 |
-
### API Key Retrieval
|
| 521 |
-
|
| 522 |
-
Get the API key for the configured provider:
|
| 523 |
-
|
| 524 |
-
```148:160:src/utils/config.py
|
| 525 |
-
def get_api_key(self) -> str:
|
| 526 |
-
"""Get the API key for the configured provider."""
|
| 527 |
-
if self.llm_provider == "openai":
|
| 528 |
-
if not self.openai_api_key:
|
| 529 |
-
raise ConfigurationError("OPENAI_API_KEY not set")
|
| 530 |
-
return self.openai_api_key
|
| 531 |
-
|
| 532 |
-
if self.llm_provider == "anthropic":
|
| 533 |
-
if not self.anthropic_api_key:
|
| 534 |
-
raise ConfigurationError("ANTHROPIC_API_KEY not set")
|
| 535 |
-
return self.anthropic_api_key
|
| 536 |
-
|
| 537 |
-
raise ConfigurationError(f"Unknown LLM provider: {self.llm_provider}")
|
| 538 |
-
```
|
| 539 |
-
|
| 540 |
-
For OpenAI-specific operations (e.g., Magentic mode):
|
| 541 |
-
|
| 542 |
-
```162:169:src/utils/config.py
|
| 543 |
-
def get_openai_api_key(self) -> str:
|
| 544 |
-
"""Get OpenAI API key (required for Magentic function calling)."""
|
| 545 |
-
if not self.openai_api_key:
|
| 546 |
-
raise ConfigurationError(
|
| 547 |
-
"OPENAI_API_KEY not set. Magentic mode requires OpenAI for function calling. "
|
| 548 |
-
"Use mode='simple' for other providers."
|
| 549 |
-
)
|
| 550 |
-
return self.openai_api_key
|
| 551 |
-
```
|
| 552 |
-
|
| 553 |
-
## Configuration Usage in Codebase
|
| 554 |
-
|
| 555 |
-
The configuration system is used throughout the codebase:
|
| 556 |
-
|
| 557 |
-
### LLM Factory
|
| 558 |
-
|
| 559 |
-
The LLM factory uses settings to create appropriate models:
|
| 560 |
-
|
| 561 |
-
```129:144:src/utils/llm_factory.py
|
| 562 |
-
if settings.llm_provider == "huggingface":
|
| 563 |
-
model_name = settings.huggingface_model or "meta-llama/Llama-3.1-8B-Instruct"
|
| 564 |
-
hf_provider = HuggingFaceProvider(api_key=settings.hf_token)
|
| 565 |
-
return HuggingFaceModel(model_name, provider=hf_provider)
|
| 566 |
-
|
| 567 |
-
if settings.llm_provider == "openai":
|
| 568 |
-
if not settings.openai_api_key:
|
| 569 |
-
raise ConfigurationError("OPENAI_API_KEY not set for pydantic-ai")
|
| 570 |
-
provider = OpenAIProvider(api_key=settings.openai_api_key)
|
| 571 |
-
return OpenAIModel(settings.openai_model, provider=provider)
|
| 572 |
-
|
| 573 |
-
if settings.llm_provider == "anthropic":
|
| 574 |
-
if not settings.anthropic_api_key:
|
| 575 |
-
raise ConfigurationError("ANTHROPIC_API_KEY not set for pydantic-ai")
|
| 576 |
-
anthropic_provider = AnthropicProvider(api_key=settings.anthropic_api_key)
|
| 577 |
-
return AnthropicModel(settings.anthropic_model, provider=anthropic_provider)
|
| 578 |
-
```
|
| 579 |
-
|
| 580 |
-
### Embedding Service
|
| 581 |
-
|
| 582 |
-
The embedding service uses local embedding model configuration:
|
| 583 |
-
|
| 584 |
-
```29:31:src/services/embeddings.py
|
| 585 |
-
def __init__(self, model_name: str | None = None):
|
| 586 |
-
self._model_name = model_name or settings.local_embedding_model
|
| 587 |
-
self._model = SentenceTransformer(self._model_name)
|
| 588 |
-
```
|
| 589 |
-
|
| 590 |
-
### Orchestrator Factory
|
| 591 |
-
|
| 592 |
-
The orchestrator factory uses settings to determine mode:
|
| 593 |
-
|
| 594 |
-
```69:80:src/orchestrator_factory.py
|
| 595 |
-
def _determine_mode(explicit_mode: str | None) -> str:
|
| 596 |
-
"""Determine which mode to use."""
|
| 597 |
-
if explicit_mode:
|
| 598 |
-
if explicit_mode in ("magentic", "advanced"):
|
| 599 |
-
return "advanced"
|
| 600 |
-
return "simple"
|
| 601 |
-
|
| 602 |
-
# Auto-detect: advanced if paid API key available
|
| 603 |
-
if settings.has_openai_key:
|
| 604 |
-
return "advanced"
|
| 605 |
-
|
| 606 |
-
return "simple"
|
| 607 |
-
```
|
| 608 |
-
|
| 609 |
-
## Environment Variables Reference
|
| 610 |
-
|
| 611 |
-
### Required (at least one LLM)
|
| 612 |
-
|
| 613 |
-
- `OPENAI_API_KEY` - OpenAI API key (required for OpenAI provider)
|
| 614 |
-
- `ANTHROPIC_API_KEY` - Anthropic API key (required for Anthropic provider)
|
| 615 |
-
- `HF_TOKEN` or `HUGGINGFACE_API_KEY` - HuggingFace API token (optional, can work without for public models)
|
| 616 |
-
|
| 617 |
-
#### LLM Configuration Variables
|
| 618 |
-
|
| 619 |
-
- `LLM_PROVIDER` - Provider to use: `"openai"`, `"anthropic"`, or `"huggingface"` (default: `"huggingface"`)
|
| 620 |
-
- `OPENAI_MODEL` - OpenAI model name (default: `"gpt-5.1"`)
|
| 621 |
-
- `ANTHROPIC_MODEL` - Anthropic model name (default: `"claude-sonnet-4-5-20250929"`)
|
| 622 |
-
- `HUGGINGFACE_MODEL` - HuggingFace model ID (default: `"meta-llama/Llama-3.1-8B-Instruct"`)
|
| 623 |
-
|
| 624 |
-
#### Embedding Configuration Variables
|
| 625 |
-
|
| 626 |
-
- `EMBEDDING_PROVIDER` - Provider: `"openai"`, `"local"`, or `"huggingface"` (default: `"local"`)
|
| 627 |
-
- `OPENAI_EMBEDDING_MODEL` - OpenAI embedding model (default: `"text-embedding-3-small"`)
|
| 628 |
-
- `LOCAL_EMBEDDING_MODEL` - Local sentence-transformers model (default: `"all-MiniLM-L6-v2"`)
|
| 629 |
-
- `HUGGINGFACE_EMBEDDING_MODEL` - HuggingFace embedding model (default: `"sentence-transformers/all-MiniLM-L6-v2"`)
|
| 630 |
-
|
| 631 |
-
#### Web Search Configuration Variables
|
| 632 |
-
|
| 633 |
-
- `WEB_SEARCH_PROVIDER` - Provider: `"serper"`, `"searchxng"`, `"brave"`, `"tavily"`, or `"duckduckgo"` (default: `"duckduckgo"`)
|
| 634 |
-
- `SERPER_API_KEY` - Serper API key (required for Serper provider)
|
| 635 |
-
- `SEARCHXNG_HOST` - SearchXNG host URL (required for SearchXNG provider)
|
| 636 |
-
- `BRAVE_API_KEY` - Brave Search API key (required for Brave provider)
|
| 637 |
-
- `TAVILY_API_KEY` - Tavily API key (required for Tavily provider)
|
| 638 |
-
|
| 639 |
-
#### PubMed Configuration Variables
|
| 640 |
-
|
| 641 |
-
- `NCBI_API_KEY` - NCBI API key (optional, increases rate limit from 3 to 10 req/sec)
|
| 642 |
-
|
| 643 |
-
#### Agent Configuration Variables
|
| 644 |
-
|
| 645 |
-
- `MAX_ITERATIONS` - Maximum iterations per research loop (1-50, default: `10`)
|
| 646 |
-
- `SEARCH_TIMEOUT` - Search timeout in seconds (default: `30`)
|
| 647 |
-
- `USE_GRAPH_EXECUTION` - Use graph-based execution (default: `false`)
|
| 648 |
-
|
| 649 |
-
#### Budget Configuration Variables
|
| 650 |
-
|
| 651 |
-
- `DEFAULT_TOKEN_LIMIT` - Default token budget per research loop (1000-1000000, default: `100000`)
|
| 652 |
-
- `DEFAULT_TIME_LIMIT_MINUTES` - Default time limit in minutes (1-120, default: `10`)
|
| 653 |
-
- `DEFAULT_ITERATIONS_LIMIT` - Default iterations limit (1-50, default: `10`)
|
| 654 |
-
|
| 655 |
-
#### RAG Configuration Variables
|
| 656 |
-
|
| 657 |
-
- `RAG_COLLECTION_NAME` - ChromaDB collection name (default: `"deepcritical_evidence"`)
|
| 658 |
-
- `RAG_SIMILARITY_TOP_K` - Number of top results to retrieve (1-50, default: `5`)
|
| 659 |
-
- `RAG_AUTO_INGEST` - Automatically ingest evidence into RAG (default: `true`)
|
| 660 |
-
|
| 661 |
-
#### ChromaDB Configuration Variables
|
| 662 |
-
|
| 663 |
-
- `CHROMA_DB_PATH` - ChromaDB storage path (default: `"./chroma_db"`)
|
| 664 |
-
- `CHROMA_DB_PERSIST` - Whether to persist ChromaDB to disk (default: `true`)
|
| 665 |
-
- `CHROMA_DB_HOST` - ChromaDB server host (optional, for remote ChromaDB)
|
| 666 |
-
- `CHROMA_DB_PORT` - ChromaDB server port (optional, for remote ChromaDB)
|
| 667 |
-
|
| 668 |
-
#### External Services Variables
|
| 669 |
-
|
| 670 |
-
- `MODAL_TOKEN_ID` - Modal token ID (optional, for Modal sandbox execution)
|
| 671 |
-
- `MODAL_TOKEN_SECRET` - Modal token secret (optional, for Modal sandbox execution)
|
| 672 |
-
|
| 673 |
-
#### Logging Configuration Variables
|
| 674 |
-
|
| 675 |
-
- `LOG_LEVEL` - Log level: `"DEBUG"`, `"INFO"`, `"WARNING"`, or `"ERROR"` (default: `"INFO"`)
|
| 676 |
-
|
| 677 |
-
## Validation
|
| 678 |
-
|
| 679 |
-
Settings are validated on load using Pydantic validation:
|
| 680 |
-
|
| 681 |
-
- **Type Checking**: All fields are strongly typed
|
| 682 |
-
- **Range Validation**: Numeric fields have min/max constraints (e.g., `ge=1, le=50` for `max_iterations`)
|
| 683 |
-
- **Literal Validation**: Enum fields only accept specific values (e.g., `Literal["openai", "anthropic", "huggingface"]`)
|
| 684 |
-
- **Required Fields**: API keys are checked when accessed via `get_api_key()` or `get_openai_api_key()`
|
| 685 |
-
|
| 686 |
-
### Validation Examples
|
| 687 |
-
|
| 688 |
-
The `max_iterations` field has range validation:
|
| 689 |
-
|
| 690 |
-
```81:81:src/utils/config.py
|
| 691 |
-
max_iterations: int = Field(default=10, ge=1, le=50)
|
| 692 |
-
```
|
| 693 |
-
|
| 694 |
-
The `llm_provider` field has literal validation:
|
| 695 |
-
|
| 696 |
-
```26:28:src/utils/config.py
|
| 697 |
-
llm_provider: Literal["openai", "anthropic", "huggingface"] = Field(
|
| 698 |
-
default="openai", description="Which LLM provider to use"
|
| 699 |
-
)
|
| 700 |
-
```
|
| 701 |
-
|
| 702 |
-
## Error Handling
|
| 703 |
-
|
| 704 |
-
Configuration errors raise `ConfigurationError` from `src/utils/exceptions.py`:
|
| 705 |
-
|
| 706 |
-
```22:25:src/utils/exceptions.py
|
| 707 |
-
class ConfigurationError(DeepCriticalError):
|
| 708 |
-
"""Raised when configuration is invalid."""
|
| 709 |
-
|
| 710 |
-
pass
|
| 711 |
-
```
|
| 712 |
-
|
| 713 |
-
### Error Handling Example
|
| 714 |
-
|
| 715 |
-
```python
|
| 716 |
-
from src.utils.config import settings
|
| 717 |
-
from src.utils.exceptions import ConfigurationError
|
| 718 |
-
|
| 719 |
-
try:
|
| 720 |
-
api_key = settings.get_api_key()
|
| 721 |
-
except ConfigurationError as e:
|
| 722 |
-
print(f"Configuration error: {e}")
|
| 723 |
-
```
|
| 724 |
-
|
| 725 |
-
### Common Configuration Errors
|
| 726 |
-
|
| 727 |
-
1. **Missing API Key**: When `get_api_key()` is called but the required API key is not set
|
| 728 |
-
2. **Invalid Provider**: When `llm_provider` is set to an unsupported value
|
| 729 |
-
3. **Out of Range**: When numeric values exceed their min/max constraints
|
| 730 |
-
4. **Invalid Literal**: When enum fields receive unsupported values
|
| 731 |
-
|
| 732 |
-
## Configuration Best Practices
|
| 733 |
-
|
| 734 |
-
1. **Use `.env` File**: Store sensitive keys in `.env` file (add to `.gitignore`)
|
| 735 |
-
2. **Check Availability**: Use properties like `has_openai_key` before accessing API keys
|
| 736 |
-
3. **Handle Errors**: Always catch `ConfigurationError` when calling `get_api_key()`
|
| 737 |
-
4. **Validate Early**: Configuration is validated on import, so errors surface immediately
|
| 738 |
-
5. **Use Defaults**: Leverage sensible defaults for optional configuration
|
| 739 |
-
|
| 740 |
-
## Future Enhancements
|
| 741 |
-
|
| 742 |
-
The following configurations are planned for future phases:
|
| 743 |
-
|
| 744 |
-
1. **Additional LLM Providers**: DeepSeek, OpenRouter, Gemini, Perplexity, Azure OpenAI, Local models
|
| 745 |
-
2. **Model Selection**: Reasoning/main/fast model configuration
|
| 746 |
-
3. **Service Integration**: Additional service integrations and configurations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/contributing.md
DELETED
|
@@ -1,428 +0,0 @@
|
|
| 1 |
-
# Contributing to DeepCritical
|
| 2 |
-
|
| 3 |
-
Thank you for your interest in contributing to DeepCritical! This guide will help you get started.
|
| 4 |
-
|
| 5 |
-
## Table of Contents
|
| 6 |
-
|
| 7 |
-
- [Git Workflow](#git-workflow)
|
| 8 |
-
- [Getting Started](#getting-started)
|
| 9 |
-
- [Development Commands](#development-commands)
|
| 10 |
-
- [Code Style & Conventions](#code-style--conventions)
|
| 11 |
-
- [Type Safety](#type-safety)
|
| 12 |
-
- [Error Handling & Logging](#error-handling--logging)
|
| 13 |
-
- [Testing Requirements](#testing-requirements)
|
| 14 |
-
- [Implementation Patterns](#implementation-patterns)
|
| 15 |
-
- [Code Quality & Documentation](#code-quality--documentation)
|
| 16 |
-
- [Prompt Engineering & Citation Validation](#prompt-engineering--citation-validation)
|
| 17 |
-
- [MCP Integration](#mcp-integration)
|
| 18 |
-
- [Common Pitfalls](#common-pitfalls)
|
| 19 |
-
- [Key Principles](#key-principles)
|
| 20 |
-
- [Pull Request Process](#pull-request-process)
|
| 21 |
-
|
| 22 |
-
## Git Workflow
|
| 23 |
-
|
| 24 |
-
- `main`: Production-ready (GitHub)
|
| 25 |
-
- `dev`: Development integration (GitHub)
|
| 26 |
-
- Use feature branches: `yourname-dev`
|
| 27 |
-
- **NEVER** push directly to `main` or `dev` on HuggingFace
|
| 28 |
-
- GitHub is source of truth; HuggingFace is for deployment
|
| 29 |
-
|
| 30 |
-
## Getting Started
|
| 31 |
-
|
| 32 |
-
1. **Fork the repository** on GitHub
|
| 33 |
-
2. **Clone your fork**:
|
| 34 |
-
|
| 35 |
-
```bash
|
| 36 |
-
git clone https://github.com/yourusername/GradioDemo.git
|
| 37 |
-
cd GradioDemo
|
| 38 |
-
```
|
| 39 |
-
|
| 40 |
-
3. **Install dependencies**:
|
| 41 |
-
|
| 42 |
-
```bash
|
| 43 |
-
make install
|
| 44 |
-
```
|
| 45 |
-
|
| 46 |
-
4. **Create a feature branch**:
|
| 47 |
-
|
| 48 |
-
```bash
|
| 49 |
-
git checkout -b yourname-feature-name
|
| 50 |
-
```
|
| 51 |
-
|
| 52 |
-
5. **Make your changes** following the guidelines below
|
| 53 |
-
6. **Run checks**:
|
| 54 |
-
|
| 55 |
-
```bash
|
| 56 |
-
make check
|
| 57 |
-
```
|
| 58 |
-
|
| 59 |
-
7. **Commit and push**:
|
| 60 |
-
|
| 61 |
-
```bash
|
| 62 |
-
git commit -m "Description of changes"
|
| 63 |
-
git push origin yourname-feature-name
|
| 64 |
-
```
|
| 65 |
-
8. **Create a pull request** on GitHub
|
| 66 |
-
|
| 67 |
-
## Development Commands
|
| 68 |
-
|
| 69 |
-
```bash
|
| 70 |
-
make install # Install dependencies + pre-commit
|
| 71 |
-
make check # Lint + typecheck + test (MUST PASS)
|
| 72 |
-
make test # Run unit tests
|
| 73 |
-
make lint # Run ruff
|
| 74 |
-
make format # Format with ruff
|
| 75 |
-
make typecheck # Run mypy
|
| 76 |
-
make test-cov # Test with coverage
|
| 77 |
-
make docs-build # Build documentation
|
| 78 |
-
make docs-serve # Serve documentation locally
|
| 79 |
-
```
|
| 80 |
-
|
| 81 |
-
## Code Style & Conventions
|
| 82 |
-
|
| 83 |
-
### Type Safety
|
| 84 |
-
|
| 85 |
-
- **ALWAYS** use type hints for all function parameters and return types
|
| 86 |
-
- Use `mypy --strict` compliance (no `Any` unless absolutely necessary)
|
| 87 |
-
- Use `TYPE_CHECKING` imports for circular dependencies:
|
| 88 |
-
|
| 89 |
-
```python
|
| 90 |
-
from typing import TYPE_CHECKING
|
| 91 |
-
if TYPE_CHECKING:
|
| 92 |
-
from src.services.embeddings import EmbeddingService
|
| 93 |
-
```
|
| 94 |
-
|
| 95 |
-
### Pydantic Models
|
| 96 |
-
|
| 97 |
-
- All data exchange uses Pydantic models (`src/utils/models.py`)
|
| 98 |
-
- Models are frozen (`model_config = {"frozen": True}`) for immutability
|
| 99 |
-
- Use `Field()` with descriptions for all model fields
|
| 100 |
-
- Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints
|
| 101 |
-
|
| 102 |
-
### Async Patterns
|
| 103 |
-
|
| 104 |
-
- **ALL** I/O operations must be async (`async def`, `await`)
|
| 105 |
-
- Use `asyncio.gather()` for parallel operations
|
| 106 |
-
- CPU-bound work (embeddings, parsing) must use `run_in_executor()`:
|
| 107 |
-
|
| 108 |
-
```python
|
| 109 |
-
loop = asyncio.get_running_loop()
|
| 110 |
-
result = await loop.run_in_executor(None, cpu_bound_function, args)
|
| 111 |
-
```
|
| 112 |
-
|
| 113 |
-
- Never block the event loop with synchronous I/O
|
| 114 |
-
|
| 115 |
-
### Linting
|
| 116 |
-
|
| 117 |
-
- Ruff with 100-char line length
|
| 118 |
-
- Ignore rules documented in `pyproject.toml`:
|
| 119 |
-
- `PLR0913`: Too many arguments (agents need many params)
|
| 120 |
-
- `PLR0912`: Too many branches (complex orchestrator logic)
|
| 121 |
-
- `PLR0911`: Too many return statements (complex agent logic)
|
| 122 |
-
- `PLR2004`: Magic values (statistical constants)
|
| 123 |
-
- `PLW0603`: Global statement (singleton pattern)
|
| 124 |
-
- `PLC0415`: Lazy imports for optional dependencies
|
| 125 |
-
|
| 126 |
-
### Pre-commit
|
| 127 |
-
|
| 128 |
-
- Run `make check` before committing
|
| 129 |
-
- Must pass: lint + typecheck + test-cov
|
| 130 |
-
- Pre-commit hooks installed via `make install`
|
| 131 |
-
- **CRITICAL**: Make sure you run the full pre-commit checks before opening a PR (not draft), otherwise Obstacle is the Way will lose his mind
|
| 132 |
-
|
| 133 |
-
## Error Handling & Logging
|
| 134 |
-
|
| 135 |
-
### Exception Hierarchy
|
| 136 |
-
|
| 137 |
-
Use custom exception hierarchy (`src/utils/exceptions.py`):
|
| 138 |
-
|
| 139 |
-
- `DeepCriticalError` (base)
|
| 140 |
-
- `SearchError` → `RateLimitError`
|
| 141 |
-
- `JudgeError`
|
| 142 |
-
- `ConfigurationError`
|
| 143 |
-
|
| 144 |
-
### Error Handling Rules
|
| 145 |
-
|
| 146 |
-
- Always chain exceptions: `raise SearchError(...) from e`
|
| 147 |
-
- Log errors with context using `structlog`:
|
| 148 |
-
|
| 149 |
-
```python
|
| 150 |
-
logger.error("Operation failed", error=str(e), context=value)
|
| 151 |
-
```
|
| 152 |
-
|
| 153 |
-
- Never silently swallow exceptions
|
| 154 |
-
- Provide actionable error messages
|
| 155 |
-
|
| 156 |
-
### Logging
|
| 157 |
-
|
| 158 |
-
- Use `structlog` for all logging (NOT `print` or `logging`)
|
| 159 |
-
- Import: `import structlog; logger = structlog.get_logger()`
|
| 160 |
-
- Log with structured data: `logger.info("event", key=value)`
|
| 161 |
-
- Use appropriate levels: DEBUG, INFO, WARNING, ERROR
|
| 162 |
-
|
| 163 |
-
### Logging Examples
|
| 164 |
-
|
| 165 |
-
```python
|
| 166 |
-
logger.info("Starting search", query=query, tools=[t.name for t in tools])
|
| 167 |
-
logger.warning("Search tool failed", tool=tool.name, error=str(result))
|
| 168 |
-
logger.error("Assessment failed", error=str(e))
|
| 169 |
-
```
|
| 170 |
-
|
| 171 |
-
### Error Chaining
|
| 172 |
-
|
| 173 |
-
Always preserve exception context:
|
| 174 |
-
|
| 175 |
-
```python
|
| 176 |
-
try:
|
| 177 |
-
result = await api_call()
|
| 178 |
-
except httpx.HTTPError as e:
|
| 179 |
-
raise SearchError(f"API call failed: {e}") from e
|
| 180 |
-
```
|
| 181 |
-
|
| 182 |
-
## Testing Requirements
|
| 183 |
-
|
| 184 |
-
### Test Structure
|
| 185 |
-
|
| 186 |
-
- Unit tests in `tests/unit/` (mocked, fast)
|
| 187 |
-
- Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`)
|
| 188 |
-
- Use markers: `unit`, `integration`, `slow`
|
| 189 |
-
|
| 190 |
-
### Mocking
|
| 191 |
-
|
| 192 |
-
- Use `respx` for httpx mocking
|
| 193 |
-
- Use `pytest-mock` for general mocking
|
| 194 |
-
- Mock LLM calls in unit tests (use `MockJudgeHandler`)
|
| 195 |
-
- Fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`
|
| 196 |
-
|
| 197 |
-
### TDD Workflow
|
| 198 |
-
|
| 199 |
-
1. Write failing test in `tests/unit/`
|
| 200 |
-
2. Implement in `src/`
|
| 201 |
-
3. Ensure test passes
|
| 202 |
-
4. Run `make check` (lint + typecheck + test)
|
| 203 |
-
|
| 204 |
-
### Test Examples
|
| 205 |
-
|
| 206 |
-
```python
|
| 207 |
-
@pytest.mark.unit
|
| 208 |
-
async def test_pubmed_search(mock_httpx_client):
|
| 209 |
-
tool = PubMedTool()
|
| 210 |
-
results = await tool.search("metformin", max_results=5)
|
| 211 |
-
assert len(results) > 0
|
| 212 |
-
assert all(isinstance(r, Evidence) for r in results)
|
| 213 |
-
|
| 214 |
-
@pytest.mark.integration
|
| 215 |
-
async def test_real_pubmed_search():
|
| 216 |
-
tool = PubMedTool()
|
| 217 |
-
results = await tool.search("metformin", max_results=3)
|
| 218 |
-
assert len(results) <= 3
|
| 219 |
-
```
|
| 220 |
-
|
| 221 |
-
### Test Coverage
|
| 222 |
-
|
| 223 |
-
- Run `make test-cov` for coverage report
|
| 224 |
-
- Aim for >80% coverage on critical paths
|
| 225 |
-
- Exclude: `__init__.py`, `TYPE_CHECKING` blocks
|
| 226 |
-
|
| 227 |
-
## Implementation Patterns
|
| 228 |
-
|
| 229 |
-
### Search Tools
|
| 230 |
-
|
| 231 |
-
All tools implement `SearchTool` protocol (`src/tools/base.py`):
|
| 232 |
-
|
| 233 |
-
- Must have `name` property
|
| 234 |
-
- Must implement `async def search(query, max_results) -> list[Evidence]`
|
| 235 |
-
- Use `@retry` decorator from tenacity for resilience
|
| 236 |
-
- Rate limiting: Implement `_rate_limit()` for APIs with limits (e.g., PubMed)
|
| 237 |
-
- Error handling: Raise `SearchError` or `RateLimitError` on failures
|
| 238 |
-
|
| 239 |
-
Example pattern:
|
| 240 |
-
|
| 241 |
-
```python
|
| 242 |
-
class MySearchTool:
|
| 243 |
-
@property
|
| 244 |
-
def name(self) -> str:
|
| 245 |
-
return "mytool"
|
| 246 |
-
|
| 247 |
-
@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))
|
| 248 |
-
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 249 |
-
# Implementation
|
| 250 |
-
return evidence_list
|
| 251 |
-
```
|
| 252 |
-
|
| 253 |
-
### Judge Handlers
|
| 254 |
-
|
| 255 |
-
- Implement `JudgeHandlerProtocol` (`async def assess(question, evidence) -> JudgeAssessment`)
|
| 256 |
-
- Use pydantic-ai `Agent` with `output_type=JudgeAssessment`
|
| 257 |
-
- System prompts in `src/prompts/judge.py`
|
| 258 |
-
- Support fallback handlers: `MockJudgeHandler`, `HFInferenceJudgeHandler`
|
| 259 |
-
- Always return valid `JudgeAssessment` (never raise exceptions)
|
| 260 |
-
|
| 261 |
-
### Agent Factory Pattern
|
| 262 |
-
|
| 263 |
-
- Use factory functions for creating agents (`src/agent_factory/`)
|
| 264 |
-
- Lazy initialization for optional dependencies (e.g., embeddings, Modal)
|
| 265 |
-
- Check requirements before initialization:
|
| 266 |
-
|
| 267 |
-
```python
|
| 268 |
-
def check_magentic_requirements() -> None:
|
| 269 |
-
if not settings.has_openai_key:
|
| 270 |
-
raise ConfigurationError("Magentic requires OpenAI")
|
| 271 |
-
```
|
| 272 |
-
|
| 273 |
-
### State Management
|
| 274 |
-
|
| 275 |
-
- **Magentic Mode**: Use `ContextVar` for thread-safe state (`src/agents/state.py`)
|
| 276 |
-
- **Simple Mode**: Pass state via function parameters
|
| 277 |
-
- Never use global mutable state (except singletons via `@lru_cache`)
|
| 278 |
-
|
| 279 |
-
### Singleton Pattern
|
| 280 |
-
|
| 281 |
-
Use `@lru_cache(maxsize=1)` for singletons:
|
| 282 |
-
|
| 283 |
-
```python
|
| 284 |
-
@lru_cache(maxsize=1)
|
| 285 |
-
def get_embedding_service() -> EmbeddingService:
|
| 286 |
-
return EmbeddingService()
|
| 287 |
-
```
|
| 288 |
-
|
| 289 |
-
- Lazy initialization to avoid requiring dependencies at import time
|
| 290 |
-
|
| 291 |
-
## Code Quality & Documentation
|
| 292 |
-
|
| 293 |
-
### Docstrings
|
| 294 |
-
|
| 295 |
-
- Google-style docstrings for all public functions
|
| 296 |
-
- Include Args, Returns, Raises sections
|
| 297 |
-
- Use type hints in docstrings only if needed for clarity
|
| 298 |
-
|
| 299 |
-
Example:
|
| 300 |
-
|
| 301 |
-
```python
|
| 302 |
-
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 303 |
-
"""Search PubMed and return evidence.
|
| 304 |
-
|
| 305 |
-
Args:
|
| 306 |
-
query: The search query string
|
| 307 |
-
max_results: Maximum number of results to return
|
| 308 |
-
|
| 309 |
-
Returns:
|
| 310 |
-
List of Evidence objects
|
| 311 |
-
|
| 312 |
-
Raises:
|
| 313 |
-
SearchError: If the search fails
|
| 314 |
-
RateLimitError: If we hit rate limits
|
| 315 |
-
"""
|
| 316 |
-
```
|
| 317 |
-
|
| 318 |
-
### Code Comments
|
| 319 |
-
|
| 320 |
-
- Explain WHY, not WHAT
|
| 321 |
-
- Document non-obvious patterns (e.g., why `requests` not `httpx` for ClinicalTrials)
|
| 322 |
-
- Mark critical sections: `# CRITICAL: ...`
|
| 323 |
-
- Document rate limiting rationale
|
| 324 |
-
- Explain async patterns when non-obvious
|
| 325 |
-
|
| 326 |
-
## Prompt Engineering & Citation Validation
|
| 327 |
-
|
| 328 |
-
### Judge Prompts
|
| 329 |
-
|
| 330 |
-
- System prompt in `src/prompts/judge.py`
|
| 331 |
-
- Format evidence with truncation (1500 chars per item)
|
| 332 |
-
- Handle empty evidence case separately
|
| 333 |
-
- Always request structured JSON output
|
| 334 |
-
- Use `format_user_prompt()` and `format_empty_evidence_prompt()` helpers
|
| 335 |
-
|
| 336 |
-
### Hypothesis Prompts
|
| 337 |
-
|
| 338 |
-
- Use diverse evidence selection (MMR algorithm)
|
| 339 |
-
- Sentence-aware truncation (`truncate_at_sentence()`)
|
| 340 |
-
- Format: Drug → Target → Pathway → Effect
|
| 341 |
-
- System prompt emphasizes mechanistic reasoning
|
| 342 |
-
- Use `format_hypothesis_prompt()` with embeddings for diversity
|
| 343 |
-
|
| 344 |
-
### Report Prompts
|
| 345 |
-
|
| 346 |
-
- Include full citation details for validation
|
| 347 |
-
- Use diverse evidence selection (n=20)
|
| 348 |
-
- **CRITICAL**: Emphasize citation validation rules
|
| 349 |
-
- Format hypotheses with support/contradiction counts
|
| 350 |
-
- System prompt includes explicit JSON structure requirements
|
| 351 |
-
|
| 352 |
-
### Citation Validation
|
| 353 |
-
|
| 354 |
-
- **ALWAYS** validate references before returning reports
|
| 355 |
-
- Use `validate_references()` from `src/utils/citation_validator.py`
|
| 356 |
-
- Remove hallucinated citations (URLs not in evidence)
|
| 357 |
-
- Log warnings for removed citations
|
| 358 |
-
- Never trust LLM-generated citations without validation
|
| 359 |
-
|
| 360 |
-
### Citation Validation Rules
|
| 361 |
-
|
| 362 |
-
1. Every reference URL must EXACTLY match a provided evidence URL
|
| 363 |
-
2. Do NOT invent, fabricate, or hallucinate any references
|
| 364 |
-
3. Do NOT modify paper titles, authors, dates, or URLs
|
| 365 |
-
4. If unsure about a citation, OMIT it rather than guess
|
| 366 |
-
5. Copy URLs exactly as provided - do not create similar-looking URLs
|
| 367 |
-
|
| 368 |
-
### Evidence Selection
|
| 369 |
-
|
| 370 |
-
- Use `select_diverse_evidence()` for MMR-based selection
|
| 371 |
-
- Balance relevance vs diversity (lambda=0.7 default)
|
| 372 |
-
- Sentence-aware truncation preserves meaning
|
| 373 |
-
- Limit evidence per prompt to avoid context overflow
|
| 374 |
-
|
| 375 |
-
## MCP Integration
|
| 376 |
-
|
| 377 |
-
### MCP Tools
|
| 378 |
-
|
| 379 |
-
- Functions in `src/mcp_tools.py` for Claude Desktop
|
| 380 |
-
- Full type hints required
|
| 381 |
-
- Google-style docstrings with Args/Returns sections
|
| 382 |
-
- Formatted string returns (markdown)
|
| 383 |
-
|
| 384 |
-
### Gradio MCP Server
|
| 385 |
-
|
| 386 |
-
- Enable with `mcp_server=True` in `demo.launch()`
|
| 387 |
-
- Endpoint: `/gradio_api/mcp/`
|
| 388 |
-
- Use `ssr_mode=False` to fix hydration issues in HF Spaces
|
| 389 |
-
|
| 390 |
-
## Common Pitfalls
|
| 391 |
-
|
| 392 |
-
1. **Blocking the event loop**: Never use sync I/O in async functions
|
| 393 |
-
2. **Missing type hints**: All functions must have complete type annotations
|
| 394 |
-
3. **Hallucinated citations**: Always validate references
|
| 395 |
-
4. **Global mutable state**: Use ContextVar or pass via parameters
|
| 396 |
-
5. **Import errors**: Lazy-load optional dependencies (magentic, modal, embeddings)
|
| 397 |
-
6. **Rate limiting**: Always implement for external APIs
|
| 398 |
-
7. **Error chaining**: Always use `from e` when raising exceptions
|
| 399 |
-
|
| 400 |
-
## Key Principles
|
| 401 |
-
|
| 402 |
-
1. **Type Safety First**: All code must pass `mypy --strict`
|
| 403 |
-
2. **Async Everything**: All I/O must be async
|
| 404 |
-
3. **Test-Driven**: Write tests before implementation
|
| 405 |
-
4. **No Hallucinations**: Validate all citations
|
| 406 |
-
5. **Graceful Degradation**: Support free tier (HF Inference) when no API keys
|
| 407 |
-
6. **Lazy Loading**: Don't require optional dependencies at import time
|
| 408 |
-
7. **Structured Logging**: Use structlog, never print()
|
| 409 |
-
8. **Error Chaining**: Always preserve exception context
|
| 410 |
-
|
| 411 |
-
## Pull Request Process
|
| 412 |
-
|
| 413 |
-
1. Ensure all checks pass: `make check`
|
| 414 |
-
2. Update documentation if needed
|
| 415 |
-
3. Add tests for new features
|
| 416 |
-
4. Update CHANGELOG if applicable
|
| 417 |
-
5. Request review from maintainers
|
| 418 |
-
6. Address review feedback
|
| 419 |
-
7. Wait for approval before merging
|
| 420 |
-
|
| 421 |
-
## Questions?
|
| 422 |
-
|
| 423 |
-
- Open an issue on GitHub
|
| 424 |
-
- Check existing documentation
|
| 425 |
-
- Review code examples in the codebase
|
| 426 |
-
|
| 427 |
-
Thank you for contributing to DeepCritical!
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/contributing/code-quality.md
DELETED
|
@@ -1,81 +0,0 @@
|
|
| 1 |
-
# Code Quality & Documentation
|
| 2 |
-
|
| 3 |
-
This document outlines code quality standards and documentation requirements.
|
| 4 |
-
|
| 5 |
-
## Linting
|
| 6 |
-
|
| 7 |
-
- Ruff with 100-char line length
|
| 8 |
-
- Ignore rules documented in `pyproject.toml`:
|
| 9 |
-
- `PLR0913`: Too many arguments (agents need many params)
|
| 10 |
-
- `PLR0912`: Too many branches (complex orchestrator logic)
|
| 11 |
-
- `PLR0911`: Too many return statements (complex agent logic)
|
| 12 |
-
- `PLR2004`: Magic values (statistical constants)
|
| 13 |
-
- `PLW0603`: Global statement (singleton pattern)
|
| 14 |
-
- `PLC0415`: Lazy imports for optional dependencies
|
| 15 |
-
|
| 16 |
-
## Type Checking
|
| 17 |
-
|
| 18 |
-
- `mypy --strict` compliance
|
| 19 |
-
- `ignore_missing_imports = true` (for optional dependencies)
|
| 20 |
-
- Exclude: `reference_repos/`, `examples/`
|
| 21 |
-
- All functions must have complete type annotations
|
| 22 |
-
|
| 23 |
-
## Pre-commit
|
| 24 |
-
|
| 25 |
-
- Run `make check` before committing
|
| 26 |
-
- Must pass: lint + typecheck + test-cov
|
| 27 |
-
- Pre-commit hooks installed via `make install`
|
| 28 |
-
|
| 29 |
-
## Documentation
|
| 30 |
-
|
| 31 |
-
### Docstrings
|
| 32 |
-
|
| 33 |
-
- Google-style docstrings for all public functions
|
| 34 |
-
- Include Args, Returns, Raises sections
|
| 35 |
-
- Use type hints in docstrings only if needed for clarity
|
| 36 |
-
|
| 37 |
-
Example:
|
| 38 |
-
|
| 39 |
-
```python
|
| 40 |
-
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 41 |
-
"""Search PubMed and return evidence.
|
| 42 |
-
|
| 43 |
-
Args:
|
| 44 |
-
query: The search query string
|
| 45 |
-
max_results: Maximum number of results to return
|
| 46 |
-
|
| 47 |
-
Returns:
|
| 48 |
-
List of Evidence objects
|
| 49 |
-
|
| 50 |
-
Raises:
|
| 51 |
-
SearchError: If the search fails
|
| 52 |
-
RateLimitError: If we hit rate limits
|
| 53 |
-
"""
|
| 54 |
-
```
|
| 55 |
-
|
| 56 |
-
### Code Comments
|
| 57 |
-
|
| 58 |
-
- Explain WHY, not WHAT
|
| 59 |
-
- Document non-obvious patterns (e.g., why `requests` not `httpx` for ClinicalTrials)
|
| 60 |
-
- Mark critical sections: `# CRITICAL: ...`
|
| 61 |
-
- Document rate limiting rationale
|
| 62 |
-
- Explain async patterns when non-obvious
|
| 63 |
-
|
| 64 |
-
## See Also
|
| 65 |
-
|
| 66 |
-
- [Code Style](code-style.md) - Code style guidelines
|
| 67 |
-
- [Testing](testing.md) - Testing guidelines
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/contributing/code-style.md
DELETED
|
@@ -1,61 +0,0 @@
|
|
| 1 |
-
# Code Style & Conventions
|
| 2 |
-
|
| 3 |
-
This document outlines the code style and conventions for DeepCritical.
|
| 4 |
-
|
| 5 |
-
## Type Safety
|
| 6 |
-
|
| 7 |
-
- **ALWAYS** use type hints for all function parameters and return types
|
| 8 |
-
- Use `mypy --strict` compliance (no `Any` unless absolutely necessary)
|
| 9 |
-
- Use `TYPE_CHECKING` imports for circular dependencies:
|
| 10 |
-
|
| 11 |
-
```python
|
| 12 |
-
from typing import TYPE_CHECKING
|
| 13 |
-
if TYPE_CHECKING:
|
| 14 |
-
from src.services.embeddings import EmbeddingService
|
| 15 |
-
```
|
| 16 |
-
|
| 17 |
-
## Pydantic Models
|
| 18 |
-
|
| 19 |
-
- All data exchange uses Pydantic models (`src/utils/models.py`)
|
| 20 |
-
- Models are frozen (`model_config = {"frozen": True}`) for immutability
|
| 21 |
-
- Use `Field()` with descriptions for all model fields
|
| 22 |
-
- Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints
|
| 23 |
-
|
| 24 |
-
## Async Patterns
|
| 25 |
-
|
| 26 |
-
- **ALL** I/O operations must be async (`async def`, `await`)
|
| 27 |
-
- Use `asyncio.gather()` for parallel operations
|
| 28 |
-
- CPU-bound work (embeddings, parsing) must use `run_in_executor()`:
|
| 29 |
-
|
| 30 |
-
```python
|
| 31 |
-
loop = asyncio.get_running_loop()
|
| 32 |
-
result = await loop.run_in_executor(None, cpu_bound_function, args)
|
| 33 |
-
```
|
| 34 |
-
|
| 35 |
-
- Never block the event loop with synchronous I/O
|
| 36 |
-
|
| 37 |
-
## Common Pitfalls
|
| 38 |
-
|
| 39 |
-
1. **Blocking the event loop**: Never use sync I/O in async functions
|
| 40 |
-
2. **Missing type hints**: All functions must have complete type annotations
|
| 41 |
-
3. **Global mutable state**: Use ContextVar or pass via parameters
|
| 42 |
-
4. **Import errors**: Lazy-load optional dependencies (magentic, modal, embeddings)
|
| 43 |
-
|
| 44 |
-
## See Also
|
| 45 |
-
|
| 46 |
-
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 47 |
-
- [Implementation Patterns](implementation-patterns.md) - Common patterns
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/contributing/error-handling.md
DELETED
|
@@ -1,69 +0,0 @@
|
|
| 1 |
-
# Error Handling & Logging
|
| 2 |
-
|
| 3 |
-
This document outlines error handling and logging conventions for DeepCritical.
|
| 4 |
-
|
| 5 |
-
## Exception Hierarchy
|
| 6 |
-
|
| 7 |
-
Use custom exception hierarchy (`src/utils/exceptions.py`):
|
| 8 |
-
|
| 9 |
-
- `DeepCriticalError` (base)
|
| 10 |
-
- `SearchError` → `RateLimitError`
|
| 11 |
-
- `JudgeError`
|
| 12 |
-
- `ConfigurationError`
|
| 13 |
-
|
| 14 |
-
## Error Handling Rules
|
| 15 |
-
|
| 16 |
-
- Always chain exceptions: `raise SearchError(...) from e`
|
| 17 |
-
- Log errors with context using `structlog`:
|
| 18 |
-
|
| 19 |
-
```python
|
| 20 |
-
logger.error("Operation failed", error=str(e), context=value)
|
| 21 |
-
```
|
| 22 |
-
|
| 23 |
-
- Never silently swallow exceptions
|
| 24 |
-
- Provide actionable error messages
|
| 25 |
-
|
| 26 |
-
## Logging
|
| 27 |
-
|
| 28 |
-
- Use `structlog` for all logging (NOT `print` or `logging`)
|
| 29 |
-
- Import: `import structlog; logger = structlog.get_logger()`
|
| 30 |
-
- Log with structured data: `logger.info("event", key=value)`
|
| 31 |
-
- Use appropriate levels: DEBUG, INFO, WARNING, ERROR
|
| 32 |
-
|
| 33 |
-
## Logging Examples
|
| 34 |
-
|
| 35 |
-
```python
|
| 36 |
-
logger.info("Starting search", query=query, tools=[t.name for t in tools])
|
| 37 |
-
logger.warning("Search tool failed", tool=tool.name, error=str(result))
|
| 38 |
-
logger.error("Assessment failed", error=str(e))
|
| 39 |
-
```
|
| 40 |
-
|
| 41 |
-
## Error Chaining
|
| 42 |
-
|
| 43 |
-
Always preserve exception context:
|
| 44 |
-
|
| 45 |
-
```python
|
| 46 |
-
try:
|
| 47 |
-
result = await api_call()
|
| 48 |
-
except httpx.HTTPError as e:
|
| 49 |
-
raise SearchError(f"API call failed: {e}") from e
|
| 50 |
-
```
|
| 51 |
-
|
| 52 |
-
## See Also
|
| 53 |
-
|
| 54 |
-
- [Code Style](code-style.md) - Code style guidelines
|
| 55 |
-
- [Testing](testing.md) - Testing guidelines
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/contributing/implementation-patterns.md
DELETED
|
@@ -1,84 +0,0 @@
|
|
| 1 |
-
# Implementation Patterns
|
| 2 |
-
|
| 3 |
-
This document outlines common implementation patterns used in DeepCritical.
|
| 4 |
-
|
| 5 |
-
## Search Tools
|
| 6 |
-
|
| 7 |
-
All tools implement `SearchTool` protocol (`src/tools/base.py`):
|
| 8 |
-
|
| 9 |
-
- Must have `name` property
|
| 10 |
-
- Must implement `async def search(query, max_results) -> list[Evidence]`
|
| 11 |
-
- Use `@retry` decorator from tenacity for resilience
|
| 12 |
-
- Rate limiting: Implement `_rate_limit()` for APIs with limits (e.g., PubMed)
|
| 13 |
-
- Error handling: Raise `SearchError` or `RateLimitError` on failures
|
| 14 |
-
|
| 15 |
-
Example pattern:
|
| 16 |
-
|
| 17 |
-
```python
|
| 18 |
-
class MySearchTool:
|
| 19 |
-
@property
|
| 20 |
-
def name(self) -> str:
|
| 21 |
-
return "mytool"
|
| 22 |
-
|
| 23 |
-
@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))
|
| 24 |
-
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 25 |
-
# Implementation
|
| 26 |
-
return evidence_list
|
| 27 |
-
```
|
| 28 |
-
|
| 29 |
-
## Judge Handlers
|
| 30 |
-
|
| 31 |
-
- Implement `JudgeHandlerProtocol` (`async def assess(question, evidence) -> JudgeAssessment`)
|
| 32 |
-
- Use pydantic-ai `Agent` with `output_type=JudgeAssessment`
|
| 33 |
-
- System prompts in `src/prompts/judge.py`
|
| 34 |
-
- Support fallback handlers: `MockJudgeHandler`, `HFInferenceJudgeHandler`
|
| 35 |
-
- Always return valid `JudgeAssessment` (never raise exceptions)
|
| 36 |
-
|
| 37 |
-
## Agent Factory Pattern
|
| 38 |
-
|
| 39 |
-
- Use factory functions for creating agents (`src/agent_factory/`)
|
| 40 |
-
- Lazy initialization for optional dependencies (e.g., embeddings, Modal)
|
| 41 |
-
- Check requirements before initialization:
|
| 42 |
-
|
| 43 |
-
```python
|
| 44 |
-
def check_magentic_requirements() -> None:
|
| 45 |
-
if not settings.has_openai_key:
|
| 46 |
-
raise ConfigurationError("Magentic requires OpenAI")
|
| 47 |
-
```
|
| 48 |
-
|
| 49 |
-
## State Management
|
| 50 |
-
|
| 51 |
-
- **Magentic Mode**: Use `ContextVar` for thread-safe state (`src/agents/state.py`)
|
| 52 |
-
- **Simple Mode**: Pass state via function parameters
|
| 53 |
-
- Never use global mutable state (except singletons via `@lru_cache`)
|
| 54 |
-
|
| 55 |
-
## Singleton Pattern
|
| 56 |
-
|
| 57 |
-
Use `@lru_cache(maxsize=1)` for singletons:
|
| 58 |
-
|
| 59 |
-
```python
|
| 60 |
-
@lru_cache(maxsize=1)
|
| 61 |
-
def get_embedding_service() -> EmbeddingService:
|
| 62 |
-
return EmbeddingService()
|
| 63 |
-
```
|
| 64 |
-
|
| 65 |
-
- Lazy initialization to avoid requiring dependencies at import time
|
| 66 |
-
|
| 67 |
-
## See Also
|
| 68 |
-
|
| 69 |
-
- [Code Style](code-style.md) - Code style guidelines
|
| 70 |
-
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/contributing/index.md
DELETED
|
@@ -1,163 +0,0 @@
|
|
| 1 |
-
# Contributing to DeepCritical
|
| 2 |
-
|
| 3 |
-
Thank you for your interest in contributing to DeepCritical! This guide will help you get started.
|
| 4 |
-
|
| 5 |
-
## Git Workflow
|
| 6 |
-
|
| 7 |
-
- `main`: Production-ready (GitHub)
|
| 8 |
-
- `dev`: Development integration (GitHub)
|
| 9 |
-
- Use feature branches: `yourname-dev`
|
| 10 |
-
- **NEVER** push directly to `main` or `dev` on HuggingFace
|
| 11 |
-
- GitHub is source of truth; HuggingFace is for deployment
|
| 12 |
-
|
| 13 |
-
## Development Commands
|
| 14 |
-
|
| 15 |
-
```bash
|
| 16 |
-
make install # Install dependencies + pre-commit
|
| 17 |
-
make check # Lint + typecheck + test (MUST PASS)
|
| 18 |
-
make test # Run unit tests
|
| 19 |
-
make lint # Run ruff
|
| 20 |
-
make format # Format with ruff
|
| 21 |
-
make typecheck # Run mypy
|
| 22 |
-
make test-cov # Test with coverage
|
| 23 |
-
```
|
| 24 |
-
|
| 25 |
-
## Getting Started
|
| 26 |
-
|
| 27 |
-
1. **Fork the repository** on GitHub
|
| 28 |
-
2. **Clone your fork**:
|
| 29 |
-
```bash
|
| 30 |
-
git clone https://github.com/yourusername/GradioDemo.git
|
| 31 |
-
cd GradioDemo
|
| 32 |
-
```
|
| 33 |
-
3. **Install dependencies**:
|
| 34 |
-
```bash
|
| 35 |
-
make install
|
| 36 |
-
```
|
| 37 |
-
4. **Create a feature branch**:
|
| 38 |
-
```bash
|
| 39 |
-
git checkout -b yourname-feature-name
|
| 40 |
-
```
|
| 41 |
-
5. **Make your changes** following the guidelines below
|
| 42 |
-
6. **Run checks**:
|
| 43 |
-
```bash
|
| 44 |
-
make check
|
| 45 |
-
```
|
| 46 |
-
7. **Commit and push**:
|
| 47 |
-
```bash
|
| 48 |
-
git commit -m "Description of changes"
|
| 49 |
-
git push origin yourname-feature-name
|
| 50 |
-
```
|
| 51 |
-
8. **Create a pull request** on GitHub
|
| 52 |
-
|
| 53 |
-
## Development Guidelines
|
| 54 |
-
|
| 55 |
-
### Code Style
|
| 56 |
-
|
| 57 |
-
- Follow [Code Style Guidelines](code-style.md)
|
| 58 |
-
- All code must pass `mypy --strict`
|
| 59 |
-
- Use `ruff` for linting and formatting
|
| 60 |
-
- Line length: 100 characters
|
| 61 |
-
|
| 62 |
-
### Error Handling
|
| 63 |
-
|
| 64 |
-
- Follow [Error Handling Guidelines](error-handling.md)
|
| 65 |
-
- Always chain exceptions: `raise SearchError(...) from e`
|
| 66 |
-
- Use structured logging with `structlog`
|
| 67 |
-
- Never silently swallow exceptions
|
| 68 |
-
|
| 69 |
-
### Testing
|
| 70 |
-
|
| 71 |
-
- Follow [Testing Guidelines](testing.md)
|
| 72 |
-
- Write tests before implementation (TDD)
|
| 73 |
-
- Aim for >80% coverage on critical paths
|
| 74 |
-
- Use markers: `unit`, `integration`, `slow`
|
| 75 |
-
|
| 76 |
-
### Implementation Patterns
|
| 77 |
-
|
| 78 |
-
- Follow [Implementation Patterns](implementation-patterns.md)
|
| 79 |
-
- Use factory functions for agent/tool creation
|
| 80 |
-
- Implement protocols for extensibility
|
| 81 |
-
- Use singleton pattern with `@lru_cache(maxsize=1)`
|
| 82 |
-
|
| 83 |
-
### Prompt Engineering
|
| 84 |
-
|
| 85 |
-
- Follow [Prompt Engineering Guidelines](prompt-engineering.md)
|
| 86 |
-
- Always validate citations
|
| 87 |
-
- Use diverse evidence selection
|
| 88 |
-
- Never trust LLM-generated citations without validation
|
| 89 |
-
|
| 90 |
-
### Code Quality
|
| 91 |
-
|
| 92 |
-
- Follow [Code Quality Guidelines](code-quality.md)
|
| 93 |
-
- Google-style docstrings for all public functions
|
| 94 |
-
- Explain WHY, not WHAT in comments
|
| 95 |
-
- Mark critical sections: `# CRITICAL: ...`
|
| 96 |
-
|
| 97 |
-
## MCP Integration
|
| 98 |
-
|
| 99 |
-
### MCP Tools
|
| 100 |
-
|
| 101 |
-
- Functions in `src/mcp_tools.py` for Claude Desktop
|
| 102 |
-
- Full type hints required
|
| 103 |
-
- Google-style docstrings with Args/Returns sections
|
| 104 |
-
- Formatted string returns (markdown)
|
| 105 |
-
|
| 106 |
-
### Gradio MCP Server
|
| 107 |
-
|
| 108 |
-
- Enable with `mcp_server=True` in `demo.launch()`
|
| 109 |
-
- Endpoint: `/gradio_api/mcp/`
|
| 110 |
-
- Use `ssr_mode=False` to fix hydration issues in HF Spaces
|
| 111 |
-
|
| 112 |
-
## Common Pitfalls
|
| 113 |
-
|
| 114 |
-
1. **Blocking the event loop**: Never use sync I/O in async functions
|
| 115 |
-
2. **Missing type hints**: All functions must have complete type annotations
|
| 116 |
-
3. **Hallucinated citations**: Always validate references
|
| 117 |
-
4. **Global mutable state**: Use ContextVar or pass via parameters
|
| 118 |
-
5. **Import errors**: Lazy-load optional dependencies (magentic, modal, embeddings)
|
| 119 |
-
6. **Rate limiting**: Always implement for external APIs
|
| 120 |
-
7. **Error chaining**: Always use `from e` when raising exceptions
|
| 121 |
-
|
| 122 |
-
## Key Principles
|
| 123 |
-
|
| 124 |
-
1. **Type Safety First**: All code must pass `mypy --strict`
|
| 125 |
-
2. **Async Everything**: All I/O must be async
|
| 126 |
-
3. **Test-Driven**: Write tests before implementation
|
| 127 |
-
4. **No Hallucinations**: Validate all citations
|
| 128 |
-
5. **Graceful Degradation**: Support free tier (HF Inference) when no API keys
|
| 129 |
-
6. **Lazy Loading**: Don't require optional dependencies at import time
|
| 130 |
-
7. **Structured Logging**: Use structlog, never print()
|
| 131 |
-
8. **Error Chaining**: Always preserve exception context
|
| 132 |
-
|
| 133 |
-
## Pull Request Process
|
| 134 |
-
|
| 135 |
-
1. Ensure all checks pass: `make check`
|
| 136 |
-
2. Update documentation if needed
|
| 137 |
-
3. Add tests for new features
|
| 138 |
-
4. Update CHANGELOG if applicable
|
| 139 |
-
5. Request review from maintainers
|
| 140 |
-
6. Address review feedback
|
| 141 |
-
7. Wait for approval before merging
|
| 142 |
-
|
| 143 |
-
## Questions?
|
| 144 |
-
|
| 145 |
-
- Open an issue on GitHub
|
| 146 |
-
- Check existing documentation
|
| 147 |
-
- Review code examples in the codebase
|
| 148 |
-
|
| 149 |
-
Thank you for contributing to DeepCritical!
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/contributing/prompt-engineering.md
DELETED
|
@@ -1,69 +0,0 @@
|
|
| 1 |
-
# Prompt Engineering & Citation Validation
|
| 2 |
-
|
| 3 |
-
This document outlines prompt engineering guidelines and citation validation rules.
|
| 4 |
-
|
| 5 |
-
## Judge Prompts
|
| 6 |
-
|
| 7 |
-
- System prompt in `src/prompts/judge.py`
|
| 8 |
-
- Format evidence with truncation (1500 chars per item)
|
| 9 |
-
- Handle empty evidence case separately
|
| 10 |
-
- Always request structured JSON output
|
| 11 |
-
- Use `format_user_prompt()` and `format_empty_evidence_prompt()` helpers
|
| 12 |
-
|
| 13 |
-
## Hypothesis Prompts
|
| 14 |
-
|
| 15 |
-
- Use diverse evidence selection (MMR algorithm)
|
| 16 |
-
- Sentence-aware truncation (`truncate_at_sentence()`)
|
| 17 |
-
- Format: Drug → Target → Pathway → Effect
|
| 18 |
-
- System prompt emphasizes mechanistic reasoning
|
| 19 |
-
- Use `format_hypothesis_prompt()` with embeddings for diversity
|
| 20 |
-
|
| 21 |
-
## Report Prompts
|
| 22 |
-
|
| 23 |
-
- Include full citation details for validation
|
| 24 |
-
- Use diverse evidence selection (n=20)
|
| 25 |
-
- **CRITICAL**: Emphasize citation validation rules
|
| 26 |
-
- Format hypotheses with support/contradiction counts
|
| 27 |
-
- System prompt includes explicit JSON structure requirements
|
| 28 |
-
|
| 29 |
-
## Citation Validation
|
| 30 |
-
|
| 31 |
-
- **ALWAYS** validate references before returning reports
|
| 32 |
-
- Use `validate_references()` from `src/utils/citation_validator.py`
|
| 33 |
-
- Remove hallucinated citations (URLs not in evidence)
|
| 34 |
-
- Log warnings for removed citations
|
| 35 |
-
- Never trust LLM-generated citations without validation
|
| 36 |
-
|
| 37 |
-
## Citation Validation Rules
|
| 38 |
-
|
| 39 |
-
1. Every reference URL must EXACTLY match a provided evidence URL
|
| 40 |
-
2. Do NOT invent, fabricate, or hallucinate any references
|
| 41 |
-
3. Do NOT modify paper titles, authors, dates, or URLs
|
| 42 |
-
4. If unsure about a citation, OMIT it rather than guess
|
| 43 |
-
5. Copy URLs exactly as provided - do not create similar-looking URLs
|
| 44 |
-
|
| 45 |
-
## Evidence Selection
|
| 46 |
-
|
| 47 |
-
- Use `select_diverse_evidence()` for MMR-based selection
|
| 48 |
-
- Balance relevance vs diversity (lambda=0.7 default)
|
| 49 |
-
- Sentence-aware truncation preserves meaning
|
| 50 |
-
- Limit evidence per prompt to avoid context overflow
|
| 51 |
-
|
| 52 |
-
## See Also
|
| 53 |
-
|
| 54 |
-
- [Code Quality](code-quality.md) - Code quality guidelines
|
| 55 |
-
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/contributing/testing.md
DELETED
|
@@ -1,65 +0,0 @@
|
|
| 1 |
-
# Testing Requirements
|
| 2 |
-
|
| 3 |
-
This document outlines testing requirements and guidelines for DeepCritical.
|
| 4 |
-
|
| 5 |
-
## Test Structure
|
| 6 |
-
|
| 7 |
-
- Unit tests in `tests/unit/` (mocked, fast)
|
| 8 |
-
- Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`)
|
| 9 |
-
- Use markers: `unit`, `integration`, `slow`
|
| 10 |
-
|
| 11 |
-
## Mocking
|
| 12 |
-
|
| 13 |
-
- Use `respx` for httpx mocking
|
| 14 |
-
- Use `pytest-mock` for general mocking
|
| 15 |
-
- Mock LLM calls in unit tests (use `MockJudgeHandler`)
|
| 16 |
-
- Fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`
|
| 17 |
-
|
| 18 |
-
## TDD Workflow
|
| 19 |
-
|
| 20 |
-
1. Write failing test in `tests/unit/`
|
| 21 |
-
2. Implement in `src/`
|
| 22 |
-
3. Ensure test passes
|
| 23 |
-
4. Run `make check` (lint + typecheck + test)
|
| 24 |
-
|
| 25 |
-
## Test Examples
|
| 26 |
-
|
| 27 |
-
```python
|
| 28 |
-
@pytest.mark.unit
|
| 29 |
-
async def test_pubmed_search(mock_httpx_client):
|
| 30 |
-
tool = PubMedTool()
|
| 31 |
-
results = await tool.search("metformin", max_results=5)
|
| 32 |
-
assert len(results) > 0
|
| 33 |
-
assert all(isinstance(r, Evidence) for r in results)
|
| 34 |
-
|
| 35 |
-
@pytest.mark.integration
|
| 36 |
-
async def test_real_pubmed_search():
|
| 37 |
-
tool = PubMedTool()
|
| 38 |
-
results = await tool.search("metformin", max_results=3)
|
| 39 |
-
assert len(results) <= 3
|
| 40 |
-
```
|
| 41 |
-
|
| 42 |
-
## Test Coverage
|
| 43 |
-
|
| 44 |
-
- Run `make test-cov` for coverage report
|
| 45 |
-
- Aim for >80% coverage on critical paths
|
| 46 |
-
- Exclude: `__init__.py`, `TYPE_CHECKING` blocks
|
| 47 |
-
|
| 48 |
-
## See Also
|
| 49 |
-
|
| 50 |
-
- [Code Style](code-style.md) - Code style guidelines
|
| 51 |
-
- [Implementation Patterns](implementation-patterns.md) - Common patterns
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/getting-started/examples.md
DELETED
|
@@ -1,209 +0,0 @@
|
|
| 1 |
-
# Examples
|
| 2 |
-
|
| 3 |
-
This page provides examples of using DeepCritical for various research tasks.
|
| 4 |
-
|
| 5 |
-
## Basic Research Query
|
| 6 |
-
|
| 7 |
-
### Example 1: Drug Information
|
| 8 |
-
|
| 9 |
-
**Query**:
|
| 10 |
-
```
|
| 11 |
-
What are the latest treatments for Alzheimer's disease?
|
| 12 |
-
```
|
| 13 |
-
|
| 14 |
-
**What DeepCritical Does**:
|
| 15 |
-
1. Searches PubMed for recent papers
|
| 16 |
-
2. Searches ClinicalTrials.gov for active trials
|
| 17 |
-
3. Evaluates evidence quality
|
| 18 |
-
4. Synthesizes findings into a comprehensive report
|
| 19 |
-
|
| 20 |
-
### Example 2: Clinical Trial Search
|
| 21 |
-
|
| 22 |
-
**Query**:
|
| 23 |
-
```
|
| 24 |
-
What clinical trials are investigating metformin for cancer prevention?
|
| 25 |
-
```
|
| 26 |
-
|
| 27 |
-
**What DeepCritical Does**:
|
| 28 |
-
1. Searches ClinicalTrials.gov for relevant trials
|
| 29 |
-
2. Searches PubMed for supporting literature
|
| 30 |
-
3. Provides trial details and status
|
| 31 |
-
4. Summarizes findings
|
| 32 |
-
|
| 33 |
-
## Advanced Research Queries
|
| 34 |
-
|
| 35 |
-
### Example 3: Comprehensive Review
|
| 36 |
-
|
| 37 |
-
**Query**:
|
| 38 |
-
```
|
| 39 |
-
Review the evidence for using metformin as an anti-aging intervention,
|
| 40 |
-
including clinical trials, mechanisms of action, and safety profile.
|
| 41 |
-
```
|
| 42 |
-
|
| 43 |
-
**What DeepCritical Does**:
|
| 44 |
-
1. Uses deep research mode (multi-section)
|
| 45 |
-
2. Searches multiple sources in parallel
|
| 46 |
-
3. Generates sections on:
|
| 47 |
-
- Clinical trials
|
| 48 |
-
- Mechanisms of action
|
| 49 |
-
- Safety profile
|
| 50 |
-
4. Synthesizes comprehensive report
|
| 51 |
-
|
| 52 |
-
### Example 4: Hypothesis Testing
|
| 53 |
-
|
| 54 |
-
**Query**:
|
| 55 |
-
```
|
| 56 |
-
Test the hypothesis that regular exercise reduces Alzheimer's disease risk.
|
| 57 |
-
```
|
| 58 |
-
|
| 59 |
-
**What DeepCritical Does**:
|
| 60 |
-
1. Generates testable hypotheses
|
| 61 |
-
2. Searches for supporting/contradicting evidence
|
| 62 |
-
3. Performs statistical analysis (if Modal configured)
|
| 63 |
-
4. Provides verdict: SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 64 |
-
|
| 65 |
-
## MCP Tool Examples
|
| 66 |
-
|
| 67 |
-
### Using search_pubmed
|
| 68 |
-
|
| 69 |
-
```
|
| 70 |
-
Search PubMed for "CRISPR gene editing cancer therapy"
|
| 71 |
-
```
|
| 72 |
-
|
| 73 |
-
### Using search_clinical_trials
|
| 74 |
-
|
| 75 |
-
```
|
| 76 |
-
Find active clinical trials for "diabetes type 2 treatment"
|
| 77 |
-
```
|
| 78 |
-
|
| 79 |
-
### Using search_all
|
| 80 |
-
|
| 81 |
-
```
|
| 82 |
-
Search all sources for "COVID-19 vaccine side effects"
|
| 83 |
-
```
|
| 84 |
-
|
| 85 |
-
### Using analyze_hypothesis
|
| 86 |
-
|
| 87 |
-
```
|
| 88 |
-
Analyze whether vitamin D supplementation reduces COVID-19 severity
|
| 89 |
-
```
|
| 90 |
-
|
| 91 |
-
## Code Examples
|
| 92 |
-
|
| 93 |
-
### Python API Usage
|
| 94 |
-
|
| 95 |
-
```python
|
| 96 |
-
from src.orchestrator_factory import create_orchestrator
|
| 97 |
-
from src.tools.search_handler import SearchHandler
|
| 98 |
-
from src.agent_factory.judges import create_judge_handler
|
| 99 |
-
|
| 100 |
-
# Create orchestrator
|
| 101 |
-
search_handler = SearchHandler()
|
| 102 |
-
judge_handler = create_judge_handler()
|
| 103 |
-
orchestrator = create_orchestrator(
|
| 104 |
-
search_handler=search_handler,
|
| 105 |
-
judge_handler=judge_handler,
|
| 106 |
-
config={},
|
| 107 |
-
mode="advanced"
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
# Run research query
|
| 111 |
-
query = "What are the latest treatments for Alzheimer's disease?"
|
| 112 |
-
async for event in orchestrator.run(query):
|
| 113 |
-
print(f"Event: {event.type} - {event.data}")
|
| 114 |
-
```
|
| 115 |
-
|
| 116 |
-
### Gradio UI Integration
|
| 117 |
-
|
| 118 |
-
```python
|
| 119 |
-
import gradio as gr
|
| 120 |
-
from src.app import create_research_interface
|
| 121 |
-
|
| 122 |
-
# Create interface
|
| 123 |
-
interface = create_research_interface()
|
| 124 |
-
|
| 125 |
-
# Launch
|
| 126 |
-
interface.launch(server_name="0.0.0.0", server_port=7860)
|
| 127 |
-
```
|
| 128 |
-
|
| 129 |
-
## Research Patterns
|
| 130 |
-
|
| 131 |
-
### Iterative Research
|
| 132 |
-
|
| 133 |
-
Single-loop research with search-judge-synthesize cycles:
|
| 134 |
-
|
| 135 |
-
```python
|
| 136 |
-
from src.orchestrator.research_flow import IterativeResearchFlow
|
| 137 |
-
|
| 138 |
-
flow = IterativeResearchFlow(
|
| 139 |
-
search_handler=search_handler,
|
| 140 |
-
judge_handler=judge_handler,
|
| 141 |
-
use_graph=False
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
async for event in flow.run(query):
|
| 145 |
-
# Handle events
|
| 146 |
-
pass
|
| 147 |
-
```
|
| 148 |
-
|
| 149 |
-
### Deep Research
|
| 150 |
-
|
| 151 |
-
Multi-section parallel research:
|
| 152 |
-
|
| 153 |
-
```python
|
| 154 |
-
from src.orchestrator.research_flow import DeepResearchFlow
|
| 155 |
-
|
| 156 |
-
flow = DeepResearchFlow(
|
| 157 |
-
search_handler=search_handler,
|
| 158 |
-
judge_handler=judge_handler,
|
| 159 |
-
use_graph=True
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
async for event in flow.run(query):
|
| 163 |
-
# Handle events
|
| 164 |
-
pass
|
| 165 |
-
```
|
| 166 |
-
|
| 167 |
-
## Configuration Examples
|
| 168 |
-
|
| 169 |
-
### Basic Configuration
|
| 170 |
-
|
| 171 |
-
```bash
|
| 172 |
-
# .env file
|
| 173 |
-
LLM_PROVIDER=openai
|
| 174 |
-
OPENAI_API_KEY=your_key_here
|
| 175 |
-
MAX_ITERATIONS=10
|
| 176 |
-
```
|
| 177 |
-
|
| 178 |
-
### Advanced Configuration
|
| 179 |
-
|
| 180 |
-
```bash
|
| 181 |
-
# .env file
|
| 182 |
-
LLM_PROVIDER=anthropic
|
| 183 |
-
ANTHROPIC_API_KEY=your_key_here
|
| 184 |
-
EMBEDDING_PROVIDER=local
|
| 185 |
-
WEB_SEARCH_PROVIDER=duckduckgo
|
| 186 |
-
MAX_ITERATIONS=20
|
| 187 |
-
DEFAULT_TOKEN_LIMIT=200000
|
| 188 |
-
USE_GRAPH_EXECUTION=true
|
| 189 |
-
```
|
| 190 |
-
|
| 191 |
-
## Next Steps
|
| 192 |
-
|
| 193 |
-
- Read the [Configuration Guide](../configuration/index.md) for all options
|
| 194 |
-
- Explore the [Architecture Documentation](../architecture/graph-orchestration.md)
|
| 195 |
-
- Check out the [API Reference](../api/agents.md) for programmatic usage
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/getting-started/installation.md
DELETED
|
@@ -1,148 +0,0 @@
|
|
| 1 |
-
# Installation
|
| 2 |
-
|
| 3 |
-
This guide will help you install and set up DeepCritical on your system.
|
| 4 |
-
|
| 5 |
-
## Prerequisites
|
| 6 |
-
|
| 7 |
-
- Python 3.11 or higher
|
| 8 |
-
- `uv` package manager (recommended) or `pip`
|
| 9 |
-
- At least one LLM API key (OpenAI, Anthropic, or HuggingFace)
|
| 10 |
-
|
| 11 |
-
## Installation Steps
|
| 12 |
-
|
| 13 |
-
### 1. Install uv (Recommended)
|
| 14 |
-
|
| 15 |
-
`uv` is a fast Python package installer and resolver. Install it with:
|
| 16 |
-
|
| 17 |
-
```bash
|
| 18 |
-
pip install uv
|
| 19 |
-
```
|
| 20 |
-
|
| 21 |
-
### 2. Clone the Repository
|
| 22 |
-
|
| 23 |
-
```bash
|
| 24 |
-
git clone https://github.com/DeepCritical/GradioDemo.git
|
| 25 |
-
cd GradioDemo
|
| 26 |
-
```
|
| 27 |
-
|
| 28 |
-
### 3. Install Dependencies
|
| 29 |
-
|
| 30 |
-
Using `uv` (recommended):
|
| 31 |
-
|
| 32 |
-
```bash
|
| 33 |
-
uv sync
|
| 34 |
-
```
|
| 35 |
-
|
| 36 |
-
Using `pip`:
|
| 37 |
-
|
| 38 |
-
```bash
|
| 39 |
-
pip install -e .
|
| 40 |
-
```
|
| 41 |
-
|
| 42 |
-
### 4. Install Optional Dependencies
|
| 43 |
-
|
| 44 |
-
For embeddings support (local sentence-transformers):
|
| 45 |
-
|
| 46 |
-
```bash
|
| 47 |
-
uv sync --extra embeddings
|
| 48 |
-
```
|
| 49 |
-
|
| 50 |
-
For Modal sandbox execution:
|
| 51 |
-
|
| 52 |
-
```bash
|
| 53 |
-
uv sync --extra modal
|
| 54 |
-
```
|
| 55 |
-
|
| 56 |
-
For Magentic orchestration:
|
| 57 |
-
|
| 58 |
-
```bash
|
| 59 |
-
uv sync --extra magentic
|
| 60 |
-
```
|
| 61 |
-
|
| 62 |
-
Install all extras:
|
| 63 |
-
|
| 64 |
-
```bash
|
| 65 |
-
uv sync --all-extras
|
| 66 |
-
```
|
| 67 |
-
|
| 68 |
-
### 5. Configure Environment Variables
|
| 69 |
-
|
| 70 |
-
Create a `.env` file in the project root:
|
| 71 |
-
|
| 72 |
-
```bash
|
| 73 |
-
# Required: At least one LLM provider
|
| 74 |
-
LLM_PROVIDER=openai # or "anthropic" or "huggingface"
|
| 75 |
-
OPENAI_API_KEY=your_openai_api_key_here
|
| 76 |
-
|
| 77 |
-
# Optional: Other services
|
| 78 |
-
NCBI_API_KEY=your_ncbi_api_key_here # For higher PubMed rate limits
|
| 79 |
-
MODAL_TOKEN_ID=your_modal_token_id
|
| 80 |
-
MODAL_TOKEN_SECRET=your_modal_token_secret
|
| 81 |
-
```
|
| 82 |
-
|
| 83 |
-
See the [Configuration Guide](../configuration/index.md) for all available options.
|
| 84 |
-
|
| 85 |
-
### 6. Verify Installation
|
| 86 |
-
|
| 87 |
-
Run the application:
|
| 88 |
-
|
| 89 |
-
```bash
|
| 90 |
-
uv run gradio run src/app.py
|
| 91 |
-
```
|
| 92 |
-
|
| 93 |
-
Open your browser to `http://localhost:7860` to verify the installation.
|
| 94 |
-
|
| 95 |
-
## Development Setup
|
| 96 |
-
|
| 97 |
-
For development, install dev dependencies:
|
| 98 |
-
|
| 99 |
-
```bash
|
| 100 |
-
uv sync --all-extras --dev
|
| 101 |
-
```
|
| 102 |
-
|
| 103 |
-
Install pre-commit hooks:
|
| 104 |
-
|
| 105 |
-
```bash
|
| 106 |
-
uv run pre-commit install
|
| 107 |
-
```
|
| 108 |
-
|
| 109 |
-
## Troubleshooting
|
| 110 |
-
|
| 111 |
-
### Common Issues
|
| 112 |
-
|
| 113 |
-
**Import Errors**:
|
| 114 |
-
- Ensure you've installed all required dependencies
|
| 115 |
-
- Check that Python 3.11+ is being used
|
| 116 |
-
|
| 117 |
-
**API Key Errors**:
|
| 118 |
-
- Verify your `.env` file is in the project root
|
| 119 |
-
- Check that API keys are correctly formatted
|
| 120 |
-
- Ensure at least one LLM provider is configured
|
| 121 |
-
|
| 122 |
-
**Module Not Found**:
|
| 123 |
-
- Run `uv sync` or `pip install -e .` again
|
| 124 |
-
- Check that you're in the correct virtual environment
|
| 125 |
-
|
| 126 |
-
**Port Already in Use**:
|
| 127 |
-
- Change the port in `src/app.py` or use environment variable
|
| 128 |
-
- Kill the process using port 7860
|
| 129 |
-
|
| 130 |
-
## Next Steps
|
| 131 |
-
|
| 132 |
-
- Read the [Quick Start Guide](quick-start.md)
|
| 133 |
-
- Learn about [MCP Integration](mcp-integration.md)
|
| 134 |
-
- Explore [Examples](examples.md)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|