mcp-server / app.py
matsuap's picture
Refactor application structure by removing separate server scripts and integrating functionality into app.py; add independent two-sample t-test and Pearson correlation coefficient tools using SciPy.
42fc79a
from fastmcp import FastMCP
import numpy as np
from pydantic import BaseModel
from typing import List, Tuple, Optional
from scipy import stats
mcp = FastMCP("Demo 🚀")
class HelloInput(BaseModel):
name: str
@mcp.tool()
def hello(input: HelloInput) -> str:
return f"Hello, {input.name}!"
class MultiplyInput(BaseModel):
a: float
b: float
@mcp.tool()
def multiply(input: MultiplyInput) -> float:
"""Multiplies two numbers."""
return input.a * input.b
class InnerProductInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def inner_product(input: InnerProductInput) -> float:
"""Calculates the inner product of two vectors."""
return np.dot(input.a, input.b)
class MatrixMultiplyInput(BaseModel):
a: List[List[float]]
b: List[List[float]]
@mcp.tool()
def matrix_multiply(input: MatrixMultiplyInput) -> List[List[float]]:
"""Multiplies two matrices."""
return np.matmul(input.a, input.b)
class NumpyDotInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def numpy_dot(input: NumpyDotInput) -> float:
"""Calculates the dot product of two vectors."""
return np.dot(input.a, input.b)
class NumpyMatmulInput(BaseModel):
a: List[List[float]]
b: List[List[float]]
@mcp.tool()
def numpy_matmul(input: NumpyMatmulInput) -> List[List[float]]:
"""Multiplies two matrices using matmul."""
return np.matmul(input.a, input.b)
class NumpyInvInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_inv(input: NumpyInvInput) -> List[List[float]]:
"""Calculates the inverse of a matrix."""
return np.linalg.inv(input.a)
class NumpyDetInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_det(input: NumpyDetInput) -> float:
"""Calculates the determinant of a matrix."""
return np.linalg.det(input.a)
class NumpyEigInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_eig(input: NumpyEigInput) -> Tuple:
"""Calculates the eigenvalues and eigenvectors of a matrix."""
return np.linalg.eig(input.a)
class NumpySvdInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_svd(input: NumpySvdInput) -> Tuple:
"""Performs singular value decomposition on a matrix."""
return np.linalg.svd(input.a)
class NumpyNormInput(BaseModel):
a: List[float]
ord: Optional[int] = None
@mcp.tool()
def numpy_norm(input: NumpyNormInput) -> float:
"""Calculates the norm of a vector or matrix."""
return np.linalg.norm(input.a, input.ord)
class NumpyCrossInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def numpy_cross(input: NumpyCrossInput) -> List[float]:
"""Calculates the cross product of two vectors."""
return np.cross(input.a, input.b)
class NumpyInnerInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def numpy_inner(input: NumpyInnerInput) -> float:
"""Calculates the inner product of two vectors."""
return np.inner(input.a, input.b)
class NumpyOuterInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def numpy_outer(input: NumpyOuterInput) -> List[List[float]]:
"""Calculates the outer product of two vectors."""
return np.outer(input.a, input.b)
class NumpyTensordotInput(BaseModel):
a: List
b: List
axes: int = 2
@mcp.tool()
def numpy_tensordot(input: NumpyTensordotInput) -> float:
"""Calculates the tensor dot product of two arrays."""
return np.tensordot(input.a, input.b, input.axes)
class NumpyTraceInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_trace(input: NumpyTraceInput) -> float:
"""Calculates the trace of a matrix."""
return np.trace(input.a)
class NumpyQrInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_qr(input: NumpyQrInput) -> Tuple:
"""Performs QR decomposition on a matrix."""
return np.linalg.qr(input.a)
class NumpyCholeskyInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_cholesky(input: NumpyCholeskyInput) -> List[List[float]]:
"""Performs Cholesky decomposition on a matrix."""
return np.linalg.cholesky(input.a)
class NumpySolveInput(BaseModel):
a: List[List[float]]
b: List[float]
@mcp.tool()
def numpy_solve(input: NumpySolveInput) -> List[float]:
"""Solves a linear matrix equation."""
return np.linalg.solve(input.a, input.b)
class NumpyLstsqInput(BaseModel):
a: List[List[float]]
b: List[float]
@mcp.tool()
def numpy_lstsq(input: NumpyLstsqInput) -> Tuple:
"""Solves a linear least squares problem."""
return np.linalg.lstsq(input.a, input.b, rcond=None)
class NumpyPinvInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_pinv(input: NumpyPinvInput) -> List[List[float]]:
"""Calculates the Moore-Penrose pseudo-inverse of a matrix."""
return np.linalg.pinv(input.a)
class NumpyCondInput(BaseModel):
a: List[List[float]]
p: Optional[int] = None
@mcp.tool()
def numpy_cond(input: NumpyCondInput) -> float:
"""Calculates the condition number of a matrix."""
return np.linalg.cond(input.a, input.p)
class NumpyMatrixRankInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_matrix_rank(input: NumpyMatrixRankInput) -> int:
"""Calculates the rank of a matrix."""
return np.linalg.matrix_rank(input.a)
class NumpyMultiDotInput(BaseModel):
arrays: List[List[List[float]]]
@mcp.tool()
def numpy_multi_dot(input: NumpyMultiDotInput) -> List[List[float]]:
"""Computes the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order."""
return np.linalg.multi_dot(input.arrays)
# Static resource
@mcp.resource("config://version")
def get_version():
return "2.0.1"
@mcp.resource("users://{user_id}/profile")
def get_profile(user_id: int):
# Fetch profile for user_id...
return {"name": f"User {user_id}", "status": "active"}
class SummarizeRequestInput(BaseModel):
text: str
@mcp.prompt()
def summarize_request(input: SummarizeRequestInput) -> str:
"""Generate a prompt asking for a summary."""
return f"Please summarize the following text:\n\n{input.text}"
class ScipyTtestInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def scipy_ttest(input: ScipyTtestInput) -> dict:
"""Performs an independent two-sample t-test."""
t_stat, p_value = stats.ttest_ind(input.a, input.b)
return {"t_statistic": t_stat, "p_value": p_value}
class ScipyPearsonrInput(BaseModel):
x: List[float]
y: List[float]
@mcp.tool()
def scipy_pearsonr(input: ScipyPearsonrInput) -> dict:
"""Calculates the Pearson correlation coefficient."""
corr_coefficient, p_value = stats.pearsonr(input.x, input.y)
return {"correlation_coefficient": corr_coefficient, "p_value": p_value}
if __name__ == "__main__":
mcp.run(transport="sse", host="0.0.0.0", port=7860)