File size: 6,877 Bytes
08dd397
66b4ff6
1b61f97
 
42fc79a
08dd397
 
 
1b61f97
 
 
08dd397
1b61f97
 
 
 
 
 
08dd397
 
1b61f97
08dd397
1b61f97
 
 
 
 
08dd397
66b4ff6
1b61f97
66b4ff6
1b61f97
 
 
 
 
66b4ff6
 
1b61f97
66b4ff6
1b61f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b4ff6
08dd397
 
 
 
 
 
3d32f20
08dd397
3d32f20
1b61f97
 
 
08dd397
 
1b61f97
08dd397
1b61f97
08dd397
42fc79a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08dd397
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from fastmcp import FastMCP
import numpy as np
from pydantic import BaseModel
from typing import List, Tuple, Optional
from scipy import stats

mcp = FastMCP("Demo 🚀")

class HelloInput(BaseModel):
    name: str

@mcp.tool()
def hello(input: HelloInput) -> str:
    return f"Hello, {input.name}!"

class MultiplyInput(BaseModel):
    a: float
    b: float

@mcp.tool()
def multiply(input: MultiplyInput) -> float:
    """Multiplies two numbers."""
    return input.a * input.b

class InnerProductInput(BaseModel):
    a: List[float]
    b: List[float]

@mcp.tool()
def inner_product(input: InnerProductInput) -> float:
    """Calculates the inner product of two vectors."""
    return np.dot(input.a, input.b)

class MatrixMultiplyInput(BaseModel):
    a: List[List[float]]
    b: List[List[float]]

@mcp.tool()
def matrix_multiply(input: MatrixMultiplyInput) -> List[List[float]]:
    """Multiplies two matrices."""
    return np.matmul(input.a, input.b)

class NumpyDotInput(BaseModel):
    a: List[float]
    b: List[float]

@mcp.tool()
def numpy_dot(input: NumpyDotInput) -> float:
    """Calculates the dot product of two vectors."""
    return np.dot(input.a, input.b)

class NumpyMatmulInput(BaseModel):
    a: List[List[float]]
    b: List[List[float]]

@mcp.tool()
def numpy_matmul(input: NumpyMatmulInput) -> List[List[float]]:
    """Multiplies two matrices using matmul."""
    return np.matmul(input.a, input.b)

class NumpyInvInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_inv(input: NumpyInvInput) -> List[List[float]]:
    """Calculates the inverse of a matrix."""
    return np.linalg.inv(input.a)

class NumpyDetInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_det(input: NumpyDetInput) -> float:
    """Calculates the determinant of a matrix."""
    return np.linalg.det(input.a)

class NumpyEigInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_eig(input: NumpyEigInput) -> Tuple:
    """Calculates the eigenvalues and eigenvectors of a matrix."""
    return np.linalg.eig(input.a)

class NumpySvdInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_svd(input: NumpySvdInput) -> Tuple:
    """Performs singular value decomposition on a matrix."""
    return np.linalg.svd(input.a)

class NumpyNormInput(BaseModel):
    a: List[float]
    ord: Optional[int] = None

@mcp.tool()
def numpy_norm(input: NumpyNormInput) -> float:
    """Calculates the norm of a vector or matrix."""
    return np.linalg.norm(input.a, input.ord)

class NumpyCrossInput(BaseModel):
    a: List[float]
    b: List[float]

@mcp.tool()
def numpy_cross(input: NumpyCrossInput) -> List[float]:
    """Calculates the cross product of two vectors."""
    return np.cross(input.a, input.b)

class NumpyInnerInput(BaseModel):
    a: List[float]
    b: List[float]

@mcp.tool()
def numpy_inner(input: NumpyInnerInput) -> float:
    """Calculates the inner product of two vectors."""
    return np.inner(input.a, input.b)

class NumpyOuterInput(BaseModel):
    a: List[float]
    b: List[float]

@mcp.tool()
def numpy_outer(input: NumpyOuterInput) -> List[List[float]]:
    """Calculates the outer product of two vectors."""
    return np.outer(input.a, input.b)

class NumpyTensordotInput(BaseModel):
    a: List
    b: List
    axes: int = 2

@mcp.tool()
def numpy_tensordot(input: NumpyTensordotInput) -> float:
    """Calculates the tensor dot product of two arrays."""
    return np.tensordot(input.a, input.b, input.axes)

class NumpyTraceInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_trace(input: NumpyTraceInput) -> float:
    """Calculates the trace of a matrix."""
    return np.trace(input.a)

class NumpyQrInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_qr(input: NumpyQrInput) -> Tuple:
    """Performs QR decomposition on a matrix."""
    return np.linalg.qr(input.a)

class NumpyCholeskyInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_cholesky(input: NumpyCholeskyInput) -> List[List[float]]:
    """Performs Cholesky decomposition on a matrix."""
    return np.linalg.cholesky(input.a)

class NumpySolveInput(BaseModel):
    a: List[List[float]]
    b: List[float]

@mcp.tool()
def numpy_solve(input: NumpySolveInput) -> List[float]:
    """Solves a linear matrix equation."""
    return np.linalg.solve(input.a, input.b)

class NumpyLstsqInput(BaseModel):
    a: List[List[float]]
    b: List[float]

@mcp.tool()
def numpy_lstsq(input: NumpyLstsqInput) -> Tuple:
    """Solves a linear least squares problem."""
    return np.linalg.lstsq(input.a, input.b, rcond=None)

class NumpyPinvInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_pinv(input: NumpyPinvInput) -> List[List[float]]:
    """Calculates the Moore-Penrose pseudo-inverse of a matrix."""
    return np.linalg.pinv(input.a)

class NumpyCondInput(BaseModel):
    a: List[List[float]]
    p: Optional[int] = None

@mcp.tool()
def numpy_cond(input: NumpyCondInput) -> float:
    """Calculates the condition number of a matrix."""
    return np.linalg.cond(input.a, input.p)

class NumpyMatrixRankInput(BaseModel):
    a: List[List[float]]

@mcp.tool()
def numpy_matrix_rank(input: NumpyMatrixRankInput) -> int:
    """Calculates the rank of a matrix."""
    return np.linalg.matrix_rank(input.a)

class NumpyMultiDotInput(BaseModel):
    arrays: List[List[List[float]]]

@mcp.tool()
def numpy_multi_dot(input: NumpyMultiDotInput) -> List[List[float]]:
    """Computes the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order."""
    return np.linalg.multi_dot(input.arrays)

# Static resource
@mcp.resource("config://version")
def get_version(): 
    return "2.0.1"

@mcp.resource("users://{user_id}/profile")
def get_profile(user_id: int):
    # Fetch profile for user_id...
    return {"name": f"User {user_id}", "status": "active"}

class SummarizeRequestInput(BaseModel):
    text: str

@mcp.prompt()
def summarize_request(input: SummarizeRequestInput) -> str:
    """Generate a prompt asking for a summary."""
    return f"Please summarize the following text:\n\n{input.text}"

class ScipyTtestInput(BaseModel):
    a: List[float]
    b: List[float]

@mcp.tool()
def scipy_ttest(input: ScipyTtestInput) -> dict:
    """Performs an independent two-sample t-test."""
    t_stat, p_value = stats.ttest_ind(input.a, input.b)
    return {"t_statistic": t_stat, "p_value": p_value}

class ScipyPearsonrInput(BaseModel):
    x: List[float]
    y: List[float]

@mcp.tool()
def scipy_pearsonr(input: ScipyPearsonrInput) -> dict:
    """Calculates the Pearson correlation coefficient."""
    corr_coefficient, p_value = stats.pearsonr(input.x, input.y)
    return {"correlation_coefficient": corr_coefficient, "p_value": p_value}

if __name__ == "__main__":
    mcp.run(transport="sse", host="0.0.0.0", port=7860)