Spaces:
Running
Running
File size: 6,877 Bytes
08dd397 66b4ff6 1b61f97 42fc79a 08dd397 1b61f97 08dd397 1b61f97 08dd397 1b61f97 08dd397 1b61f97 08dd397 66b4ff6 1b61f97 66b4ff6 1b61f97 66b4ff6 1b61f97 66b4ff6 1b61f97 66b4ff6 08dd397 3d32f20 08dd397 3d32f20 1b61f97 08dd397 1b61f97 08dd397 1b61f97 08dd397 42fc79a 08dd397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from fastmcp import FastMCP
import numpy as np
from pydantic import BaseModel
from typing import List, Tuple, Optional
from scipy import stats
mcp = FastMCP("Demo 🚀")
class HelloInput(BaseModel):
name: str
@mcp.tool()
def hello(input: HelloInput) -> str:
return f"Hello, {input.name}!"
class MultiplyInput(BaseModel):
a: float
b: float
@mcp.tool()
def multiply(input: MultiplyInput) -> float:
"""Multiplies two numbers."""
return input.a * input.b
class InnerProductInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def inner_product(input: InnerProductInput) -> float:
"""Calculates the inner product of two vectors."""
return np.dot(input.a, input.b)
class MatrixMultiplyInput(BaseModel):
a: List[List[float]]
b: List[List[float]]
@mcp.tool()
def matrix_multiply(input: MatrixMultiplyInput) -> List[List[float]]:
"""Multiplies two matrices."""
return np.matmul(input.a, input.b)
class NumpyDotInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def numpy_dot(input: NumpyDotInput) -> float:
"""Calculates the dot product of two vectors."""
return np.dot(input.a, input.b)
class NumpyMatmulInput(BaseModel):
a: List[List[float]]
b: List[List[float]]
@mcp.tool()
def numpy_matmul(input: NumpyMatmulInput) -> List[List[float]]:
"""Multiplies two matrices using matmul."""
return np.matmul(input.a, input.b)
class NumpyInvInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_inv(input: NumpyInvInput) -> List[List[float]]:
"""Calculates the inverse of a matrix."""
return np.linalg.inv(input.a)
class NumpyDetInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_det(input: NumpyDetInput) -> float:
"""Calculates the determinant of a matrix."""
return np.linalg.det(input.a)
class NumpyEigInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_eig(input: NumpyEigInput) -> Tuple:
"""Calculates the eigenvalues and eigenvectors of a matrix."""
return np.linalg.eig(input.a)
class NumpySvdInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_svd(input: NumpySvdInput) -> Tuple:
"""Performs singular value decomposition on a matrix."""
return np.linalg.svd(input.a)
class NumpyNormInput(BaseModel):
a: List[float]
ord: Optional[int] = None
@mcp.tool()
def numpy_norm(input: NumpyNormInput) -> float:
"""Calculates the norm of a vector or matrix."""
return np.linalg.norm(input.a, input.ord)
class NumpyCrossInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def numpy_cross(input: NumpyCrossInput) -> List[float]:
"""Calculates the cross product of two vectors."""
return np.cross(input.a, input.b)
class NumpyInnerInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def numpy_inner(input: NumpyInnerInput) -> float:
"""Calculates the inner product of two vectors."""
return np.inner(input.a, input.b)
class NumpyOuterInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def numpy_outer(input: NumpyOuterInput) -> List[List[float]]:
"""Calculates the outer product of two vectors."""
return np.outer(input.a, input.b)
class NumpyTensordotInput(BaseModel):
a: List
b: List
axes: int = 2
@mcp.tool()
def numpy_tensordot(input: NumpyTensordotInput) -> float:
"""Calculates the tensor dot product of two arrays."""
return np.tensordot(input.a, input.b, input.axes)
class NumpyTraceInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_trace(input: NumpyTraceInput) -> float:
"""Calculates the trace of a matrix."""
return np.trace(input.a)
class NumpyQrInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_qr(input: NumpyQrInput) -> Tuple:
"""Performs QR decomposition on a matrix."""
return np.linalg.qr(input.a)
class NumpyCholeskyInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_cholesky(input: NumpyCholeskyInput) -> List[List[float]]:
"""Performs Cholesky decomposition on a matrix."""
return np.linalg.cholesky(input.a)
class NumpySolveInput(BaseModel):
a: List[List[float]]
b: List[float]
@mcp.tool()
def numpy_solve(input: NumpySolveInput) -> List[float]:
"""Solves a linear matrix equation."""
return np.linalg.solve(input.a, input.b)
class NumpyLstsqInput(BaseModel):
a: List[List[float]]
b: List[float]
@mcp.tool()
def numpy_lstsq(input: NumpyLstsqInput) -> Tuple:
"""Solves a linear least squares problem."""
return np.linalg.lstsq(input.a, input.b, rcond=None)
class NumpyPinvInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_pinv(input: NumpyPinvInput) -> List[List[float]]:
"""Calculates the Moore-Penrose pseudo-inverse of a matrix."""
return np.linalg.pinv(input.a)
class NumpyCondInput(BaseModel):
a: List[List[float]]
p: Optional[int] = None
@mcp.tool()
def numpy_cond(input: NumpyCondInput) -> float:
"""Calculates the condition number of a matrix."""
return np.linalg.cond(input.a, input.p)
class NumpyMatrixRankInput(BaseModel):
a: List[List[float]]
@mcp.tool()
def numpy_matrix_rank(input: NumpyMatrixRankInput) -> int:
"""Calculates the rank of a matrix."""
return np.linalg.matrix_rank(input.a)
class NumpyMultiDotInput(BaseModel):
arrays: List[List[List[float]]]
@mcp.tool()
def numpy_multi_dot(input: NumpyMultiDotInput) -> List[List[float]]:
"""Computes the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order."""
return np.linalg.multi_dot(input.arrays)
# Static resource
@mcp.resource("config://version")
def get_version():
return "2.0.1"
@mcp.resource("users://{user_id}/profile")
def get_profile(user_id: int):
# Fetch profile for user_id...
return {"name": f"User {user_id}", "status": "active"}
class SummarizeRequestInput(BaseModel):
text: str
@mcp.prompt()
def summarize_request(input: SummarizeRequestInput) -> str:
"""Generate a prompt asking for a summary."""
return f"Please summarize the following text:\n\n{input.text}"
class ScipyTtestInput(BaseModel):
a: List[float]
b: List[float]
@mcp.tool()
def scipy_ttest(input: ScipyTtestInput) -> dict:
"""Performs an independent two-sample t-test."""
t_stat, p_value = stats.ttest_ind(input.a, input.b)
return {"t_statistic": t_stat, "p_value": p_value}
class ScipyPearsonrInput(BaseModel):
x: List[float]
y: List[float]
@mcp.tool()
def scipy_pearsonr(input: ScipyPearsonrInput) -> dict:
"""Calculates the Pearson correlation coefficient."""
corr_coefficient, p_value = stats.pearsonr(input.x, input.y)
return {"correlation_coefficient": corr_coefficient, "p_value": p_value}
if __name__ == "__main__":
mcp.run(transport="sse", host="0.0.0.0", port=7860) |