Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,816 Bytes
d66e90c c0c51c2 5e0609f c0c51c2 d437733 c0c51c2 d66e90c c0c51c2 d437733 c0c51c2 d66e90c c0c51c2 d66e90c c0c51c2 d66e90c c0c51c2 d66e90c 5e0609f d66e90c 5e0609f d66e90c c0c51c2 d66e90c c0c51c2 d66e90c 5e0609f d66e90c 18e6067 d66e90c 18e6067 d66e90c c0c51c2 d66e90c c0c51c2 d66e90c c0c51c2 033e4ba c0c51c2 18e6067 c0c51c2 18e6067 c0c51c2 d437733 c61b4e2 d437733 d66e90c d437733 c61b4e2 d437733 c61b4e2 d437733 c61b4e2 d437733 c61b4e2 d437733 c0c51c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
# Import spaces module for ZeroGPU support - Must be first import
try:
import spaces
HAS_SPACES = True
except ImportError:
HAS_SPACES = False
import logging
import os
from pathlib import Path
from typing import Dict, List, Optional, Any, Union, Set
import tempfile
# Force CPU-only mode for EasyOCR and other CUDA libraries
os.environ['CUDA_VISIBLE_DEVICES'] = ''
os.environ['USE_TORCH'] = '1'
os.environ['EASYOCR_GPU'] = 'False'
# Import the parser interface and registry
from src.parsers.parser_interface import DocumentParser
from src.parsers.parser_registry import ParserRegistry
from src.core.exceptions import DocumentProcessingError, ParserError
from src.core.config import config
# Check for Docling availability
try:
from docling.document_converter import DocumentConverter
from docling.datamodel.base_models import InputFormat
from docling.datamodel.pipeline_options import PdfPipelineOptions, EasyOcrOptions, TesseractOcrOptions
from docling.document_converter import PdfFormatOption
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
HAS_DOCLING = True
except ImportError:
HAS_DOCLING = False
logging.warning("Docling package not installed. Please install with 'pip install docling'")
# Gemini availability
try:
from google import genai
HAS_GEMINI = True
except ImportError:
HAS_GEMINI = False
# Configure logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
class DoclingParser(DocumentParser):
"""
Parser implementation using Docling for converting documents to Markdown.
Supports advanced PDF understanding, OCR, and multiple document formats.
"""
def __init__(self):
super().__init__() # Initialize the base class (including _cancellation_flag)
self.converter = None
self.gpu_converter = None
# Don't initialize converters here to avoid CUDA issues
# They will be created on-demand in the parse methods
logger.info("Docling parser initialized (converters will be created on-demand)")
def _create_converter_with_options(self, ocr_method: str, **kwargs) -> DocumentConverter:
"""Create a DocumentConverter with specific OCR options."""
pipeline_options = PdfPipelineOptions()
# Enable OCR by default
pipeline_options.do_ocr = True
# Configure OCR method
if ocr_method == "docling_tesseract":
pipeline_options.ocr_options = TesseractOcrOptions()
elif ocr_method == "docling_easyocr":
pipeline_options.ocr_options = EasyOcrOptions()
else: # Default to EasyOCR
pipeline_options.ocr_options = EasyOcrOptions()
# Configure advanced features
pipeline_options.do_table_structure = kwargs.get('enable_tables', True)
pipeline_options.do_code_enrichment = kwargs.get('enable_code_enrichment', False)
pipeline_options.do_formula_enrichment = kwargs.get('enable_formula_enrichment', False)
pipeline_options.do_picture_classification = kwargs.get('enable_picture_classification', False)
pipeline_options.generate_picture_images = kwargs.get('generate_picture_images', False)
# Create converter with options
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(pipeline_options=pipeline_options)
}
)
return converter
def parse(self, file_path: Union[str, Path], ocr_method: Optional[str] = None, **kwargs) -> str:
"""
Parse a document and return its content as Markdown.
Args:
file_path: Path to the document
ocr_method: OCR method to use ('docling_default', 'docling_tesseract', 'docling_easyocr')
**kwargs: Additional options for Docling processing
Returns:
str: Markdown representation of the document
"""
# Validate file first
self.validate_file(file_path)
# Check if Docling is available
if not HAS_DOCLING:
raise ParserError("Docling is not available. Please install with 'pip install docling'")
# Check for cancellation before starting
if self._check_cancellation():
raise DocumentProcessingError("Conversion cancelled")
try:
# Try ZeroGPU first, fallback to CPU
if HAS_SPACES:
try:
logger.info("Attempting Docling processing with ZeroGPU")
# Filter kwargs to avoid pickle issues
safe_kwargs = {}
for key, value in kwargs.items():
if not key.startswith('_') and not hasattr(value, '__call__'):
try:
import pickle
pickle.dumps(value)
safe_kwargs[key] = value
except (TypeError, pickle.PickleError):
logger.debug(f"Skipping unpicklable kwarg: {key}")
result = self._process_with_gpu(str(file_path), ocr_method, **safe_kwargs)
return result
except Exception as e:
if "pickle" in str(e).lower():
logger.warning(f"ZeroGPU pickle error: {str(e)}")
elif "cuda" in str(e).lower():
logger.warning(f"ZeroGPU CUDA error: {str(e)}")
else:
logger.warning(f"ZeroGPU processing failed: {str(e)}")
logger.info("Falling back to CPU processing")
# Fallback to CPU processing
result = self._process_with_cpu(str(file_path), ocr_method, **kwargs)
return result
except Exception as e:
logger.error(f"Error converting file with Docling: {str(e)}")
raise DocumentProcessingError(f"Docling conversion failed: {str(e)}")
def _process_with_cpu(self, file_path: str, ocr_method: Optional[str] = None, **kwargs) -> str:
"""Process document with CPU-only Docling converter."""
logger.info("Processing with CPU-only Docling converter")
# Create CPU converter if not exists
if self.converter is None:
self.converter = self._create_cpu_converter(ocr_method, **kwargs)
# Convert the document
result = self.converter.convert(file_path)
# Check for cancellation after processing
if self._check_cancellation():
raise DocumentProcessingError("Conversion cancelled")
# Export to markdown
return result.document.export_to_markdown()
def _create_cpu_converter(self, ocr_method: Optional[str] = None, **kwargs) -> DocumentConverter:
"""Create a CPU-only DocumentConverter with proper OCR fallback."""
# Configure CPU-only accelerator
accelerator_options = AcceleratorOptions(
num_threads=4,
device=AcceleratorDevice.CPU
)
# Create pipeline options with CPU-only accelerator
pipeline_options = PdfPipelineOptions()
pipeline_options.accelerator_options = accelerator_options
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
# Configure OCR method - use EasyOCR with CPU enforcement
pipeline_options.ocr_options = EasyOcrOptions()
logger.info("Using EasyOCR (CPU-only)")
# Configure advanced features
pipeline_options.do_table_structure = kwargs.get('enable_tables', True)
pipeline_options.do_code_enrichment = kwargs.get('enable_code_enrichment', False)
pipeline_options.do_formula_enrichment = kwargs.get('enable_formula_enrichment', False)
pipeline_options.do_picture_classification = kwargs.get('enable_picture_classification', False)
pipeline_options.generate_picture_images = kwargs.get('generate_picture_images', False)
# Create converter with CPU-only configuration
return DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
)
}
)
# Define the GPU-decorated function for ZeroGPU
if HAS_SPACES:
@spaces.GPU(duration=120) # Allocate GPU for up to 2 minutes
def _process_with_gpu(self, file_path: str, ocr_method: Optional[str] = None, **kwargs) -> str:
"""Process document with GPU-accelerated Docling converter.
IMPORTANT: All model loading and CUDA operations must happen inside this method.
"""
logger.info("Processing with ZeroGPU allocation")
# Configure GPU accelerator
accelerator_options = AcceleratorOptions(
num_threads=4,
device=AcceleratorDevice.CUDA
)
# Create pipeline options with GPU accelerator
pipeline_options = PdfPipelineOptions()
pipeline_options.accelerator_options = accelerator_options
pipeline_options.do_ocr = True
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
# Configure OCR method - use EasyOCR
pipeline_options.ocr_options = EasyOcrOptions()
# Configure advanced features
pipeline_options.do_table_structure = kwargs.get('enable_tables', True)
pipeline_options.do_code_enrichment = kwargs.get('enable_code_enrichment', False)
pipeline_options.do_formula_enrichment = kwargs.get('enable_formula_enrichment', False)
pipeline_options.do_picture_classification = kwargs.get('enable_picture_classification', False)
pipeline_options.generate_picture_images = kwargs.get('generate_picture_images', False)
# Create converter with GPU configuration inside the decorated function
converter = DocumentConverter(
format_options={
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
)
}
)
# Convert the document
result = converter.convert(file_path)
# Export to markdown
markdown_content = result.document.export_to_markdown()
# Clean up to free memory
del converter
import gc
gc.collect()
return markdown_content
else:
# Define a dummy method if spaces is not available
def _process_with_gpu(self, file_path: str, ocr_method: Optional[str] = None, **kwargs) -> str:
# This should never be called if HAS_SPACES is False
return self._process_with_cpu(file_path, ocr_method, **kwargs)
@classmethod
def get_name(cls) -> str:
return "Docling"
@classmethod
def get_supported_file_types(cls) -> Set[str]:
"""Return a set of supported file extensions."""
return {
# PDF files
".pdf",
# Image files
".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".webp",
# Office documents
".docx", ".xlsx", ".pptx",
# Web and markup
".html", ".xhtml", ".md",
# Other formats
".csv"
}
@classmethod
def is_available(cls) -> bool:
"""Check if this parser is available."""
return HAS_DOCLING
@classmethod
def get_supported_ocr_methods(cls) -> List[Dict[str, Any]]:
"""Return list of supported OCR methods."""
return [
{
"id": "docling_default",
"name": "EasyOCR",
"default_params": {
"enable_tables": True,
"enable_code_enrichment": False,
"enable_formula_enrichment": False,
"enable_picture_classification": False,
"generate_picture_images": False
}
}
]
@classmethod
def get_description(cls) -> str:
return "Docling parser with advanced PDF understanding, table structure recognition, and multiple OCR engines"
def _validate_batch_files(self, file_paths: List[Path]) -> None:
"""Validate batch of files (size, count, type) for multi-document processing."""
if len(file_paths) == 0:
raise DocumentProcessingError("No files provided for processing")
if len(file_paths) > 5:
raise DocumentProcessingError("Maximum 5 files allowed for batch processing")
total_size = 0
for fp in file_paths:
if not fp.exists():
raise DocumentProcessingError(f"File not found: {fp}")
size = fp.stat().st_size
if size > 10 * 1024 * 1024: # 10 MB
raise DocumentProcessingError(f"Individual file size exceeds 10MB: {fp.name}")
total_size += size
if total_size > 20 * 1024 * 1024:
raise DocumentProcessingError(f"Combined file size ({total_size / (1024*1024):.1f}MB) exceeds 20MB limit")
def _create_batch_prompt(self, file_paths: List[Path], processing_type: str, original_filenames: Optional[List[str]] = None) -> str:
"""Create a natural-language prompt for Gemini post-processing."""
names = original_filenames if original_filenames else [p.name for p in file_paths]
file_list = "\n".join(f"- {n}" for n in names)
base = f"I will provide you with {len(file_paths)} documents:\n{file_list}\n\n"
if processing_type == "combined":
return base + "Merge the content into a single coherent markdown document, preserving structure."
if processing_type == "individual":
return base + "Convert each document to markdown under its own heading."
if processing_type == "summary":
return base + "Create an EXECUTIVE SUMMARY followed by detailed markdown conversions per document."
if processing_type == "comparison":
return base + "Provide a comparison table of the documents, individual summaries, and cross-document insights."
# default fallback
return base
def _format_batch_output(self, response_text: str, file_paths: List[Path], processing_type: str, original_filenames: Optional[List[str]] = None) -> str:
names = original_filenames if original_filenames else [p.name for p in file_paths]
header = (
f"<!-- Multi-Document Processing Results -->\n"
f"<!-- Processing Type: {processing_type} -->\n"
f"<!-- Files Processed: {len(file_paths)} -->\n"
f"<!-- File Names: {', '.join(names)} -->\n\n"
)
# Ensure response_text is a string to avoid TypeError when it is None
safe_resp = "" if response_text is None else str(response_text)
return header + safe_resp
def _convert_batch_with_docling(self, paths: List[Path], ocr_method: Optional[str], **kwargs) -> List[str]:
"""Run Docling conversion on a list of Paths and return markdown list."""
if self._check_cancellation():
raise DocumentProcessingError("Conversion cancelled")
# Create CPU converter for batch processing (GPU not supported for batch yet)
converter = self._create_cpu_converter(ocr_method, **kwargs)
# Convert all docs
from docling.datamodel.base_models import ConversionStatus
markdown_results: List[str] = []
conv_results = converter.convert_all([str(p) for p in paths], raises_on_error=False)
for idx, conv_res in enumerate(conv_results):
if self._check_cancellation():
raise DocumentProcessingError("Conversion cancelled")
if conv_res.status in (ConversionStatus.SUCCESS, ConversionStatus.PARTIAL_SUCCESS):
markdown_results.append(conv_res.document.export_to_markdown())
else:
raise DocumentProcessingError(f"Docling failed to convert {paths[idx].name}")
return markdown_results
def parse_multiple(
self,
file_paths: List[Union[str, Path]],
processing_type: str = "combined",
original_filenames: Optional[List[str]] = None,
ocr_method: Optional[str] = None,
output_format: str = "markdown",
**kwargs,
) -> str:
"""Multi-document processing using Docling + optional Gemini summarisation/comparison."""
if not HAS_DOCLING:
raise ParserError("Docling package not installed")
paths = [Path(p) for p in file_paths]
self._validate_batch_files(paths)
# Run Docling conversion
markdown_list = self._convert_batch_with_docling(paths, ocr_method, **kwargs)
# LOCAL composition for combined/individual
if processing_type in ("combined", "individual"):
if processing_type == "individual":
names = original_filenames if original_filenames else [p.name for p in paths]
sections = [f"# Document {i+1}: {n}\n\n{md}" for i, (n, md) in enumerate(zip(names, markdown_list), 1)]
combined = "\n\n---\n\n".join(sections)
else:
combined = "\n\n---\n\n".join(markdown_list)
return self._format_batch_output(combined, paths, processing_type, original_filenames)
# SUMMARY / COMPARISON → Gemini 2.5 Flash
if not HAS_GEMINI or not config.api.google_api_key:
raise DocumentProcessingError("Gemini API not available for summary/comparison post-processing")
prompt = self._create_batch_prompt(paths, processing_type, original_filenames)
combined_md = "\n\n---\n\n".join(markdown_list)
try:
client = genai.Client(api_key=config.api.google_api_key)
response = client.models.generate_content(
model=config.model.gemini_model,
contents=[prompt + "\n\n" + combined_md],
config={
"temperature": config.model.temperature,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": config.model.max_tokens,
},
)
# Debug logging for response structure
logger.debug(f"Gemini response type: {type(response)}")
logger.debug(f"Gemini response attributes: {dir(response)}")
# Try different ways to extract text from response
final_text = None
if hasattr(response, "text") and response.text:
final_text = response.text
elif hasattr(response, "candidates") and response.candidates:
# Try to get text from first candidate
candidate = response.candidates[0]
if hasattr(candidate, "content") and candidate.content:
if hasattr(candidate.content, "parts") and candidate.content.parts:
final_text = candidate.content.parts[0].text
elif hasattr(candidate.content, "text"):
final_text = candidate.content.text
elif hasattr(candidate, "text"):
final_text = candidate.text
elif hasattr(response, "content") and response.content:
final_text = str(response.content)
if not final_text:
logger.error(f"No text found in Gemini response. Response: {response}")
raise DocumentProcessingError("Gemini post-processing returned no text")
except Exception as e:
logger.error(f"Gemini API error: {str(e)}")
raise DocumentProcessingError(f"Gemini post-processing failed: {str(e)}")
return self._format_batch_output(final_text, paths, processing_type, original_filenames)
# Register the parser with the registry if available
if HAS_DOCLING:
ParserRegistry.register(DoclingParser)
logger.info("Docling parser registered successfully")
else:
logger.warning("Could not register Docling parser: Package not installed") |