Spaces:
Running
Running
Implement ZeroGPU support in DoclingParser for enhanced document processing
Browse files- Added support for GPU processing using the ZeroGPU framework, allowing for accelerated document conversion.
- Introduced methods for CPU-only processing and fallback mechanisms to ensure robust performance.
- Updated the initialization process to defer converter creation until needed, preventing CUDA issues.
- Enhanced error handling and logging for better debugging and user feedback during document conversion.
- src/parsers/docling_parser.py +147 -32
src/parsers/docling_parser.py
CHANGED
@@ -1,3 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import os
|
3 |
from pathlib import Path
|
@@ -16,6 +23,7 @@ try:
|
|
16 |
from docling.datamodel.base_models import InputFormat
|
17 |
from docling.datamodel.pipeline_options import PdfPipelineOptions, EasyOcrOptions, TesseractOcrOptions
|
18 |
from docling.document_converter import PdfFormatOption
|
|
|
19 |
HAS_DOCLING = True
|
20 |
except ImportError:
|
21 |
HAS_DOCLING = False
|
@@ -42,16 +50,11 @@ class DoclingParser(DocumentParser):
|
|
42 |
def __init__(self):
|
43 |
super().__init__() # Initialize the base class (including _cancellation_flag)
|
44 |
self.converter = None
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
# Create default converter instance
|
50 |
-
self.converter = DocumentConverter()
|
51 |
-
logger.info("Docling initialized successfully")
|
52 |
-
except Exception as e:
|
53 |
-
logger.error(f"Error initializing Docling: {str(e)}")
|
54 |
-
self.converter = None
|
55 |
|
56 |
def _create_converter_with_options(self, ocr_method: str, **kwargs) -> DocumentConverter:
|
57 |
"""Create a DocumentConverter with specific OCR options."""
|
@@ -100,7 +103,7 @@ class DoclingParser(DocumentParser):
|
|
100 |
self.validate_file(file_path)
|
101 |
|
102 |
# Check if Docling is available
|
103 |
-
if not HAS_DOCLING
|
104 |
raise ParserError("Docling is not available. Please install with 'pip install docling'")
|
105 |
|
106 |
# Check for cancellation before starting
|
@@ -108,27 +111,145 @@ class DoclingParser(DocumentParser):
|
|
108 |
raise DocumentProcessingError("Conversion cancelled")
|
109 |
|
110 |
try:
|
111 |
-
#
|
112 |
-
if
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
#
|
118 |
-
result =
|
|
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Export to markdown
|
125 |
markdown_content = result.document.export_to_markdown()
|
126 |
|
127 |
-
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
132 |
|
133 |
@classmethod
|
134 |
def get_name(cls) -> str:
|
@@ -258,14 +379,8 @@ class DoclingParser(DocumentParser):
|
|
258 |
if self._check_cancellation():
|
259 |
raise DocumentProcessingError("Conversion cancelled")
|
260 |
|
261 |
-
#
|
262 |
-
|
263 |
-
converter = self._create_converter_with_options(ocr_method, **kwargs)
|
264 |
-
else:
|
265 |
-
converter = self.converter
|
266 |
-
|
267 |
-
if converter is None:
|
268 |
-
raise DocumentProcessingError("Docling converter not initialized")
|
269 |
|
270 |
# Convert all docs
|
271 |
from docling.datamodel.base_models import ConversionStatus
|
|
|
1 |
+
# Import spaces module for ZeroGPU support - Must be first import
|
2 |
+
try:
|
3 |
+
import spaces
|
4 |
+
HAS_SPACES = True
|
5 |
+
except ImportError:
|
6 |
+
HAS_SPACES = False
|
7 |
+
|
8 |
import logging
|
9 |
import os
|
10 |
from pathlib import Path
|
|
|
23 |
from docling.datamodel.base_models import InputFormat
|
24 |
from docling.datamodel.pipeline_options import PdfPipelineOptions, EasyOcrOptions, TesseractOcrOptions
|
25 |
from docling.document_converter import PdfFormatOption
|
26 |
+
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
|
27 |
HAS_DOCLING = True
|
28 |
except ImportError:
|
29 |
HAS_DOCLING = False
|
|
|
50 |
def __init__(self):
|
51 |
super().__init__() # Initialize the base class (including _cancellation_flag)
|
52 |
self.converter = None
|
53 |
+
self.gpu_converter = None
|
54 |
|
55 |
+
# Don't initialize converters here to avoid CUDA issues
|
56 |
+
# They will be created on-demand in the parse methods
|
57 |
+
logger.info("Docling parser initialized (converters will be created on-demand)")
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def _create_converter_with_options(self, ocr_method: str, **kwargs) -> DocumentConverter:
|
60 |
"""Create a DocumentConverter with specific OCR options."""
|
|
|
103 |
self.validate_file(file_path)
|
104 |
|
105 |
# Check if Docling is available
|
106 |
+
if not HAS_DOCLING:
|
107 |
raise ParserError("Docling is not available. Please install with 'pip install docling'")
|
108 |
|
109 |
# Check for cancellation before starting
|
|
|
111 |
raise DocumentProcessingError("Conversion cancelled")
|
112 |
|
113 |
try:
|
114 |
+
# Try ZeroGPU first, fallback to CPU
|
115 |
+
if HAS_SPACES:
|
116 |
+
try:
|
117 |
+
logger.info("Attempting Docling processing with ZeroGPU")
|
118 |
+
result = self._process_with_gpu(str(file_path), ocr_method, **kwargs)
|
119 |
+
return result
|
120 |
+
except Exception as e:
|
121 |
+
logger.warning(f"ZeroGPU processing failed: {str(e)}")
|
122 |
+
logger.info("Falling back to CPU processing")
|
123 |
|
124 |
+
# Fallback to CPU processing
|
125 |
+
result = self._process_with_cpu(str(file_path), ocr_method, **kwargs)
|
126 |
+
return result
|
127 |
|
128 |
+
except Exception as e:
|
129 |
+
logger.error(f"Error converting file with Docling: {str(e)}")
|
130 |
+
raise DocumentProcessingError(f"Docling conversion failed: {str(e)}")
|
131 |
+
|
132 |
+
def _process_with_cpu(self, file_path: str, ocr_method: Optional[str] = None, **kwargs) -> str:
|
133 |
+
"""Process document with CPU-only Docling converter."""
|
134 |
+
logger.info("Processing with CPU-only Docling converter")
|
135 |
+
|
136 |
+
# Create CPU converter if not exists
|
137 |
+
if self.converter is None:
|
138 |
+
self.converter = self._create_cpu_converter(ocr_method, **kwargs)
|
139 |
+
|
140 |
+
# Convert the document
|
141 |
+
result = self.converter.convert(file_path)
|
142 |
+
|
143 |
+
# Check for cancellation after processing
|
144 |
+
if self._check_cancellation():
|
145 |
+
raise DocumentProcessingError("Conversion cancelled")
|
146 |
+
|
147 |
+
# Export to markdown
|
148 |
+
return result.document.export_to_markdown()
|
149 |
+
|
150 |
+
def _create_cpu_converter(self, ocr_method: Optional[str] = None, **kwargs) -> DocumentConverter:
|
151 |
+
"""Create a CPU-only DocumentConverter."""
|
152 |
+
# Configure CPU-only accelerator
|
153 |
+
accelerator_options = AcceleratorOptions(
|
154 |
+
num_threads=4,
|
155 |
+
device=AcceleratorDevice.CPU
|
156 |
+
)
|
157 |
+
|
158 |
+
# Create pipeline options with CPU-only accelerator
|
159 |
+
pipeline_options = PdfPipelineOptions()
|
160 |
+
pipeline_options.accelerator_options = accelerator_options
|
161 |
+
pipeline_options.do_ocr = True
|
162 |
+
pipeline_options.do_table_structure = True
|
163 |
+
pipeline_options.table_structure_options.do_cell_matching = True
|
164 |
+
|
165 |
+
# Configure OCR method
|
166 |
+
if ocr_method == "docling_tesseract":
|
167 |
+
pipeline_options.ocr_options = TesseractOcrOptions()
|
168 |
+
elif ocr_method == "docling_easyocr":
|
169 |
+
pipeline_options.ocr_options = EasyOcrOptions()
|
170 |
+
else: # Default to EasyOCR
|
171 |
+
pipeline_options.ocr_options = EasyOcrOptions()
|
172 |
+
|
173 |
+
# Configure advanced features
|
174 |
+
pipeline_options.do_table_structure = kwargs.get('enable_tables', True)
|
175 |
+
pipeline_options.do_code_enrichment = kwargs.get('enable_code_enrichment', False)
|
176 |
+
pipeline_options.do_formula_enrichment = kwargs.get('enable_formula_enrichment', False)
|
177 |
+
pipeline_options.do_picture_classification = kwargs.get('enable_picture_classification', False)
|
178 |
+
pipeline_options.generate_picture_images = kwargs.get('generate_picture_images', False)
|
179 |
+
|
180 |
+
# Create converter with CPU-only configuration
|
181 |
+
return DocumentConverter(
|
182 |
+
format_options={
|
183 |
+
InputFormat.PDF: PdfFormatOption(
|
184 |
+
pipeline_options=pipeline_options,
|
185 |
+
)
|
186 |
+
}
|
187 |
+
)
|
188 |
+
|
189 |
+
# Define the GPU-decorated function for ZeroGPU
|
190 |
+
if HAS_SPACES:
|
191 |
+
@spaces.GPU(duration=120) # Allocate GPU for up to 2 minutes
|
192 |
+
def _process_with_gpu(self, file_path: str, ocr_method: Optional[str] = None, **kwargs) -> str:
|
193 |
+
"""Process document with GPU-accelerated Docling converter.
|
194 |
+
|
195 |
+
IMPORTANT: All model loading and CUDA operations must happen inside this method.
|
196 |
+
"""
|
197 |
+
logger.info("Processing with ZeroGPU allocation")
|
198 |
+
|
199 |
+
# Configure GPU accelerator
|
200 |
+
accelerator_options = AcceleratorOptions(
|
201 |
+
num_threads=4,
|
202 |
+
device=AcceleratorDevice.CUDA
|
203 |
+
)
|
204 |
+
|
205 |
+
# Create pipeline options with GPU accelerator
|
206 |
+
pipeline_options = PdfPipelineOptions()
|
207 |
+
pipeline_options.accelerator_options = accelerator_options
|
208 |
+
pipeline_options.do_ocr = True
|
209 |
+
pipeline_options.do_table_structure = True
|
210 |
+
pipeline_options.table_structure_options.do_cell_matching = True
|
211 |
+
|
212 |
+
# Configure OCR method
|
213 |
+
if ocr_method == "docling_tesseract":
|
214 |
+
pipeline_options.ocr_options = TesseractOcrOptions()
|
215 |
+
elif ocr_method == "docling_easyocr":
|
216 |
+
pipeline_options.ocr_options = EasyOcrOptions()
|
217 |
+
else: # Default to EasyOCR
|
218 |
+
pipeline_options.ocr_options = EasyOcrOptions()
|
219 |
+
|
220 |
+
# Configure advanced features
|
221 |
+
pipeline_options.do_table_structure = kwargs.get('enable_tables', True)
|
222 |
+
pipeline_options.do_code_enrichment = kwargs.get('enable_code_enrichment', False)
|
223 |
+
pipeline_options.do_formula_enrichment = kwargs.get('enable_formula_enrichment', False)
|
224 |
+
pipeline_options.do_picture_classification = kwargs.get('enable_picture_classification', False)
|
225 |
+
pipeline_options.generate_picture_images = kwargs.get('generate_picture_images', False)
|
226 |
+
|
227 |
+
# Create converter with GPU configuration inside the decorated function
|
228 |
+
converter = DocumentConverter(
|
229 |
+
format_options={
|
230 |
+
InputFormat.PDF: PdfFormatOption(
|
231 |
+
pipeline_options=pipeline_options,
|
232 |
+
)
|
233 |
+
}
|
234 |
+
)
|
235 |
+
|
236 |
+
# Convert the document
|
237 |
+
result = converter.convert(file_path)
|
238 |
|
239 |
# Export to markdown
|
240 |
markdown_content = result.document.export_to_markdown()
|
241 |
|
242 |
+
# Clean up to free memory
|
243 |
+
del converter
|
244 |
+
import gc
|
245 |
+
gc.collect()
|
246 |
|
247 |
+
return markdown_content
|
248 |
+
else:
|
249 |
+
# Define a dummy method if spaces is not available
|
250 |
+
def _process_with_gpu(self, file_path: str, ocr_method: Optional[str] = None, **kwargs) -> str:
|
251 |
+
# This should never be called if HAS_SPACES is False
|
252 |
+
return self._process_with_cpu(file_path, ocr_method, **kwargs)
|
253 |
|
254 |
@classmethod
|
255 |
def get_name(cls) -> str:
|
|
|
379 |
if self._check_cancellation():
|
380 |
raise DocumentProcessingError("Conversion cancelled")
|
381 |
|
382 |
+
# Create CPU converter for batch processing (GPU not supported for batch yet)
|
383 |
+
converter = self._create_cpu_converter(ocr_method, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
# Convert all docs
|
386 |
from docling.datamodel.base_models import ConversionStatus
|