Spaces:
Running
Running
from fastapi import FastAPI, WebSocket | |
from fastapi.responses import HTMLResponse | |
import uvicorn | |
import json | |
app = FastAPI() | |
class ConnectionManager: | |
def __init__(self): | |
self.active_connections = {} # WebSocket: source | |
async def connect(self, websocket: WebSocket): | |
await websocket.accept() | |
self.active_connections[websocket] = None | |
def set_source(self, websocket: WebSocket, source: str): | |
if websocket in self.active_connections: | |
self.active_connections[websocket] = source | |
async def send_to_destination(self, destination: str, message: str): | |
for ws, src in self.active_connections.items(): | |
if src == destination: | |
await ws.send_text(message) | |
def remove(self, websocket: WebSocket): | |
if websocket in self.active_connections: | |
del self.active_connections[websocket] | |
manager = ConnectionManager() | |
async def get(): | |
return HTMLResponse(""" | |
<html> | |
<body> | |
<h1>Chat Client</h1> | |
<div id="chat" style="height:300px;overflow-y:scroll"></div> | |
<input id="msg" type="text"> | |
<button onclick="send()">Send</button> | |
<script> | |
const ws = new WebSocket('wss://' + window.location.host + '/ws'); | |
ws.onopen = () => { | |
ws.send(JSON.stringify({ source: 'user' })); | |
}; | |
ws.onmessage = e => { | |
const msg = JSON.parse(e.data); | |
document.getElementById('chat').innerHTML += | |
`<div>${msg.content}</div>`; | |
}; | |
const send = () => { | |
const message = { | |
content: document.getElementById('msg').value, | |
source: 'user', | |
destination: 'proxy' | |
}; | |
ws.send(JSON.stringify(message)); | |
document.getElementById('msg').value = ''; | |
}; | |
</script> | |
</body> | |
</html> | |
""") | |
async def get_proxy(): | |
return HTMLResponse(""" | |
<html> | |
<body> | |
<h1>Proxy Client (LLM Gateway)</h1> | |
<div style="margin-bottom: 20px;"> | |
<input type="password" id="apiKey" placeholder="Enter API Key" style="width: 300px;"> | |
<button onclick="initializeClient()">Fetch Models</button> | |
</div> | |
<div style="margin-bottom: 20px;"> | |
<select id="modelSelect" style="width: 300px;"> | |
<option value="" disabled selected>-- Select Model --</option> | |
</select> | |
</div> | |
<div id="status"></div> | |
<script> | |
let agentClient = null; | |
let currentModel = null; | |
const systemPrompt = "You are a helpful AI assistant. Respond concisely and accurately."; | |
const conversationHistory = []; | |
function showStatus(message, type = 'info') { | |
const statusDiv = document.getElementById('status'); | |
statusDiv.innerHTML = `<div style="color: ${type === 'error' ? 'red' : 'orange'}">${message}</div>`; | |
} | |
function initializeClient() { | |
const apiKey = document.getElementById('apiKey').value; | |
if (!apiKey) { | |
showStatus("Please enter an API key", 'error'); | |
return; | |
} | |
agentClient = new ConversationalAgentClient(apiKey); | |
agentClient.populateLLMModels() | |
.then(models => { | |
agentClient.updateModelSelect('modelSelect', models.find(m => m.includes("gemini-2.5"))); | |
currentModel = document.getElementById('modelSelect').value; | |
showStatus(`Loaded ${models.length} models. Default: ${currentModel}`); | |
}) | |
.catch(error => { | |
showStatus(`Error fetching models: ${error.message}`, 'error'); | |
}); | |
} | |
// WebSocket setup | |
const ws = new WebSocket('wss://' + window.location.host + '/ws'); | |
ws.onopen = () => { | |
ws.send(JSON.stringify({ source: 'proxy' })); | |
}; | |
ws.onmessage = async e => { | |
const msg = JSON.parse(e.data); | |
if (msg.destination === 'proxy') { | |
try { | |
showStatus("Processing user query..."); | |
const llmResponse = await agentClient.call( | |
currentModel, | |
msg.content, | |
systemPrompt, | |
conversationHistory | |
); | |
const responseMsg = { | |
content: llmResponse.response, | |
source: 'proxy', | |
destination: 'user' | |
}; | |
ws.send(JSON.stringify(responseMsg)); | |
showStatus("Response sent successfully"); | |
} catch (error) { | |
console.error("LLM Error:", error); | |
const errorResponse = { | |
content: `Error processing request: ${error.message}`, | |
source: 'proxy', | |
destination: 'user' | |
}; | |
ws.send(JSON.stringify(errorResponse)); | |
showStatus(`Error: ${error.message}`, 'error'); | |
} | |
} | |
}; | |
// Model selection change handler | |
document.getElementById('modelSelect').addEventListener('change', function() { | |
currentModel = this.value; | |
showStatus(`Model changed to: ${currentModel}`); | |
}); | |
// --- Include provided client classes here --- | |
// --- API Client Classes --- (Keep existing classes BaseAgentClient, ConversationalAgentClient) | |
class BaseAgentClient { | |
constructor(apiKey, apiUrl = 'https://llm.synapse.thalescloud.io/v1/') { this.apiKey = apiKey; this.apiUrl = apiUrl; this.models = []; this.maxCallsPerMinute = 4; this.callTimestamps = []; } | |
async fetchLLMModels() { if (!this.apiKey) throw new Error("API Key is not set."); console.log("Fetching models from:", this.apiUrl + 'models'); try { const response = await fetch(this.apiUrl + 'models', { method: 'GET', headers: { 'Authorization': `Bearer ${this.apiKey}` } }); if (!response.ok) { const errorText = await response.text(); console.error("Fetch models error response:", errorText); throw new Error(`HTTP error! Status: ${response.status} - ${errorText}`); } const data = await response.json(); console.log("Models fetched:", data.data); const filteredModels = data.data.map(model => model.id).filter(id => !id.toLowerCase().includes('embed') && !id.toLowerCase().includes('image')); return filteredModels; } catch (error) { console.error('Error fetching LLM models:', error); throw new Error(`Failed to fetch models: ${error.message}`); } } | |
async populateLLMModels(defaultModel = "gemini-2.5-pro-exp-03-25") { try { const modelList = await this.fetchLLMModels(); const sortedModels = modelList.sort((a, b) => { if (a === defaultModel) return -1; if (b === defaultModel) return 1; return a.localeCompare(b); }); const finalModels = []; if (sortedModels.includes(defaultModel)) { finalModels.push(defaultModel); sortedModels.forEach(model => { if (model !== defaultModel) finalModels.push(model); }); } else { finalModels.push(defaultModel); finalModels.push(...sortedModels); } this.models = finalModels; console.log("Populated models:", this.models); return this.models; } catch (error) { console.error("Error populating models:", error); this.models = [defaultModel]; throw error; } } | |
updateModelSelect(elementId = 'modelSelect', selectedModel = null) { const select = document.getElementById(elementId); if (!select) { console.warn(`Element ID ${elementId} not found.`); return; } const currentSelection = selectedModel || select.value || this.models[0]; select.innerHTML = ''; if (this.models.length === 0 || (this.models.length === 1 && this.models[0] === "gemini-2.5-pro-exp-03-25" && !this.apiKey)) { const option = document.createElement('option'); option.value = ""; option.textContent = "-- Fetch models first --"; option.disabled = true; select.appendChild(option); return; } this.models.forEach(model => { const option = document.createElement('option'); option.value = model; option.textContent = model; if (model === currentSelection) option.selected = true; select.appendChild(option); }); if (!select.value && this.models.length > 0) select.value = this.models[0]; } | |
async rateLimitWait() { const currentTime = Date.now(); this.callTimestamps = this.callTimestamps.filter(ts => currentTime - ts <= 60000); if (this.callTimestamps.length >= this.maxCallsPerMinute) { const waitTime = 60000 - (currentTime - this.callTimestamps[0]); const waitSeconds = Math.ceil(waitTime / 1000); const waitMessage = `Rate limit (${this.maxCallsPerMinute}/min) reached. Waiting ${waitSeconds}s...`; console.log(waitMessage); showGenerationStatus(waitMessage, 'warn'); await new Promise(resolve => setTimeout(resolve, waitTime + 100)); showGenerationStatus('Resuming after rate limit wait...', 'info'); this.callTimestamps = this.callTimestamps.filter(ts => Date.now() - ts <= 60000); } } | |
async callAgent(model, messages, temperature = 0.7) { await this.rateLimitWait(); const startTime = Date.now(); console.log("Calling Agent:", model); try { const response = await fetch(this.apiUrl + 'chat/completions', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${this.apiKey}` }, body: JSON.stringify({ model: model, messages: messages, temperature: temperature }) }); const endTime = Date.now(); this.callTimestamps.push(endTime); console.log(`API call took ${endTime - startTime} ms`); if (!response.ok) { const errorData = await response.json().catch(() => ({ error: { message: response.statusText } })); console.error("API Error:", errorData); throw new Error(errorData.error?.message || `API failed: ${response.status}`); } const data = await response.json(); if (!data.choices || !data.choices[0]?.message) throw new Error("Invalid API response structure"); console.log("API Response received."); return data.choices[0].message.content; } catch (error) { this.callTimestamps.push(Date.now()); console.error('Error calling agent:', error); throw error; } } | |
setMaxCallsPerMinute(value) { const parsedValue = parseInt(value, 10); if (!isNaN(parsedValue) && parsedValue > 0) { console.log(`Max calls/min set to: ${parsedValue}`); this.maxCallsPerMinute = parsedValue; return true; } console.warn(`Invalid max calls/min: ${value}`); return false; } | |
} | |
class ConversationalAgentClient extends BaseAgentClient { | |
constructor(apiKey, apiUrl = 'https://llm.synapse.thalescloud.io/v1/') { super(apiKey, apiUrl); } | |
async call(model, userPrompt, systemPrompt, conversationHistory = [], temperature = 0.7) { const messages = [{ role: 'system', content: systemPrompt }, ...conversationHistory, { role: 'user', content: userPrompt }]; const assistantResponse = await super.callAgent(model, messages, temperature); const updatedHistory = [...conversationHistory, { role: 'user', content: userPrompt }, { role: 'assistant', content: assistantResponse }]; return { response: assistantResponse, history: updatedHistory }; } | |
async callWithCodeContext(model, userPrompt, systemPrompt, selectedCodeVersionsData = [], conversationHistory = [], temperature = 0.7) { let codeContext = ""; let fullSystemPrompt = systemPrompt || ""; if (selectedCodeVersionsData && selectedCodeVersionsData.length > 0) { codeContext = "Code context (chronological):\n\n"; selectedCodeVersionsData.forEach((versionData, index) => { if (versionData && typeof versionData.code === 'string') codeContext += `--- Part ${index + 1} (${versionData.version || '?'}) ---\n${versionData.code}\n\n`; else console.warn(`Invalid context version data at index ${index}`); }); codeContext += "-------- end context ---\n\nUser request based on context:\n\n"; } const fullPrompt = codeContext + userPrompt; const messages = [{ role: 'system', content: fullSystemPrompt }, ...conversationHistory, { role: 'user', content: fullPrompt }]; const assistantResponse = await super.callAgent(model, messages, temperature); const updatedHistory = [...conversationHistory, { role: 'user', content: fullPrompt }, { role: 'assistant', content: assistantResponse }]; return { response: assistantResponse, history: updatedHistory }; } | |
} | |
</script> | |
</body> | |
</html> | |
""") | |
async def websocket_endpoint(websocket: WebSocket): | |
await manager.connect(websocket) | |
try: | |
# Handle initial source identification | |
data = await websocket.receive_text() | |
init_msg = json.loads(data) | |
if 'source' in init_msg: | |
manager.set_source(websocket, init_msg['source']) | |
# Handle messages | |
while True: | |
message = await websocket.receive_text() | |
msg_data = json.loads(message) | |
await manager.send_to_destination(msg_data['destination'], message) | |
except Exception as e: | |
manager.remove(websocket) | |
await websocket.close() | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |