Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -66,28 +66,114 @@ async def get_proxy():
|
|
66 |
return HTMLResponse("""
|
67 |
<html>
|
68 |
<body>
|
69 |
-
<h1>Proxy Client</h1>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
<script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
const ws = new WebSocket('wss://' + window.location.host + '/ws');
|
72 |
ws.onopen = () => {
|
73 |
ws.send(JSON.stringify({ source: 'proxy' }));
|
74 |
};
|
75 |
-
|
|
|
76 |
const msg = JSON.parse(e.data);
|
77 |
if (msg.destination === 'proxy') {
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
}
|
85 |
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
</script>
|
87 |
</body>
|
88 |
</html>
|
89 |
""")
|
90 |
|
|
|
91 |
@app.websocket("/ws")
|
92 |
async def websocket_endpoint(websocket: WebSocket):
|
93 |
await manager.connect(websocket)
|
|
|
66 |
return HTMLResponse("""
|
67 |
<html>
|
68 |
<body>
|
69 |
+
<h1>Proxy Client (LLM Gateway)</h1>
|
70 |
+
<div style="margin-bottom: 20px;">
|
71 |
+
<input type="password" id="apiKey" placeholder="Enter API Key" style="width: 300px;">
|
72 |
+
<button onclick="initializeClient()">Fetch Models</button>
|
73 |
+
</div>
|
74 |
+
<div style="margin-bottom: 20px;">
|
75 |
+
<select id="modelSelect" style="width: 300px;">
|
76 |
+
<option value="" disabled selected>-- Select Model --</option>
|
77 |
+
</select>
|
78 |
+
</div>
|
79 |
+
<div id="status"></div>
|
80 |
+
|
81 |
<script>
|
82 |
+
let agentClient = null;
|
83 |
+
let currentModel = null;
|
84 |
+
const systemPrompt = "You are a helpful AI assistant. Respond concisely and accurately.";
|
85 |
+
const conversationHistory = [];
|
86 |
+
|
87 |
+
function showStatus(message, type = 'info') {
|
88 |
+
const statusDiv = document.getElementById('status');
|
89 |
+
statusDiv.innerHTML = `<div style="color: ${type === 'error' ? 'red' : 'orange'}">${message}</div>`;
|
90 |
+
}
|
91 |
+
|
92 |
+
function initializeClient() {
|
93 |
+
const apiKey = document.getElementById('apiKey').value;
|
94 |
+
if (!apiKey) {
|
95 |
+
showStatus("Please enter an API key", 'error');
|
96 |
+
return;
|
97 |
+
}
|
98 |
+
|
99 |
+
agentClient = new ConversationalAgentClient(apiKey);
|
100 |
+
agentClient.populateLLMModels()
|
101 |
+
.then(models => {
|
102 |
+
agentClient.updateModelSelect('modelSelect', models.find(m => m.includes("gemini-2.5")));
|
103 |
+
currentModel = document.getElementById('modelSelect').value;
|
104 |
+
showStatus(`Loaded ${models.length} models. Default: ${currentModel}`);
|
105 |
+
})
|
106 |
+
.catch(error => {
|
107 |
+
showStatus(`Error fetching models: ${error.message}`, 'error');
|
108 |
+
});
|
109 |
+
}
|
110 |
+
|
111 |
+
// WebSocket setup
|
112 |
const ws = new WebSocket('wss://' + window.location.host + '/ws');
|
113 |
ws.onopen = () => {
|
114 |
ws.send(JSON.stringify({ source: 'proxy' }));
|
115 |
};
|
116 |
+
|
117 |
+
ws.onmessage = async e => {
|
118 |
const msg = JSON.parse(e.data);
|
119 |
if (msg.destination === 'proxy') {
|
120 |
+
try {
|
121 |
+
showStatus("Processing user query...");
|
122 |
+
const llmResponse = await agentClient.call(
|
123 |
+
currentModel,
|
124 |
+
msg.content,
|
125 |
+
systemPrompt,
|
126 |
+
conversationHistory
|
127 |
+
);
|
128 |
+
|
129 |
+
const responseMsg = {
|
130 |
+
content: llmResponse.response,
|
131 |
+
source: 'proxy',
|
132 |
+
destination: 'user'
|
133 |
+
};
|
134 |
+
ws.send(JSON.stringify(responseMsg));
|
135 |
+
showStatus("Response sent successfully");
|
136 |
+
} catch (error) {
|
137 |
+
console.error("LLM Error:", error);
|
138 |
+
const errorResponse = {
|
139 |
+
content: `Error processing request: ${error.message}`,
|
140 |
+
source: 'proxy',
|
141 |
+
destination: 'user'
|
142 |
+
};
|
143 |
+
ws.send(JSON.stringify(errorResponse));
|
144 |
+
showStatus(`Error: ${error.message}`, 'error');
|
145 |
+
}
|
146 |
}
|
147 |
};
|
148 |
+
|
149 |
+
// Model selection change handler
|
150 |
+
document.getElementById('modelSelect').addEventListener('change', function() {
|
151 |
+
currentModel = this.value;
|
152 |
+
showStatus(`Model changed to: ${currentModel}`);
|
153 |
+
});
|
154 |
+
|
155 |
+
// --- Include provided client classes here ---
|
156 |
+
// --- API Client Classes --- (Keep existing classes BaseAgentClient, ConversationalAgentClient)
|
157 |
+
class BaseAgentClient {
|
158 |
+
constructor(apiKey, apiUrl = 'https://llm.synapse.thalescloud.io/v1/') { this.apiKey = apiKey; this.apiUrl = apiUrl; this.models = []; this.maxCallsPerMinute = 4; this.callTimestamps = []; }
|
159 |
+
async fetchLLMModels() { if (!this.apiKey) throw new Error("API Key is not set."); console.log("Fetching models from:", this.apiUrl + 'models'); try { const response = await fetch(this.apiUrl + 'models', { method: 'GET', headers: { 'Authorization': `Bearer ${this.apiKey}` } }); if (!response.ok) { const errorText = await response.text(); console.error("Fetch models error response:", errorText); throw new Error(`HTTP error! Status: ${response.status} - ${errorText}`); } const data = await response.json(); console.log("Models fetched:", data.data); const filteredModels = data.data.map(model => model.id).filter(id => !id.toLowerCase().includes('embed') && !id.toLowerCase().includes('image')); return filteredModels; } catch (error) { console.error('Error fetching LLM models:', error); throw new Error(`Failed to fetch models: ${error.message}`); } }
|
160 |
+
async populateLLMModels(defaultModel = "gemini-2.5-pro-exp-03-25") { try { const modelList = await this.fetchLLMModels(); const sortedModels = modelList.sort((a, b) => { if (a === defaultModel) return -1; if (b === defaultModel) return 1; return a.localeCompare(b); }); const finalModels = []; if (sortedModels.includes(defaultModel)) { finalModels.push(defaultModel); sortedModels.forEach(model => { if (model !== defaultModel) finalModels.push(model); }); } else { finalModels.push(defaultModel); finalModels.push(...sortedModels); } this.models = finalModels; console.log("Populated models:", this.models); return this.models; } catch (error) { console.error("Error populating models:", error); this.models = [defaultModel]; throw error; } }
|
161 |
+
updateModelSelect(elementId = 'modelSelect', selectedModel = null) { const select = document.getElementById(elementId); if (!select) { console.warn(`Element ID ${elementId} not found.`); return; } const currentSelection = selectedModel || select.value || this.models[0]; select.innerHTML = ''; if (this.models.length === 0 || (this.models.length === 1 && this.models[0] === "gemini-2.5-pro-exp-03-25" && !this.apiKey)) { const option = document.createElement('option'); option.value = ""; option.textContent = "-- Fetch models first --"; option.disabled = true; select.appendChild(option); return; } this.models.forEach(model => { const option = document.createElement('option'); option.value = model; option.textContent = model; if (model === currentSelection) option.selected = true; select.appendChild(option); }); if (!select.value && this.models.length > 0) select.value = this.models[0]; }
|
162 |
+
async rateLimitWait() { const currentTime = Date.now(); this.callTimestamps = this.callTimestamps.filter(ts => currentTime - ts <= 60000); if (this.callTimestamps.length >= this.maxCallsPerMinute) { const waitTime = 60000 - (currentTime - this.callTimestamps[0]); const waitSeconds = Math.ceil(waitTime / 1000); const waitMessage = `Rate limit (${this.maxCallsPerMinute}/min) reached. Waiting ${waitSeconds}s...`; console.log(waitMessage); showGenerationStatus(waitMessage, 'warn'); await new Promise(resolve => setTimeout(resolve, waitTime + 100)); showGenerationStatus('Resuming after rate limit wait...', 'info'); this.callTimestamps = this.callTimestamps.filter(ts => Date.now() - ts <= 60000); } }
|
163 |
+
async callAgent(model, messages, temperature = 0.7) { await this.rateLimitWait(); const startTime = Date.now(); console.log("Calling Agent:", model); try { const response = await fetch(this.apiUrl + 'chat/completions', { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${this.apiKey}` }, body: JSON.stringify({ model: model, messages: messages, temperature: temperature }) }); const endTime = Date.now(); this.callTimestamps.push(endTime); console.log(`API call took ${endTime - startTime} ms`); if (!response.ok) { const errorData = await response.json().catch(() => ({ error: { message: response.statusText } })); console.error("API Error:", errorData); throw new Error(errorData.error?.message || `API failed: ${response.status}`); } const data = await response.json(); if (!data.choices || !data.choices[0]?.message) throw new Error("Invalid API response structure"); console.log("API Response received."); return data.choices[0].message.content; } catch (error) { this.callTimestamps.push(Date.now()); console.error('Error calling agent:', error); throw error; } }
|
164 |
+
setMaxCallsPerMinute(value) { const parsedValue = parseInt(value, 10); if (!isNaN(parsedValue) && parsedValue > 0) { console.log(`Max calls/min set to: ${parsedValue}`); this.maxCallsPerMinute = parsedValue; return true; } console.warn(`Invalid max calls/min: ${value}`); return false; }
|
165 |
+
}
|
166 |
+
class ConversationalAgentClient extends BaseAgentClient {
|
167 |
+
constructor(apiKey, apiUrl = 'https://llm.synapse.thalescloud.io/v1/') { super(apiKey, apiUrl); }
|
168 |
+
async call(model, userPrompt, systemPrompt, conversationHistory = [], temperature = 0.7) { const messages = [{ role: 'system', content: systemPrompt }, ...conversationHistory, { role: 'user', content: userPrompt }]; const assistantResponse = await super.callAgent(model, messages, temperature); const updatedHistory = [...conversationHistory, { role: 'user', content: userPrompt }, { role: 'assistant', content: assistantResponse }]; return { response: assistantResponse, history: updatedHistory }; }
|
169 |
+
async callWithCodeContext(model, userPrompt, systemPrompt, selectedCodeVersionsData = [], conversationHistory = [], temperature = 0.7) { let codeContext = ""; let fullSystemPrompt = systemPrompt || ""; if (selectedCodeVersionsData && selectedCodeVersionsData.length > 0) { codeContext = "Code context (chronological):\n\n"; selectedCodeVersionsData.forEach((versionData, index) => { if (versionData && typeof versionData.code === 'string') codeContext += `--- Part ${index + 1} (${versionData.version || '?'}) ---\n${versionData.code}\n\n`; else console.warn(`Invalid context version data at index ${index}`); }); codeContext += "-------- end context ---\n\nUser request based on context:\n\n"; } const fullPrompt = codeContext + userPrompt; const messages = [{ role: 'system', content: fullSystemPrompt }, ...conversationHistory, { role: 'user', content: fullPrompt }]; const assistantResponse = await super.callAgent(model, messages, temperature); const updatedHistory = [...conversationHistory, { role: 'user', content: fullPrompt }, { role: 'assistant', content: assistantResponse }]; return { response: assistantResponse, history: updatedHistory }; }
|
170 |
+
}
|
171 |
</script>
|
172 |
</body>
|
173 |
</html>
|
174 |
""")
|
175 |
|
176 |
+
|
177 |
@app.websocket("/ws")
|
178 |
async def websocket_endpoint(websocket: WebSocket):
|
179 |
await manager.connect(websocket)
|