Merge branch 'main' of https://huggingface.co/spaces/AgentsGuards/agents-guard-mcp
Browse files- .gitignore +3 -1
- gradio_interface/app.py +201 -4
- mcp_server.py +1 -0
- src/utils/change_format.py +26 -13
- src/utils/resize_image.py +56 -0
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
__pycache__/
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.env
|
3 |
+
test_agent.py
|
gradio_interface/app.py
CHANGED
@@ -1,7 +1,204 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from os import getenv
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import requests
|
8 |
+
import socket
|
9 |
+
import logging
|
10 |
+
import json
|
11 |
|
12 |
+
from langchain_openai import ChatOpenAI
|
13 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
14 |
+
from langchain_core.callbacks import StreamingStdOutCallbackHandler
|
15 |
|
16 |
+
# Load environment
|
17 |
+
dotenv_path = os.path.join(os.path.dirname(__file__), '.env')
|
18 |
+
load_dotenv(dotenv_path=dotenv_path)
|
19 |
+
|
20 |
+
# Connectivity test
|
21 |
+
def test_connectivity(url="https://openrouter.helicone.ai/api/v1"):
|
22 |
+
try:
|
23 |
+
return requests.get(url, timeout=5).status_code == 200
|
24 |
+
except (requests.RequestException, socket.error):
|
25 |
+
return False
|
26 |
+
|
27 |
+
# Helper to make direct API calls to OpenRouter when LangChain fails
|
28 |
+
def direct_api_call(messages, api_key, base_url):
|
29 |
+
headers = {
|
30 |
+
"Content-Type": "application/json",
|
31 |
+
"Authorization": f"Bearer {api_key}",
|
32 |
+
"HTTP-Referer": "https://your-app-domain.com", # Add your domain
|
33 |
+
"X-Title": "Image Analysis App"
|
34 |
+
}
|
35 |
+
|
36 |
+
if getenv("HELICONE_API_KEY"):
|
37 |
+
headers["Helicone-Auth"] = f"Bearer {getenv('HELICONE_API_KEY')}"
|
38 |
+
|
39 |
+
payload = {
|
40 |
+
"model": "google/gemini-flash-1.5",
|
41 |
+
"messages": messages,
|
42 |
+
"stream": False,
|
43 |
+
}
|
44 |
+
|
45 |
+
try:
|
46 |
+
response = requests.post(
|
47 |
+
f"{base_url}/chat/completions",
|
48 |
+
headers=headers,
|
49 |
+
json=payload,
|
50 |
+
timeout=30
|
51 |
+
)
|
52 |
+
response.raise_for_status()
|
53 |
+
return response.json()["choices"][0]["message"]["content"]
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error: {str(e)}"
|
56 |
+
|
57 |
+
# Initialize LLM with streaming and retry logic
|
58 |
+
def init_llm():
|
59 |
+
if not test_connectivity():
|
60 |
+
raise RuntimeError("No hay conexión a OpenRouter. Verifica red y claves.")
|
61 |
+
return ChatOpenAI(
|
62 |
+
openai_api_key=getenv("OPENROUTER_API_KEY"),
|
63 |
+
openai_api_base=getenv("OPENROUTER_BASE_URL"),
|
64 |
+
model_name="google/gemini-flash-1.5",
|
65 |
+
streaming=True,
|
66 |
+
callbacks=[StreamingStdOutCallbackHandler()],
|
67 |
+
model_kwargs={
|
68 |
+
"extra_headers": {"Helicone-Auth": f"Bearer {getenv('HELICONE_API_KEY')}"}
|
69 |
+
},
|
70 |
+
)
|
71 |
+
|
72 |
+
# Try to initialize LLM but handle failures gracefully
|
73 |
+
try:
|
74 |
+
llm = init_llm()
|
75 |
+
except Exception as e:
|
76 |
+
llm = None
|
77 |
+
|
78 |
+
# Helpers
|
79 |
+
def encode_image_to_base64(pil_image):
|
80 |
+
buffer = BytesIO()
|
81 |
+
pil_image.save(buffer, format="PNG")
|
82 |
+
return base64.b64encode(buffer.getvalue()).decode()
|
83 |
+
|
84 |
+
# Core logic
|
85 |
+
def generate_response(message, chat_history, image):
|
86 |
+
# Convert chat history to standard format
|
87 |
+
formatted_history = []
|
88 |
+
for msg in chat_history:
|
89 |
+
role = msg.get('role')
|
90 |
+
content = msg.get('content')
|
91 |
+
if role == 'user':
|
92 |
+
formatted_history.append({"role": "user", "content": content})
|
93 |
+
else:
|
94 |
+
formatted_history.append({"role": "assistant", "content": content})
|
95 |
+
|
96 |
+
# Prepare system message
|
97 |
+
system_msg = {"role": "system", "content": "You are an expert image analysis assistant. Answer succinctly."}
|
98 |
+
|
99 |
+
# Prepare the latest message with image if provided
|
100 |
+
if image:
|
101 |
+
base64_image = encode_image_to_base64(image)
|
102 |
+
|
103 |
+
# Format for direct API call (OpenRouter/OpenAI format)
|
104 |
+
api_messages = [system_msg] + formatted_history + [{
|
105 |
+
"role": "user",
|
106 |
+
"content": [
|
107 |
+
{"type": "text", "text": message},
|
108 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
109 |
+
]
|
110 |
+
}]
|
111 |
+
|
112 |
+
# For LangChain format
|
113 |
+
content_for_langchain = [
|
114 |
+
{"type": "text", "text": message},
|
115 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
116 |
+
]
|
117 |
+
else:
|
118 |
+
api_messages = [system_msg] + formatted_history + [{"role": "user", "content": message}]
|
119 |
+
content_for_langchain = message
|
120 |
+
|
121 |
+
# Build LangChain messages
|
122 |
+
lc_messages = [HumanMessage(content="You are an expert image analysis assistant. Answer succinctly.")]
|
123 |
+
for msg in chat_history:
|
124 |
+
role = msg.get('role')
|
125 |
+
content = msg.get('content')
|
126 |
+
if role == 'user':
|
127 |
+
lc_messages.append(HumanMessage(content=content))
|
128 |
+
else:
|
129 |
+
lc_messages.append(AIMessage(content=content))
|
130 |
+
|
131 |
+
lc_messages.append(HumanMessage(content=content_for_langchain))
|
132 |
+
|
133 |
+
try:
|
134 |
+
# First try with LangChain
|
135 |
+
if llm:
|
136 |
+
try:
|
137 |
+
try:
|
138 |
+
stream_iter = llm.stream(lc_messages)
|
139 |
+
partial = ""
|
140 |
+
for chunk in stream_iter:
|
141 |
+
if chunk is None:
|
142 |
+
continue
|
143 |
+
content = getattr(chunk, 'content', None)
|
144 |
+
if content is None:
|
145 |
+
continue
|
146 |
+
partial += content
|
147 |
+
yield partial
|
148 |
+
|
149 |
+
# If we got this far, streaming worked
|
150 |
+
return
|
151 |
+
except Exception as e:
|
152 |
+
print(f"Streaming failed: {e}. Falling back to non-streaming mode")
|
153 |
+
|
154 |
+
# Try non-streaming
|
155 |
+
try:
|
156 |
+
response = llm.invoke(lc_messages)
|
157 |
+
yield response.content
|
158 |
+
return
|
159 |
+
except Exception as e:
|
160 |
+
raise e
|
161 |
+
except Exception as e:
|
162 |
+
raise e
|
163 |
+
|
164 |
+
response_text = direct_api_call(
|
165 |
+
api_messages,
|
166 |
+
getenv("OPENROUTER_API_KEY"),
|
167 |
+
getenv("OPENROUTER_BASE_URL")
|
168 |
+
)
|
169 |
+
yield response_text
|
170 |
+
|
171 |
+
except Exception as e:
|
172 |
+
import traceback
|
173 |
+
error_trace = traceback.format_exc()
|
174 |
+
yield f"⚠️ Error al generar respuesta: {str(e)}. Intenta más tarde."
|
175 |
+
|
176 |
+
# Gradio interface
|
177 |
+
def process_message(message, chat_history, image):
|
178 |
+
if chat_history is None:
|
179 |
+
chat_history = []
|
180 |
+
if image is None:
|
181 |
+
chat_history.append({'role':'assistant','content':'Por favor sube una imagen.'})
|
182 |
+
return "", chat_history
|
183 |
+
chat_history.append({'role':'user','content':message})
|
184 |
+
chat_history.append({'role':'assistant','content':'⏳ Procesando...'})
|
185 |
+
yield "", chat_history
|
186 |
+
for chunk in generate_response(message, chat_history, image):
|
187 |
+
chat_history[-1]['content'] = chunk
|
188 |
+
yield "", chat_history
|
189 |
+
return "", chat_history
|
190 |
+
|
191 |
+
with gr.Blocks() as demo:
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column(scale=2):
|
194 |
+
chatbot = gr.Chatbot(type='messages', height=600)
|
195 |
+
msg = gr.Textbox(label="Mensaje", placeholder="Escribe tu pregunta...")
|
196 |
+
clear = gr.ClearButton([msg, chatbot])
|
197 |
+
with gr.Column(scale=1):
|
198 |
+
image_input = gr.Image(type="pil", label="Sube Imagen")
|
199 |
+
info = gr.Textbox(label="Info Imagen", interactive=False)
|
200 |
+
|
201 |
+
msg.submit(process_message, [msg, chatbot, image_input], [msg, chatbot])
|
202 |
+
image_input.change(lambda img: f"Tamaño: {img.size}" if img else "Sin imagen.", [image_input], [info])
|
203 |
+
|
204 |
+
demo.launch()
|
mcp_server.py
CHANGED
@@ -5,6 +5,7 @@ from src.utils.visualize_image import visualize_base64_image
|
|
5 |
from src.utils.generate_image import generate_image
|
6 |
from src.utils.apply_filter import apply_filter
|
7 |
from src.utils.add_text import add_text_to_image
|
|
|
8 |
from src.utils.watermark import add_watermark, remove_watermark
|
9 |
from src.utils.describe import describe_image
|
10 |
from src.utils.compress import compress_image
|
|
|
5 |
from src.utils.generate_image import generate_image
|
6 |
from src.utils.apply_filter import apply_filter
|
7 |
from src.utils.add_text import add_text_to_image
|
8 |
+
from src.utils.resize_image import resize_image
|
9 |
from src.utils.watermark import add_watermark, remove_watermark
|
10 |
from src.utils.describe import describe_image
|
11 |
from src.utils.compress import compress_image
|
src/utils/change_format.py
CHANGED
@@ -2,8 +2,9 @@ from PIL import Image
|
|
2 |
from io import BytesIO
|
3 |
import requests
|
4 |
import base64
|
|
|
5 |
|
6 |
-
def change_format(
|
7 |
"""
|
8 |
Change the format of an image from a URL to the specified target format.
|
9 |
|
@@ -15,18 +16,30 @@ def change_format(image_url: str, target_format: str) -> str:
|
|
15 |
The image converted to the target format as a base64-encoded string.
|
16 |
"""
|
17 |
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
24 |
# Convert the image to the target format
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from io import BytesIO
|
3 |
import requests
|
4 |
import base64
|
5 |
+
from typing import Union
|
6 |
|
7 |
+
def change_format(image: Union[str, BytesIO], target_format: str) -> str:
|
8 |
"""
|
9 |
Change the format of an image from a URL to the specified target format.
|
10 |
|
|
|
16 |
The image converted to the target format as a base64-encoded string.
|
17 |
"""
|
18 |
|
19 |
+
if not isinstance(image, BytesIO):
|
20 |
+
response = requests.get(image, timeout=30)
|
21 |
+
response.raise_for_status()
|
22 |
|
23 |
+
# Open the image from bytes
|
24 |
+
img = Image.open(BytesIO(response.content))
|
25 |
|
26 |
# Convert the image to the target format
|
27 |
+
output = BytesIO()
|
28 |
+
img.save(output, format=target_format)
|
29 |
+
output.seek(0)
|
30 |
+
|
31 |
+
# Convert to base64 string for JSON serialization
|
32 |
+
encoded_image = base64.b64encode(output.getvalue()).decode('utf-8')
|
33 |
+
|
34 |
+
return encoded_image # Return base64 encoded string that can be serialized to JSON
|
35 |
+
else:
|
36 |
+
img = Image.open(image)
|
37 |
+
|
38 |
+
output = BytesIO()
|
39 |
+
img.save(output, format=target_format)
|
40 |
+
output.seek(0)
|
41 |
+
|
42 |
+
# Convert to base64 string for JSON serialization
|
43 |
+
encoded_image = base64.b64encode(output.getvalue()).decode('utf-8')
|
44 |
+
|
45 |
+
return encoded_image
|
src/utils/resize_image.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from io import BytesIO
|
3 |
+
import requests
|
4 |
+
import base64
|
5 |
+
from typing import Union, Tuple
|
6 |
+
|
7 |
+
def resize_image(image_input: Union[str, BytesIO], target_size: Tuple[int, int], return_format: str = "base64") -> str:
|
8 |
+
"""
|
9 |
+
Resize an image to the target size while maintaining aspect ratio.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
image_input: URL, file path, base64 string, or BytesIO object
|
13 |
+
target_size: Tuple (width, height) for the target size
|
14 |
+
return_format: Format to return the image in ("base64" or "pil")
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
Base64 encoded string of the resized image or PIL Image object
|
18 |
+
"""
|
19 |
+
# Convert input to PIL Image
|
20 |
+
if isinstance(image_input, str):
|
21 |
+
if image_input.startswith(('http://', 'https://')):
|
22 |
+
# It's a URL
|
23 |
+
response = requests.get(image_input, timeout=10)
|
24 |
+
response.raise_for_status()
|
25 |
+
image = Image.open(BytesIO(response.content))
|
26 |
+
elif image_input.startswith('data:image'):
|
27 |
+
# It's a base64 data URI
|
28 |
+
base64_data = image_input.split(',')[1]
|
29 |
+
image = Image.open(BytesIO(base64.b64decode(base64_data)))
|
30 |
+
elif ';base64,' not in image_input and len(image_input) > 500:
|
31 |
+
# Likely a raw base64 string
|
32 |
+
image = Image.open(BytesIO(base64.b64decode(image_input)))
|
33 |
+
else:
|
34 |
+
# Assume it's a file path
|
35 |
+
image = Image.open(image_input)
|
36 |
+
elif isinstance(image_input, BytesIO):
|
37 |
+
image = Image.open(image_input)
|
38 |
+
else:
|
39 |
+
raise ValueError("Unsupported image input type")
|
40 |
+
|
41 |
+
# Calculate the aspect ratio
|
42 |
+
aspect_ratio = min(target_size[0] / image.width, target_size[1] / image.height)
|
43 |
+
|
44 |
+
# Calculate new size
|
45 |
+
new_size = (int(image.width * aspect_ratio), int(image.height * aspect_ratio))
|
46 |
+
|
47 |
+
# Resize the image using the proper resampling filter
|
48 |
+
resized_image = image.resize(new_size, Image.LANCZOS)
|
49 |
+
|
50 |
+
# Return in requested format
|
51 |
+
if return_format.lower() == "base64":
|
52 |
+
buffer = BytesIO()
|
53 |
+
resized_image.save(buffer, format="PNG")
|
54 |
+
return base64.b64encode(buffer.getvalue()).decode('utf-8')
|
55 |
+
else:
|
56 |
+
return resized_image
|