Merge branch 'test'
Browse files- agent_test.py +240 -0
- gradio_interface/app.py +201 -4
agent_test.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import base64
|
5 |
+
from typing import List, Dict, Any, Union
|
6 |
+
from contextlib import AsyncExitStack
|
7 |
+
from io import BytesIO
|
8 |
+
from PIL import Image
|
9 |
+
import gradio as gr
|
10 |
+
from gradio.components.chatbot import ChatMessage
|
11 |
+
from mcp import ClientSession, StdioServerParameters
|
12 |
+
from mcp.client.stdio import stdio_client
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
from langchain_openai import ChatOpenAI
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
loop = asyncio.new_event_loop()
|
19 |
+
asyncio.set_event_loop(loop)
|
20 |
+
|
21 |
+
class MCPClientWrapper:
|
22 |
+
def __init__(self):
|
23 |
+
self.session = None
|
24 |
+
self.exit_stack = None
|
25 |
+
self.mistral = ChatOpenAI(model_name="mistralai/mistral-small", temperature=0.7, openai_api_key=os.getenv("OPENROUTER_API_KEY"))
|
26 |
+
self.tools = []
|
27 |
+
|
28 |
+
def connect(self, server_path: str) -> str:
|
29 |
+
return loop.run_until_complete(self._connect(server_path))
|
30 |
+
|
31 |
+
async def _connect(self, server_path: str) -> str:
|
32 |
+
if self.exit_stack:
|
33 |
+
await self.exit_stack.aclose()
|
34 |
+
|
35 |
+
self.exit_stack = AsyncExitStack()
|
36 |
+
|
37 |
+
is_python = server_path.endswith('.py')
|
38 |
+
command = "python" if is_python else "node"
|
39 |
+
|
40 |
+
server_params = StdioServerParameters(
|
41 |
+
command=command,
|
42 |
+
args=[server_path],
|
43 |
+
env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
|
44 |
+
)
|
45 |
+
|
46 |
+
stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
|
47 |
+
self.stdio, self.write = stdio_transport
|
48 |
+
|
49 |
+
self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
|
50 |
+
await self.session.initialize()
|
51 |
+
|
52 |
+
response = await self.session.list_tools()
|
53 |
+
self.tools = [{
|
54 |
+
"name": tool.name,
|
55 |
+
"description": tool.description,
|
56 |
+
"input_schema": tool.inputSchema
|
57 |
+
} for tool in response.tools]
|
58 |
+
|
59 |
+
tool_names = [tool["name"] for tool in self.tools]
|
60 |
+
return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"
|
61 |
+
|
62 |
+
def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
|
63 |
+
if not self.session:
|
64 |
+
return history + [
|
65 |
+
{"role": "user", "content": message},
|
66 |
+
{"role": "assistant", "content": "Please connect to an MCP server first."}
|
67 |
+
], gr.Textbox(value="")
|
68 |
+
|
69 |
+
new_messages = loop.run_until_complete(self._process_query(message, history))
|
70 |
+
return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
|
71 |
+
|
72 |
+
async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
|
73 |
+
claude_messages = []
|
74 |
+
for msg in history:
|
75 |
+
if isinstance(msg, ChatMessage):
|
76 |
+
role, content = msg.role, msg.content
|
77 |
+
else:
|
78 |
+
role, content = msg.get("role"), msg.get("content")
|
79 |
+
|
80 |
+
if role in ["user", "assistant", "system"]:
|
81 |
+
claude_messages.append({"role": role, "content": content})
|
82 |
+
|
83 |
+
claude_messages.append({"role": "user", "content": message})
|
84 |
+
|
85 |
+
response = self.mistral.messages.create(
|
86 |
+
model="claude-3-5-sonnet-20241022",
|
87 |
+
max_tokens=1000,
|
88 |
+
messages=claude_messages,
|
89 |
+
tools=self.tools
|
90 |
+
)
|
91 |
+
|
92 |
+
result_messages = []
|
93 |
+
|
94 |
+
for content in response.content:
|
95 |
+
if content.type == 'text':
|
96 |
+
result_messages.append({
|
97 |
+
"role": "assistant",
|
98 |
+
"content": content.text
|
99 |
+
})
|
100 |
+
|
101 |
+
elif content.type == 'tool_use':
|
102 |
+
tool_name = content.name
|
103 |
+
tool_args = content.input
|
104 |
+
|
105 |
+
result_messages.append({
|
106 |
+
"role": "assistant",
|
107 |
+
"content": f"I'll use the {tool_name} tool to help answer your question.",
|
108 |
+
"metadata": {
|
109 |
+
"title": f"Using tool: {tool_name}",
|
110 |
+
"log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
|
111 |
+
"status": "pending",
|
112 |
+
"id": f"tool_call_{tool_name}"
|
113 |
+
}
|
114 |
+
})
|
115 |
+
|
116 |
+
result_messages.append({
|
117 |
+
"role": "assistant",
|
118 |
+
"content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
|
119 |
+
"metadata": {
|
120 |
+
"parent_id": f"tool_call_{tool_name}",
|
121 |
+
"id": f"params_{tool_name}",
|
122 |
+
"title": "Tool Parameters"
|
123 |
+
}
|
124 |
+
})
|
125 |
+
|
126 |
+
result = await self.session.call_tool(tool_name, tool_args)
|
127 |
+
|
128 |
+
if result_messages and "metadata" in result_messages[-2]:
|
129 |
+
result_messages[-2]["metadata"]["status"] = "done"
|
130 |
+
|
131 |
+
result_messages.append({
|
132 |
+
"role": "assistant",
|
133 |
+
"content": "Here are the results from the tool:",
|
134 |
+
"metadata": {
|
135 |
+
"title": f"Tool Result for {tool_name}",
|
136 |
+
"status": "done",
|
137 |
+
"id": f"result_{tool_name}"
|
138 |
+
}
|
139 |
+
})
|
140 |
+
|
141 |
+
result_content = result.content
|
142 |
+
if isinstance(result_content, list):
|
143 |
+
result_content = "\n".join(str(item) for item in result_content)
|
144 |
+
|
145 |
+
try:
|
146 |
+
result_json = json.loads(result_content)
|
147 |
+
if isinstance(result_json, dict) and "type" in result_json:
|
148 |
+
if result_json["type"] == "image" and "url" in result_json:
|
149 |
+
result_messages.append({
|
150 |
+
"role": "assistant",
|
151 |
+
"content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
|
152 |
+
"metadata": {
|
153 |
+
"parent_id": f"result_{tool_name}",
|
154 |
+
"id": f"image_{tool_name}",
|
155 |
+
"title": "Generated Image"
|
156 |
+
}
|
157 |
+
})
|
158 |
+
else:
|
159 |
+
result_messages.append({
|
160 |
+
"role": "assistant",
|
161 |
+
"content": "```\n" + result_content + "\n```",
|
162 |
+
"metadata": {
|
163 |
+
"parent_id": f"result_{tool_name}",
|
164 |
+
"id": f"raw_result_{tool_name}",
|
165 |
+
"title": "Raw Output"
|
166 |
+
}
|
167 |
+
})
|
168 |
+
except:
|
169 |
+
result_messages.append({
|
170 |
+
"role": "assistant",
|
171 |
+
"content": "```\n" + result_content + "\n```",
|
172 |
+
"metadata": {
|
173 |
+
"parent_id": f"result_{tool_name}",
|
174 |
+
"id": f"raw_result_{tool_name}",
|
175 |
+
"title": "Raw Output"
|
176 |
+
}
|
177 |
+
})
|
178 |
+
|
179 |
+
claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
|
180 |
+
next_response = self.mistral.messages.create(
|
181 |
+
model="claude-3-5-sonnet-20241022",
|
182 |
+
max_tokens=1000,
|
183 |
+
messages=claude_messages,
|
184 |
+
)
|
185 |
+
|
186 |
+
if next_response.content and next_response.content[0].type == 'text':
|
187 |
+
result_messages.append({
|
188 |
+
"role": "assistant",
|
189 |
+
"content": next_response.content[0].text
|
190 |
+
})
|
191 |
+
|
192 |
+
return result_messages
|
193 |
+
|
194 |
+
client = MCPClientWrapper()
|
195 |
+
|
196 |
+
def gradio_interface():
|
197 |
+
with gr.Blocks(title="MCP Weather Client") as demo:
|
198 |
+
gr.Markdown("# MCP Weather Assistant")
|
199 |
+
gr.Markdown("Connect to your MCP weather server and chat with the assistant")
|
200 |
+
|
201 |
+
with gr.Row(equal_height=True):
|
202 |
+
with gr.Column(scale=4):
|
203 |
+
server_path = gr.Textbox(
|
204 |
+
label="Server Script Path",
|
205 |
+
placeholder="Enter path to server script (e.g., weather.py)",
|
206 |
+
value="gradio_mcp_server.py"
|
207 |
+
)
|
208 |
+
with gr.Column(scale=1):
|
209 |
+
connect_btn = gr.Button("Connect")
|
210 |
+
|
211 |
+
status = gr.Textbox(label="Connection Status", interactive=False)
|
212 |
+
|
213 |
+
chatbot = gr.Chatbot(
|
214 |
+
value=[],
|
215 |
+
height=500,
|
216 |
+
type="messages",
|
217 |
+
show_copy_button=True,
|
218 |
+
avatar_images=("👤", "🤖")
|
219 |
+
)
|
220 |
+
|
221 |
+
with gr.Row(equal_height=True):
|
222 |
+
msg = gr.Textbox(
|
223 |
+
label="Your Question",
|
224 |
+
placeholder="Ask about weather or alerts (e.g., What's the weather in New York?)",
|
225 |
+
scale=4
|
226 |
+
)
|
227 |
+
clear_btn = gr.Button("Clear Chat", scale=1)
|
228 |
+
|
229 |
+
connect_btn.click(client.connect, inputs=server_path, outputs=status)
|
230 |
+
msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
|
231 |
+
clear_btn.click(lambda: [], None, chatbot)
|
232 |
+
|
233 |
+
return demo
|
234 |
+
|
235 |
+
if __name__ == "__main__":
|
236 |
+
if not os.getenv("OPENROUTER_API_KEY"):
|
237 |
+
print("Warning: OPENROUTER_API_KEY not found in environment. Please set it in your .env file.")
|
238 |
+
|
239 |
+
interface = gradio_interface()
|
240 |
+
interface.launch(debug=True)
|
gradio_interface/app.py
CHANGED
@@ -1,7 +1,204 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from os import getenv
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import requests
|
8 |
+
import socket
|
9 |
+
import logging
|
10 |
+
import json
|
11 |
|
12 |
+
from langchain_openai import ChatOpenAI
|
13 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
14 |
+
from langchain_core.callbacks import StreamingStdOutCallbackHandler
|
15 |
|
16 |
+
# Load environment
|
17 |
+
dotenv_path = os.path.join(os.path.dirname(__file__), '.env')
|
18 |
+
load_dotenv(dotenv_path=dotenv_path)
|
19 |
+
|
20 |
+
# Connectivity test
|
21 |
+
def test_connectivity(url="https://openrouter.helicone.ai/api/v1"):
|
22 |
+
try:
|
23 |
+
return requests.get(url, timeout=5).status_code == 200
|
24 |
+
except (requests.RequestException, socket.error):
|
25 |
+
return False
|
26 |
+
|
27 |
+
# Helper to make direct API calls to OpenRouter when LangChain fails
|
28 |
+
def direct_api_call(messages, api_key, base_url):
|
29 |
+
headers = {
|
30 |
+
"Content-Type": "application/json",
|
31 |
+
"Authorization": f"Bearer {api_key}",
|
32 |
+
"HTTP-Referer": "https://your-app-domain.com", # Add your domain
|
33 |
+
"X-Title": "Image Analysis App"
|
34 |
+
}
|
35 |
+
|
36 |
+
if getenv("HELICONE_API_KEY"):
|
37 |
+
headers["Helicone-Auth"] = f"Bearer {getenv('HELICONE_API_KEY')}"
|
38 |
+
|
39 |
+
payload = {
|
40 |
+
"model": "google/gemini-flash-1.5",
|
41 |
+
"messages": messages,
|
42 |
+
"stream": False,
|
43 |
+
}
|
44 |
+
|
45 |
+
try:
|
46 |
+
response = requests.post(
|
47 |
+
f"{base_url}/chat/completions",
|
48 |
+
headers=headers,
|
49 |
+
json=payload,
|
50 |
+
timeout=30
|
51 |
+
)
|
52 |
+
response.raise_for_status()
|
53 |
+
return response.json()["choices"][0]["message"]["content"]
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error: {str(e)}"
|
56 |
+
|
57 |
+
# Initialize LLM with streaming and retry logic
|
58 |
+
def init_llm():
|
59 |
+
if not test_connectivity():
|
60 |
+
raise RuntimeError("No hay conexión a OpenRouter. Verifica red y claves.")
|
61 |
+
return ChatOpenAI(
|
62 |
+
openai_api_key=getenv("OPENROUTER_API_KEY"),
|
63 |
+
openai_api_base=getenv("OPENROUTER_BASE_URL"),
|
64 |
+
model_name="google/gemini-flash-1.5",
|
65 |
+
streaming=True,
|
66 |
+
callbacks=[StreamingStdOutCallbackHandler()],
|
67 |
+
model_kwargs={
|
68 |
+
"extra_headers": {"Helicone-Auth": f"Bearer {getenv('HELICONE_API_KEY')}"}
|
69 |
+
},
|
70 |
+
)
|
71 |
+
|
72 |
+
# Try to initialize LLM but handle failures gracefully
|
73 |
+
try:
|
74 |
+
llm = init_llm()
|
75 |
+
except Exception as e:
|
76 |
+
llm = None
|
77 |
+
|
78 |
+
# Helpers
|
79 |
+
def encode_image_to_base64(pil_image):
|
80 |
+
buffer = BytesIO()
|
81 |
+
pil_image.save(buffer, format="PNG")
|
82 |
+
return base64.b64encode(buffer.getvalue()).decode()
|
83 |
+
|
84 |
+
# Core logic
|
85 |
+
def generate_response(message, chat_history, image):
|
86 |
+
# Convert chat history to standard format
|
87 |
+
formatted_history = []
|
88 |
+
for msg in chat_history:
|
89 |
+
role = msg.get('role')
|
90 |
+
content = msg.get('content')
|
91 |
+
if role == 'user':
|
92 |
+
formatted_history.append({"role": "user", "content": content})
|
93 |
+
else:
|
94 |
+
formatted_history.append({"role": "assistant", "content": content})
|
95 |
+
|
96 |
+
# Prepare system message
|
97 |
+
system_msg = {"role": "system", "content": "You are an expert image analysis assistant. Answer succinctly."}
|
98 |
+
|
99 |
+
# Prepare the latest message with image if provided
|
100 |
+
if image:
|
101 |
+
base64_image = encode_image_to_base64(image)
|
102 |
+
|
103 |
+
# Format for direct API call (OpenRouter/OpenAI format)
|
104 |
+
api_messages = [system_msg] + formatted_history + [{
|
105 |
+
"role": "user",
|
106 |
+
"content": [
|
107 |
+
{"type": "text", "text": message},
|
108 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
109 |
+
]
|
110 |
+
}]
|
111 |
+
|
112 |
+
# For LangChain format
|
113 |
+
content_for_langchain = [
|
114 |
+
{"type": "text", "text": message},
|
115 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
|
116 |
+
]
|
117 |
+
else:
|
118 |
+
api_messages = [system_msg] + formatted_history + [{"role": "user", "content": message}]
|
119 |
+
content_for_langchain = message
|
120 |
+
|
121 |
+
# Build LangChain messages
|
122 |
+
lc_messages = [HumanMessage(content="You are an expert image analysis assistant. Answer succinctly.")]
|
123 |
+
for msg in chat_history:
|
124 |
+
role = msg.get('role')
|
125 |
+
content = msg.get('content')
|
126 |
+
if role == 'user':
|
127 |
+
lc_messages.append(HumanMessage(content=content))
|
128 |
+
else:
|
129 |
+
lc_messages.append(AIMessage(content=content))
|
130 |
+
|
131 |
+
lc_messages.append(HumanMessage(content=content_for_langchain))
|
132 |
+
|
133 |
+
try:
|
134 |
+
# First try with LangChain
|
135 |
+
if llm:
|
136 |
+
try:
|
137 |
+
try:
|
138 |
+
stream_iter = llm.stream(lc_messages)
|
139 |
+
partial = ""
|
140 |
+
for chunk in stream_iter:
|
141 |
+
if chunk is None:
|
142 |
+
continue
|
143 |
+
content = getattr(chunk, 'content', None)
|
144 |
+
if content is None:
|
145 |
+
continue
|
146 |
+
partial += content
|
147 |
+
yield partial
|
148 |
+
|
149 |
+
# If we got this far, streaming worked
|
150 |
+
return
|
151 |
+
except Exception as e:
|
152 |
+
print(f"Streaming failed: {e}. Falling back to non-streaming mode")
|
153 |
+
|
154 |
+
# Try non-streaming
|
155 |
+
try:
|
156 |
+
response = llm.invoke(lc_messages)
|
157 |
+
yield response.content
|
158 |
+
return
|
159 |
+
except Exception as e:
|
160 |
+
raise e
|
161 |
+
except Exception as e:
|
162 |
+
raise e
|
163 |
+
|
164 |
+
response_text = direct_api_call(
|
165 |
+
api_messages,
|
166 |
+
getenv("OPENROUTER_API_KEY"),
|
167 |
+
getenv("OPENROUTER_BASE_URL")
|
168 |
+
)
|
169 |
+
yield response_text
|
170 |
+
|
171 |
+
except Exception as e:
|
172 |
+
import traceback
|
173 |
+
error_trace = traceback.format_exc()
|
174 |
+
yield f"⚠️ Error al generar respuesta: {str(e)}. Intenta más tarde."
|
175 |
+
|
176 |
+
# Gradio interface
|
177 |
+
def process_message(message, chat_history, image):
|
178 |
+
if chat_history is None:
|
179 |
+
chat_history = []
|
180 |
+
if image is None:
|
181 |
+
chat_history.append({'role':'assistant','content':'Por favor sube una imagen.'})
|
182 |
+
return "", chat_history
|
183 |
+
chat_history.append({'role':'user','content':message})
|
184 |
+
chat_history.append({'role':'assistant','content':'⏳ Procesando...'})
|
185 |
+
yield "", chat_history
|
186 |
+
for chunk in generate_response(message, chat_history, image):
|
187 |
+
chat_history[-1]['content'] = chunk
|
188 |
+
yield "", chat_history
|
189 |
+
return "", chat_history
|
190 |
+
|
191 |
+
with gr.Blocks() as demo:
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column(scale=2):
|
194 |
+
chatbot = gr.Chatbot(type='messages', height=600)
|
195 |
+
msg = gr.Textbox(label="Mensaje", placeholder="Escribe tu pregunta...")
|
196 |
+
clear = gr.ClearButton([msg, chatbot])
|
197 |
+
with gr.Column(scale=1):
|
198 |
+
image_input = gr.Image(type="pil", label="Sube Imagen")
|
199 |
+
info = gr.Textbox(label="Info Imagen", interactive=False)
|
200 |
+
|
201 |
+
msg.submit(process_message, [msg, chatbot, image_input], [msg, chatbot])
|
202 |
+
image_input.change(lambda img: f"Tamaño: {img.size}" if img else "Sin imagen.", [image_input], [info])
|
203 |
+
|
204 |
+
demo.launch()
|