SlideDeck-AI / deploy_kokora_app_cpu_modal_labs.py
Revanth-ml's picture
Create deploy_kokora_app_cpu_modal_labs.py
4be7077 verified
raw
history blame
3.13 kB
import io
import modal
from fastapi import FastAPI, Request, status
from fastapi.responses import Response, JSONResponse
app = modal.App("kokoro-tts-api-cpu")
image = (
modal.Image.debian_slim(python_version="3.11")
.apt_install("git", "libsndfile1", "espeak-ng")
.pip_install(
"torch==2.3.0",
"soundfile",
"kokoro>=0.9.4",
"fastapi",
"numpy"
).run_commands(
"pip install --force-reinstall --no-binary soundfile soundfile",)
.env({"HF_HOME": "/cache"})
)
CACHE_PATH = "/cache"
hf_cache = modal.Volume.from_name("kokoro-hf-cache", create_if_missing=True)
web_app = FastAPI(
title="Kokoro TTS API",
description="A serverless API for generating speech from text using the Kokoro model.",
version="1.0.0"
)
VOICE_PREFIX_MAP = {"en": "a", "us": "a", "gb": "b", "uk": "b", "es": "e", "fr": "f"}
def voice_to_lang(voice: str) -> str:
prefix = voice.split("_", 1)[0].lower()
return prefix if prefix in "abehijpz" else VOICE_PREFIX_MAP.get(prefix, "a")
@app.function(
image=image,
volumes={CACHE_PATH: hf_cache},
cpu=4,
timeout=180,
container_idle_timeout=300,
)
@modal.asgi_app()
def fastapi_app():
"""
This function hosts our FastAPI application on Modal.
"""
print("πŸš€ Kokoro TTS API container is starting up...")
@web_app.post("/",
summary="Synthesize Speech",
description="""
Converts text to speech.
- **text**: The string of text to synthesize.
- **voice**: (Optional) The voice ID to use (e.g., "a_heart", "b_female", "e_male"). Defaults to "a_heart".
"""
)
async def tts_endpoint(request: Request):
try:
body = await request.json()
text_to_synthesize = body["text"]
voice_id = body.get("voice", "af_heart")
except Exception:
return JSONResponse(
status_code=status.HTTP_400_BAD_REQUEST,
content={"error": "Invalid request. Body must be JSON with a 'text' key."},
)
print(f"Synthesizing text: '{text_to_synthesize[:50]}...' with voice: {voice_id}")
from kokoro import KPipeline
import soundfile as sf
import torch
import numpy as np
torch.hub.set_dir(CACHE_PATH)
lang = voice_to_lang(voice_id)
pipe = KPipeline(lang_code=lang)
all_chunks = []
for _, _, chunk in pipe(text_to_synthesize, voice=voice_id):
all_chunks.append(chunk)
if not all_chunks:
return JSONResponse(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
content={"error": "TTS generation failed to produce audio."},
)
full_audio = np.concatenate(all_chunks)
buffer = io.BytesIO()
sf.write(buffer, full_audio, 24_000, format="WAV", subtype="PCM_16")
buffer.seek(0)
hf_cache.commit()
print("Synthesis complete. Returning audio file.")
return Response(content=buffer.getvalue(), media_type="audio/wav")
return web_app