Create deploy_kokora_app_cpu_modal_labs.py
Browse files
deploy_kokora_app_cpu_modal_labs.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import modal
|
3 |
+
from fastapi import FastAPI, Request, status
|
4 |
+
from fastapi.responses import Response, JSONResponse
|
5 |
+
|
6 |
+
app = modal.App("kokoro-tts-api-cpu")
|
7 |
+
|
8 |
+
|
9 |
+
image = (
|
10 |
+
modal.Image.debian_slim(python_version="3.11")
|
11 |
+
.apt_install("git", "libsndfile1", "espeak-ng")
|
12 |
+
.pip_install(
|
13 |
+
"torch==2.3.0",
|
14 |
+
"soundfile",
|
15 |
+
"kokoro>=0.9.4",
|
16 |
+
"fastapi",
|
17 |
+
"numpy"
|
18 |
+
).run_commands(
|
19 |
+
"pip install --force-reinstall --no-binary soundfile soundfile",)
|
20 |
+
.env({"HF_HOME": "/cache"})
|
21 |
+
)
|
22 |
+
|
23 |
+
CACHE_PATH = "/cache"
|
24 |
+
hf_cache = modal.Volume.from_name("kokoro-hf-cache", create_if_missing=True)
|
25 |
+
|
26 |
+
web_app = FastAPI(
|
27 |
+
title="Kokoro TTS API",
|
28 |
+
description="A serverless API for generating speech from text using the Kokoro model.",
|
29 |
+
version="1.0.0"
|
30 |
+
)
|
31 |
+
|
32 |
+
VOICE_PREFIX_MAP = {"en": "a", "us": "a", "gb": "b", "uk": "b", "es": "e", "fr": "f"}
|
33 |
+
def voice_to_lang(voice: str) -> str:
|
34 |
+
prefix = voice.split("_", 1)[0].lower()
|
35 |
+
return prefix if prefix in "abehijpz" else VOICE_PREFIX_MAP.get(prefix, "a")
|
36 |
+
|
37 |
+
@app.function(
|
38 |
+
image=image,
|
39 |
+
volumes={CACHE_PATH: hf_cache},
|
40 |
+
cpu=4,
|
41 |
+
timeout=180,
|
42 |
+
container_idle_timeout=300,
|
43 |
+
)
|
44 |
+
@modal.asgi_app()
|
45 |
+
def fastapi_app():
|
46 |
+
"""
|
47 |
+
This function hosts our FastAPI application on Modal.
|
48 |
+
"""
|
49 |
+
print("🚀 Kokoro TTS API container is starting up...")
|
50 |
+
|
51 |
+
@web_app.post("/",
|
52 |
+
summary="Synthesize Speech",
|
53 |
+
description="""
|
54 |
+
Converts text to speech.
|
55 |
+
- **text**: The string of text to synthesize.
|
56 |
+
- **voice**: (Optional) The voice ID to use (e.g., "a_heart", "b_female", "e_male"). Defaults to "a_heart".
|
57 |
+
"""
|
58 |
+
)
|
59 |
+
async def tts_endpoint(request: Request):
|
60 |
+
try:
|
61 |
+
body = await request.json()
|
62 |
+
text_to_synthesize = body["text"]
|
63 |
+
voice_id = body.get("voice", "af_heart")
|
64 |
+
except Exception:
|
65 |
+
return JSONResponse(
|
66 |
+
status_code=status.HTTP_400_BAD_REQUEST,
|
67 |
+
content={"error": "Invalid request. Body must be JSON with a 'text' key."},
|
68 |
+
)
|
69 |
+
|
70 |
+
print(f"Synthesizing text: '{text_to_synthesize[:50]}...' with voice: {voice_id}")
|
71 |
+
|
72 |
+
from kokoro import KPipeline
|
73 |
+
import soundfile as sf
|
74 |
+
import torch
|
75 |
+
import numpy as np
|
76 |
+
|
77 |
+
torch.hub.set_dir(CACHE_PATH)
|
78 |
+
lang = voice_to_lang(voice_id)
|
79 |
+
pipe = KPipeline(lang_code=lang)
|
80 |
+
|
81 |
+
|
82 |
+
all_chunks = []
|
83 |
+
for _, _, chunk in pipe(text_to_synthesize, voice=voice_id):
|
84 |
+
all_chunks.append(chunk)
|
85 |
+
|
86 |
+
if not all_chunks:
|
87 |
+
return JSONResponse(
|
88 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
89 |
+
content={"error": "TTS generation failed to produce audio."},
|
90 |
+
)
|
91 |
+
|
92 |
+
full_audio = np.concatenate(all_chunks)
|
93 |
+
|
94 |
+
buffer = io.BytesIO()
|
95 |
+
sf.write(buffer, full_audio, 24_000, format="WAV", subtype="PCM_16")
|
96 |
+
|
97 |
+
buffer.seek(0)
|
98 |
+
|
99 |
+
hf_cache.commit()
|
100 |
+
print("Synthesis complete. Returning audio file.")
|
101 |
+
|
102 |
+
return Response(content=buffer.getvalue(), media_type="audio/wav")
|
103 |
+
|
104 |
+
return web_app
|