|
import math |
|
import requests |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import tempfile |
|
import os |
|
from config import NASA_FIRMS_MAP_KEY |
|
from datetime import datetime, timedelta |
|
from smolagents import tool |
|
from fpdf import FPDF |
|
|
|
|
|
@tool |
|
def get_coordinates(city: str) -> dict: |
|
"""Get latitude and longitude of a city using OpenStreetMap Nominatim API. |
|
|
|
Args: |
|
city: Name of the city to get coordinates for |
|
|
|
Returns: |
|
Dict with city name, latitude, longitude, or error message |
|
""" |
|
url = "https://nominatim.openstreetmap.org/search" |
|
params = {"q": city, "format": "json", "limit": 1} |
|
headers = {"User-Agent": "ClimateRiskTool/1.0"} |
|
try: |
|
response = requests.get(url, params=params, headers=headers, timeout=10) |
|
data = response.json() |
|
if not data: |
|
return {"error": f"City '{city}' not found"} |
|
return { |
|
"city": city, |
|
"latitude": float(data[0]["lat"]), |
|
"longitude": float(data[0]["lon"]), |
|
} |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def get_weather_forecast(lat: float, lon: float) -> dict: |
|
"""Get weather forecast data for risk analysis. |
|
|
|
Args: |
|
lat: Latitude coordinate |
|
lon: Longitude coordinate |
|
|
|
Returns: |
|
Dict with weather forecast data or error message |
|
""" |
|
url = "https://api.open-meteo.com/v1/forecast" |
|
params = { |
|
"latitude": lat, |
|
"longitude": lon, |
|
"daily": [ |
|
"temperature_2m_max", |
|
"temperature_2m_min", |
|
"precipitation_sum", |
|
"wind_speed_10m_max", |
|
"wind_gusts_10m_max", |
|
"relative_humidity_2m_min", |
|
], |
|
"forecast_days": 7, |
|
"timezone": "auto", |
|
} |
|
try: |
|
response = requests.get(url, params=params, timeout=10) |
|
return response.json() |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def get_flood_data(lat: float, lon: float) -> dict: |
|
"""Get flood forecast data. |
|
|
|
Args: |
|
lat: Latitude coordinate |
|
lon: Longitude coordinate |
|
|
|
Returns: |
|
Dict with flood forecast data or error message |
|
""" |
|
url = "https://flood-api.open-meteo.com/v1/flood" |
|
params = { |
|
"latitude": lat, |
|
"longitude": lon, |
|
"daily": ["river_discharge", "river_discharge_mean", "river_discharge_max"], |
|
"forecast_days": 7, |
|
} |
|
try: |
|
response = requests.get(url, params=params, timeout=10) |
|
return response.json() |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def get_earthquake_data( |
|
lat: float, lon: float, radius_km: float = 100, days: int = 30 |
|
) -> dict: |
|
"""Get raw earthquake data from USGS. |
|
|
|
Args: |
|
lat: Latitude coordinate |
|
lon: Longitude coordinate |
|
radius_km: Search radius in kilometers (default 100km) |
|
days: Number of days to look back (default 30 days) |
|
|
|
Returns: |
|
Dict with raw earthquake data from USGS |
|
""" |
|
url = "https://earthquake.usgs.gov/fdsnws/event/1/query" |
|
|
|
end_date = datetime.now() |
|
start_date = end_date - timedelta(days=days) |
|
|
|
params = { |
|
"format": "geojson", |
|
"starttime": start_date.strftime("%Y-%m-%d"), |
|
"endtime": end_date.strftime("%Y-%m-%d"), |
|
"latitude": lat, |
|
"longitude": lon, |
|
"maxradiuskm": radius_km, |
|
"minmagnitude": 1.0, |
|
"orderby": "time-desc", |
|
} |
|
|
|
try: |
|
response = requests.get(url, params=params, timeout=15) |
|
response.raise_for_status() |
|
data = response.json() |
|
|
|
earthquakes = [] |
|
for feature in data.get("features", []): |
|
props = feature["properties"] |
|
coords = feature["geometry"]["coordinates"] |
|
|
|
earthquakes.append( |
|
{ |
|
"magnitude": props.get("mag"), |
|
"place": props.get("place"), |
|
"time": props.get("time"), |
|
"depth": coords[2] if len(coords) > 2 else None, |
|
"latitude": coords[1], |
|
"longitude": coords[0], |
|
"alert": props.get("alert"), |
|
"significance": props.get("sig"), |
|
"event_type": props.get("type"), |
|
"title": props.get("title"), |
|
} |
|
) |
|
|
|
return { |
|
"earthquakes": earthquakes, |
|
"query_location": { |
|
"lat": lat, |
|
"lon": lon, |
|
"radius_km": radius_km, |
|
"days": days, |
|
}, |
|
"data_source": "USGS", |
|
} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def get_nasa_fire_data( |
|
lat: float, lon: float, radius_km: float = 50, days: int = 2 |
|
) -> dict: |
|
"""Get raw wildfire detection data from NASA FIRMS satellites. |
|
|
|
Args: |
|
lat: Latitude coordinate |
|
lon: Longitude coordinate |
|
radius_km: Search radius in kilometers (default 50km) |
|
days: Number of days to look back (default 2 days) |
|
|
|
Returns: |
|
Dict with raw fire detection data from NASA satellites |
|
""" |
|
if not NASA_FIRMS_MAP_KEY or NASA_FIRMS_MAP_KEY == "your-nasa-firms-api-key-here": |
|
return {"error": "NASA FIRMS API key not configured in .env file"} |
|
|
|
try: |
|
lat_offset = radius_km / 111.0 |
|
lon_offset = radius_km / (111.0 * abs(math.cos(math.radians(lat)))) |
|
bbox = f"{lat - lat_offset},{lon - lon_offset},{lat + lat_offset},{lon + lon_offset}" |
|
|
|
modis_url = f"https://firms.modaps.eosdis.nasa.gov/api/area/csv/{NASA_FIRMS_MAP_KEY}/MODIS_NRT/{bbox}/{days}" |
|
viirs_url = f"https://firms.modaps.eosdis.nasa.gov/api/area/csv/{NASA_FIRMS_MAP_KEY}/VIIRS_NOAA20_NRT/{bbox}/{days}" |
|
|
|
all_fires = [] |
|
|
|
try: |
|
modis_response = requests.get(modis_url, timeout=15) |
|
if modis_response.status_code == 200 and modis_response.text.strip(): |
|
all_fires.extend(_parse_nasa_csv(modis_response.text, "MODIS")) |
|
except: |
|
pass |
|
|
|
try: |
|
viirs_response = requests.get(viirs_url, timeout=15) |
|
if viirs_response.status_code == 200 and viirs_response.text.strip(): |
|
all_fires.extend(_parse_nasa_csv(viirs_response.text, "VIIRS")) |
|
except: |
|
pass |
|
|
|
return { |
|
"fires": all_fires, |
|
"query_location": { |
|
"lat": lat, |
|
"lon": lon, |
|
"radius_km": radius_km, |
|
"days": days, |
|
}, |
|
"data_source": "NASA_FIRMS", |
|
} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
def _parse_nasa_csv(csv_text: str, source: str) -> list: |
|
"""Parse NASA FIRMS CSV data. |
|
|
|
Args: |
|
csv_text: CSV text data from NASA FIRMS API |
|
source: Source identifier (MODIS or VIIRS) |
|
|
|
Returns: |
|
List of fire detection dictionaries |
|
""" |
|
fires = [] |
|
lines = csv_text.strip().split("\n") |
|
|
|
if len(lines) < 2: |
|
return fires |
|
|
|
for line in lines[1:]: |
|
try: |
|
values = line.split(",") |
|
if len(values) >= 9: |
|
fires.append( |
|
{ |
|
"latitude": float(values[0]), |
|
"longitude": float(values[1]), |
|
"brightness": float(values[2]) if values[2] else 0, |
|
"scan": float(values[3]) if values[3] else 0, |
|
"track": float(values[4]) if values[4] else 0, |
|
"acq_date": values[5], |
|
"acq_time": values[6], |
|
"satellite": values[7], |
|
"confidence": int(values[8]) if values[8].isdigit() else 50, |
|
"version": values[9] if len(values) > 9 else "", |
|
"bright_t31": ( |
|
float(values[10]) if len(values) > 10 and values[10] else 0 |
|
), |
|
"frp": ( |
|
float(values[11]) if len(values) > 11 and values[11] else 0 |
|
), |
|
"daynight": values[12] if len(values) > 12 else "", |
|
"source": source, |
|
} |
|
) |
|
except (ValueError, IndexError): |
|
continue |
|
|
|
return fires |
|
|
|
|
|
@tool |
|
def find_local_emergency_resources(lat: float, lon: float) -> dict: |
|
"""Find local emergency resources and contacts. |
|
|
|
Args: |
|
lat: Latitude coordinate |
|
lon: Longitude coordinate |
|
|
|
Returns: |
|
Dict with local emergency resources or error message |
|
""" |
|
try: |
|
query = f""" |
|
[out:json][timeout:15]; |
|
( |
|
node[amenity=hospital](around:10000,{lat},{lon}); |
|
node[amenity=fire_station](around:10000,{lat},{lon}); |
|
node[amenity=police](around:10000,{lat},{lon}); |
|
); |
|
out center meta; |
|
""" |
|
|
|
response = requests.post( |
|
"https://overpass-api.de/api/interpreter", data=query, timeout=20 |
|
) |
|
|
|
if response.status_code == 200: |
|
data = response.json() |
|
resources = [] |
|
|
|
for element in data.get("elements", [])[:5]: |
|
tags = element.get("tags", {}) |
|
resources.append( |
|
{ |
|
"name": tags.get("name", "Unnamed facility"), |
|
"type": tags.get("amenity", "unknown"), |
|
"latitude": element.get("lat", lat), |
|
"longitude": element.get("lon", lon), |
|
} |
|
) |
|
|
|
return {"local_resources": resources} |
|
|
|
return {"local_resources": []} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def generate_analysis_report( |
|
data: dict, filename: str = "climate_risk_report.pdf" |
|
) -> dict: |
|
"""Generate a consolidated analysis report with visualizations. |
|
|
|
Args: |
|
data: Consolidated data from various tools, expected to include: |
|
- weather forecast |
|
- flood data |
|
- earthquake data |
|
- fire data |
|
filename: Desired filename for the exported PDF report |
|
|
|
Returns: |
|
Dict with success message and file path or error |
|
""" |
|
try: |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
|
|
pdf = FPDF() |
|
pdf.set_auto_page_break(auto=True, margin=15) |
|
pdf.add_page() |
|
pdf.set_font("Arial", size=12) |
|
pdf.set_text_color(50, 50, 50) |
|
|
|
|
|
pdf.set_font("Arial", style="B", size=16) |
|
pdf.cell(0, 10, "Climate Risk Analysis Report", ln=True, align="C") |
|
pdf.ln(10) |
|
|
|
|
|
def save_plot(fig, plot_name): |
|
path = f"{temp_dir}/{plot_name}.png" |
|
fig.savefig(path) |
|
plt.close(fig) |
|
return path |
|
|
|
|
|
weather_data = data.get("weather_forecast", {}).get("daily", {}) |
|
if weather_data: |
|
dates = [ |
|
d for d in range(1, len(weather_data["temperature_2m_max"]) + 1) |
|
] |
|
weather_df = { |
|
"Day": dates, |
|
"Max Temperature (°C)": weather_data["temperature_2m_max"], |
|
"Min Temperature (°C)": weather_data["temperature_2m_min"], |
|
"Precipitation (mm)": weather_data["precipitation_sum"], |
|
} |
|
|
|
fig, ax = plt.subplots(figsize=(8, 5)) |
|
sns.lineplot( |
|
x="Day", |
|
y="Max Temperature (°C)", |
|
data=weather_df, |
|
ax=ax, |
|
label="Max Temp", |
|
color="red", |
|
) |
|
sns.lineplot( |
|
x="Day", |
|
y="Min Temperature (°C)", |
|
data=weather_df, |
|
ax=ax, |
|
label="Min Temp", |
|
color="blue", |
|
) |
|
sns.barplot( |
|
x="Day", |
|
y="Precipitation (mm)", |
|
data=weather_df, |
|
ax=ax, |
|
color="gray", |
|
alpha=0.5, |
|
) |
|
ax.set_title("Weather Forecast") |
|
ax.set_xlabel("Day") |
|
ax.set_ylabel("Values") |
|
ax.legend() |
|
|
|
weather_plot_path = save_plot(fig, "weather_plot") |
|
pdf.image(weather_plot_path, x=10, y=None, w=180) |
|
pdf.ln(10) |
|
|
|
|
|
earthquake_data = data.get("earthquake_data", {}).get("earthquakes", []) |
|
if earthquake_data: |
|
magnitudes = [ |
|
eq["magnitude"] for eq in earthquake_data if eq.get("magnitude") |
|
] |
|
depths = [eq["depth"] for eq in earthquake_data if eq.get("depth")] |
|
places = [eq["place"] for eq in earthquake_data] |
|
|
|
fig, ax = plt.subplots(figsize=(8, 5)) |
|
sns.scatterplot( |
|
x=depths, y=magnitudes, hue=places, ax=ax, palette="tab10", s=100 |
|
) |
|
ax.set_title("Earthquake Analysis") |
|
ax.set_xlabel("Depth (km)") |
|
ax.set_ylabel("Magnitude") |
|
ax.legend(bbox_to_anchor=(1.05, 1), loc="upper left") |
|
|
|
earthquake_plot_path = save_plot(fig, "earthquake_plot") |
|
pdf.image(earthquake_plot_path, x=10, y=None, w=180) |
|
pdf.ln(10) |
|
|
|
|
|
fire_data = data.get("fire_data", {}).get("fires", []) |
|
if fire_data: |
|
brightness = [fire["brightness"] for fire in fire_data] |
|
confidence = [fire["confidence"] for fire in fire_data] |
|
|
|
fig, ax = plt.subplots(figsize=(8, 5)) |
|
sns.histplot( |
|
brightness, |
|
bins=20, |
|
ax=ax, |
|
kde=True, |
|
color="orange", |
|
label="Brightness", |
|
) |
|
sns.histplot( |
|
confidence, |
|
bins=20, |
|
ax=ax, |
|
kde=True, |
|
color="green", |
|
alpha=0.5, |
|
label="Confidence", |
|
) |
|
ax.set_title("Wildfire Brightness vs Confidence") |
|
ax.set_xlabel("Value") |
|
ax.legend() |
|
|
|
fire_plot_path = save_plot(fig, "fire_plot") |
|
pdf.image(fire_plot_path, x=10, y=None, w=180) |
|
pdf.ln(10) |
|
|
|
|
|
pdf_output_path = os.path.join(temp_dir, filename) |
|
pdf.output(pdf_output_path) |
|
return {"success": True, "file_path": pdf_output_path} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def get_full_daily_forecast(lat: float, lon: float) -> dict: |
|
""" |
|
Get all available daily weather forecast parameters from Open-Meteo API. |
|
Args: |
|
lat: Latitude. |
|
lon: Longitude. |
|
Returns: |
|
Dict with all daily forecast data or error. |
|
""" |
|
daily_params = [ |
|
"temperature_2m_max", "temperature_2m_mean", "temperature_2m_min", |
|
"apparent_temperature_max", "apparent_temperature_mean", "apparent_temperature_min", |
|
"precipitation_sum", "rain_sum", "showers_sum", "snowfall_sum", |
|
"precipitation_hours", |
|
"precipitation_probability_max", "precipitation_probability_mean", "precipitation_probability_min", |
|
"weather_code", "sunrise", "sunset", |
|
"sunshine_duration", "daylight_duration", |
|
"wind_speed_10m_max", "wind_gusts_10m_max", "wind_direction_10m_dominant", |
|
"shortwave_radiation_sum", "et0_fao_evapotranspiration", |
|
"uv_index_max", "uv_index_clear_sky_max" |
|
] |
|
url = "https://api.open-meteo.com/v1/forecast" |
|
params = { |
|
"latitude": lat, |
|
"longitude": lon, |
|
"timezone": "auto", |
|
"daily": ",".join(daily_params) |
|
} |
|
try: |
|
response = requests.get(url, params=params, timeout=10) |
|
return response.json() |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def climate_change_data( |
|
lat: float, |
|
lon: float, |
|
start_date: str = "1950-01-01", |
|
end_date: str = "2050-12-31", |
|
models: list[str] = None |
|
) -> dict: |
|
""" |
|
Get all available daily climate parameters from Open-Meteo Climate API. |
|
Args: |
|
lat: Latitude. |
|
lon: Longitude. |
|
start_date: Start date in yyyy-mm-dd (default 1950-01-01). |
|
end_date: End date in yyyy-mm-dd (default 2050-12-31). |
|
models: Optional list of climate models (default: all models). |
|
Returns: |
|
Dict with all daily climate data or error. |
|
""" |
|
daily_params = [ |
|
"temperature_2m_max", "temperature_2m_min", "temperature_2m_mean", |
|
"cloud_cover_mean", |
|
"relative_humidity_2m_max", "relative_humidity_2m_min", "relative_humidity_2m_mean", |
|
"soil_moisture_0_to_10cm_mean", |
|
"precipitation_sum", "rain_sum", "snowfall_sum", |
|
"wind_speed_10m_mean", "wind_speed_10m_max", |
|
"pressure_msl_mean", |
|
"shortwave_radiation_sum" |
|
] |
|
if models is None: |
|
models = [ |
|
"CMCC_CM2_VHR4", "FGOALS_f3_H", "HiRAM_SIT_HR", |
|
"MRI_AGCM3_2_S", "EC_Earth3P_HR", "MPI_ESM1_2_XR", "NICAM16_8S" |
|
] |
|
url = "https://climate-api.open-meteo.com/v1/climate" |
|
params = { |
|
"latitude": lat, |
|
"longitude": lon, |
|
"start_date": start_date, |
|
"end_date": end_date, |
|
"models": ",".join(models), |
|
"daily": ",".join(daily_params), |
|
"timezone": "auto" |
|
} |
|
try: |
|
response = requests.get(url, params=params, timeout=60) |
|
return response.json() |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def get_full_air_quality_forecast( |
|
lat: float, |
|
lon: float, |
|
forecast_days: int = 5, |
|
past_days: int = 0, |
|
domain: str = "auto" |
|
) -> dict: |
|
""" |
|
Get all available hourly air quality forecast parameters from Open-Meteo Air Quality API. |
|
Args: |
|
lat: Latitude. |
|
lon: Longitude. |
|
forecast_days: Number of forecast days (default 5, max 7). |
|
past_days: Number of past days (default 0, max 92). |
|
domain: 'auto', 'cams_europe', or 'cams_global'. |
|
Returns: |
|
Dict with all hourly air quality data or error. |
|
""" |
|
hourly_params = [ |
|
"pm10", "pm2_5", "carbon_monoxide", "carbon_dioxide", |
|
"nitrogen_dioxide", "sulphur_dioxide", "ozone", "aerosol_optical_depth", |
|
"dust", "uv_index", "uv_index_clear_sky", "ammonia", "methane", |
|
"alder_pollen", "birch_pollen", "grass_pollen", "mugwort_pollen", |
|
"olive_pollen", "ragweed_pollen", "european_aqi", "us_aqi" |
|
] |
|
|
|
url = "https://air-quality-api.open-meteo.com/v1/air-quality" |
|
params = { |
|
"latitude": lat, |
|
"longitude": lon, |
|
"forecast_days": min(max(forecast_days, 0), 7), |
|
"past_days": min(max(past_days, 0), 92), |
|
"hourly": ",".join(hourly_params), |
|
"domains": domain, |
|
"timezone": "auto", |
|
} |
|
try: |
|
response = requests.get(url, params=params, timeout=30) |
|
return response.json() |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def get_full_marine_daily_forecast(lat: float, lon: float) -> dict: |
|
""" |
|
Get all available daily marine forecast parameters from Open-Meteo Marine API. |
|
Args: |
|
lat: Latitude. |
|
lon: Longitude. |
|
Returns: |
|
Dict with all daily marine forecast data or error. |
|
""" |
|
daily_params = [ |
|
"wave_height_max", "wind_wave_height_max", "swell_wave_height_max", |
|
"wave_direction_dominant", "wind_wave_direction_dominant", "swell_wave_direction_dominant", |
|
"wave_period_max", "wind_wave_period_max", "swell_wave_period_max", |
|
"wind_wave_peak_period_max", "swell_wave_peak_period_max" |
|
] |
|
url = "https://marine-api.open-meteo.com/v1/marine" |
|
params = { |
|
"latitude": lat, |
|
"longitude": lon, |
|
"timezone": "auto", |
|
"daily": ",".join(daily_params) |
|
} |
|
try: |
|
response = requests.get(url, params=params, timeout=10) |
|
return response.json() |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
|
|
@tool |
|
def get_full_flood_daily_forecast(lat: float, lon: float) -> dict: |
|
""" |
|
Get all available daily flood parameters from Open-Meteo Flood API. |
|
Args: |
|
lat: Latitude. |
|
lon: Longitude. |
|
Returns: |
|
Dict with all daily flood forecast data or error. |
|
""" |
|
daily_params = [ |
|
"river_discharge", |
|
"river_discharge_mean", |
|
"river_discharge_median", |
|
"river_discharge_max", |
|
"river_discharge_min", |
|
"river_discharge_p25", |
|
"river_discharge_p75" |
|
] |
|
url = "https://flood-api.open-meteo.com/v1/flood" |
|
params = { |
|
"latitude": lat, |
|
"longitude": lon, |
|
"daily": ",".join(daily_params) |
|
} |
|
try: |
|
response = requests.get(url, params=params, timeout=10) |
|
return response.json() |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
@tool |
|
def get_full_satellite_radiation( |
|
lat: float, |
|
lon: float, |
|
start_date: str = None, |
|
end_date: str = None, |
|
hourly_native: bool = False, |
|
tilt: int = 0, |
|
azimuth: int = 0 |
|
) -> dict: |
|
""" |
|
Get all available hourly satellite solar radiation parameters from Open-Meteo Satellite API. |
|
Args: |
|
lat: Latitude. |
|
lon: Longitude. |
|
start_date: (optional) Start date (yyyy-mm-dd). If None, today. |
|
end_date: (optional) End date (yyyy-mm-dd). If None, today. |
|
hourly_native: Use native satellite temporal resolution (10/15/30min) if True, else hourly. |
|
tilt: Tilt for GTI (default 0 = horizontal). |
|
azimuth: Azimuth for GTI (default 0 = south). |
|
Returns: |
|
Dict with all hourly satellite solar radiation data or error. |
|
""" |
|
hourly_params = [ |
|
"shortwave_radiation", "diffuse_radiation", "direct_radiation", |
|
"direct_normal_irradiance", "global_tilted_irradiance", |
|
"terrestrial_radiation", |
|
"shortwave_radiation_instant", "diffuse_radiation_instant", "direct_radiation_instant", |
|
"direct_normal_irradiance_instant", "global_tilted_irradiance_instant", |
|
"terrestrial_radiation_instant" |
|
] |
|
url = "https://satellite-api.open-meteo.com/v1/archive" |
|
|
|
today = datetime.utcnow().date() |
|
if start_date is None: |
|
start_date = str(today) |
|
if end_date is None: |
|
end_date = str(today) |
|
|
|
params = { |
|
"latitude": lat, |
|
"longitude": lon, |
|
"start_date": start_date, |
|
"end_date": end_date, |
|
"hourly": ",".join(hourly_params), |
|
"models": "satellite_radiation_seamless", |
|
"timezone": "auto", |
|
"tilt": tilt, |
|
"azimuth": azimuth, |
|
} |
|
if hourly_native: |
|
params["hourly_native"] = "true" |
|
|
|
try: |
|
response = requests.get(url, params=params, timeout=30) |
|
return response.json() |
|
except Exception as e: |
|
return {"error": str(e)} |
|
|