File size: 23,576 Bytes
dd370c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
import math
import requests
import matplotlib.pyplot as plt
import seaborn as sns
import tempfile
import os
from config import NASA_FIRMS_MAP_KEY
from datetime import datetime, timedelta
from smolagents import tool
from fpdf import FPDF


@tool
def get_coordinates(city: str) -> dict:
    """Get latitude and longitude of a city using OpenStreetMap Nominatim API.

    Args:
        city: Name of the city to get coordinates for

    Returns:
        Dict with city name, latitude, longitude, or error message
    """
    url = "https://nominatim.openstreetmap.org/search"
    params = {"q": city, "format": "json", "limit": 1}
    headers = {"User-Agent": "ClimateRiskTool/1.0"}
    try:
        response = requests.get(url, params=params, headers=headers, timeout=10)
        data = response.json()
        if not data:
            return {"error": f"City '{city}' not found"}
        return {
            "city": city,
            "latitude": float(data[0]["lat"]),
            "longitude": float(data[0]["lon"]),
        }
    except Exception as e:
        return {"error": str(e)}


@tool
def get_weather_forecast(lat: float, lon: float) -> dict:
    """Get weather forecast data for risk analysis.

    Args:
        lat: Latitude coordinate
        lon: Longitude coordinate

    Returns:
        Dict with weather forecast data or error message
    """
    url = "https://api.open-meteo.com/v1/forecast"
    params = {
        "latitude": lat,
        "longitude": lon,
        "daily": [
            "temperature_2m_max",
            "temperature_2m_min",
            "precipitation_sum",
            "wind_speed_10m_max",
            "wind_gusts_10m_max",
            "relative_humidity_2m_min",
        ],
        "forecast_days": 7,
        "timezone": "auto",
    }
    try:
        response = requests.get(url, params=params, timeout=10)
        return response.json()
    except Exception as e:
        return {"error": str(e)}


@tool
def get_flood_data(lat: float, lon: float) -> dict:
    """Get flood forecast data.

    Args:
        lat: Latitude coordinate
        lon: Longitude coordinate

    Returns:
        Dict with flood forecast data or error message
    """
    url = "https://flood-api.open-meteo.com/v1/flood"
    params = {
        "latitude": lat,
        "longitude": lon,
        "daily": ["river_discharge", "river_discharge_mean", "river_discharge_max"],
        "forecast_days": 7,
    }
    try:
        response = requests.get(url, params=params, timeout=10)
        return response.json()
    except Exception as e:
        return {"error": str(e)}


@tool
def get_earthquake_data(
    lat: float, lon: float, radius_km: float = 100, days: int = 30
) -> dict:
    """Get raw earthquake data from USGS.

    Args:
        lat: Latitude coordinate
        lon: Longitude coordinate
        radius_km: Search radius in kilometers (default 100km)
        days: Number of days to look back (default 30 days)

    Returns:
        Dict with raw earthquake data from USGS
    """
    url = "https://earthquake.usgs.gov/fdsnws/event/1/query"

    end_date = datetime.now()
    start_date = end_date - timedelta(days=days)

    params = {
        "format": "geojson",
        "starttime": start_date.strftime("%Y-%m-%d"),
        "endtime": end_date.strftime("%Y-%m-%d"),
        "latitude": lat,
        "longitude": lon,
        "maxradiuskm": radius_km,
        "minmagnitude": 1.0,
        "orderby": "time-desc",
    }

    try:
        response = requests.get(url, params=params, timeout=15)
        response.raise_for_status()
        data = response.json()

        earthquakes = []
        for feature in data.get("features", []):
            props = feature["properties"]
            coords = feature["geometry"]["coordinates"]

            earthquakes.append(
                {
                    "magnitude": props.get("mag"),
                    "place": props.get("place"),
                    "time": props.get("time"),
                    "depth": coords[2] if len(coords) > 2 else None,
                    "latitude": coords[1],
                    "longitude": coords[0],
                    "alert": props.get("alert"),
                    "significance": props.get("sig"),
                    "event_type": props.get("type"),
                    "title": props.get("title"),
                }
            )

        return {
            "earthquakes": earthquakes,
            "query_location": {
                "lat": lat,
                "lon": lon,
                "radius_km": radius_km,
                "days": days,
            },
            "data_source": "USGS",
        }

    except Exception as e:
        return {"error": str(e)}


@tool
def get_nasa_fire_data(
    lat: float, lon: float, radius_km: float = 50, days: int = 2
) -> dict:
    """Get raw wildfire detection data from NASA FIRMS satellites.

    Args:
        lat: Latitude coordinate
        lon: Longitude coordinate
        radius_km: Search radius in kilometers (default 50km)
        days: Number of days to look back (default 2 days)

    Returns:
        Dict with raw fire detection data from NASA satellites
    """
    if not NASA_FIRMS_MAP_KEY or NASA_FIRMS_MAP_KEY == "your-nasa-firms-api-key-here":
        return {"error": "NASA FIRMS API key not configured in .env file"}

    try:
        lat_offset = radius_km / 111.0
        lon_offset = radius_km / (111.0 * abs(math.cos(math.radians(lat))))
        bbox = f"{lat - lat_offset},{lon - lon_offset},{lat + lat_offset},{lon + lon_offset}"

        modis_url = f"https://firms.modaps.eosdis.nasa.gov/api/area/csv/{NASA_FIRMS_MAP_KEY}/MODIS_NRT/{bbox}/{days}"
        viirs_url = f"https://firms.modaps.eosdis.nasa.gov/api/area/csv/{NASA_FIRMS_MAP_KEY}/VIIRS_NOAA20_NRT/{bbox}/{days}"

        all_fires = []

        try:
            modis_response = requests.get(modis_url, timeout=15)
            if modis_response.status_code == 200 and modis_response.text.strip():
                all_fires.extend(_parse_nasa_csv(modis_response.text, "MODIS"))
        except:
            pass

        try:
            viirs_response = requests.get(viirs_url, timeout=15)
            if viirs_response.status_code == 200 and viirs_response.text.strip():
                all_fires.extend(_parse_nasa_csv(viirs_response.text, "VIIRS"))
        except:
            pass

        return {
            "fires": all_fires,
            "query_location": {
                "lat": lat,
                "lon": lon,
                "radius_km": radius_km,
                "days": days,
            },
            "data_source": "NASA_FIRMS",
        }

    except Exception as e:
        return {"error": str(e)}


def _parse_nasa_csv(csv_text: str, source: str) -> list:
    """Parse NASA FIRMS CSV data.

    Args:
        csv_text: CSV text data from NASA FIRMS API
        source: Source identifier (MODIS or VIIRS)

    Returns:
        List of fire detection dictionaries
    """
    fires = []
    lines = csv_text.strip().split("\n")

    if len(lines) < 2:
        return fires

    for line in lines[1:]:
        try:
            values = line.split(",")
            if len(values) >= 9:
                fires.append(
                    {
                        "latitude": float(values[0]),
                        "longitude": float(values[1]),
                        "brightness": float(values[2]) if values[2] else 0,
                        "scan": float(values[3]) if values[3] else 0,
                        "track": float(values[4]) if values[4] else 0,
                        "acq_date": values[5],
                        "acq_time": values[6],
                        "satellite": values[7],
                        "confidence": int(values[8]) if values[8].isdigit() else 50,
                        "version": values[9] if len(values) > 9 else "",
                        "bright_t31": (
                            float(values[10]) if len(values) > 10 and values[10] else 0
                        ),
                        "frp": (
                            float(values[11]) if len(values) > 11 and values[11] else 0
                        ),
                        "daynight": values[12] if len(values) > 12 else "",
                        "source": source,
                    }
                )
        except (ValueError, IndexError):
            continue

    return fires


@tool
def find_local_emergency_resources(lat: float, lon: float) -> dict:
    """Find local emergency resources and contacts.

    Args:
        lat: Latitude coordinate
        lon: Longitude coordinate

    Returns:
        Dict with local emergency resources or error message
    """
    try:
        query = f"""
        [out:json][timeout:15];
        (
          node[amenity=hospital](around:10000,{lat},{lon});
          node[amenity=fire_station](around:10000,{lat},{lon});
          node[amenity=police](around:10000,{lat},{lon});
        );
        out center meta;
        """

        response = requests.post(
            "https://overpass-api.de/api/interpreter", data=query, timeout=20
        )

        if response.status_code == 200:
            data = response.json()
            resources = []

            for element in data.get("elements", [])[:5]:
                tags = element.get("tags", {})
                resources.append(
                    {
                        "name": tags.get("name", "Unnamed facility"),
                        "type": tags.get("amenity", "unknown"),
                        "latitude": element.get("lat", lat),
                        "longitude": element.get("lon", lon),
                    }
                )

            return {"local_resources": resources}

        return {"local_resources": []}

    except Exception as e:
        return {"error": str(e)}


@tool
def generate_analysis_report(
    data: dict, filename: str = "climate_risk_report.pdf"
) -> dict:
    """Generate a consolidated analysis report with visualizations.

    Args:
        data: Consolidated data from various tools, expected to include:
              - weather forecast
              - flood data
              - earthquake data
              - fire data
        filename: Desired filename for the exported PDF report

    Returns:
        Dict with success message and file path or error
    """
    try:
        # Temporary directory for plots
        with tempfile.TemporaryDirectory() as temp_dir:
            # Initialize the PDF
            pdf = FPDF()
            pdf.set_auto_page_break(auto=True, margin=15)
            pdf.add_page()
            pdf.set_font("Arial", size=12)
            pdf.set_text_color(50, 50, 50)

            # Add Title
            pdf.set_font("Arial", style="B", size=16)
            pdf.cell(0, 10, "Climate Risk Analysis Report", ln=True, align="C")
            pdf.ln(10)  # Line break

            # Helper function to save and plot visualizations
            def save_plot(fig, plot_name):
                path = f"{temp_dir}/{plot_name}.png"
                fig.savefig(path)
                plt.close(fig)
                return path

            # Plot weather data
            weather_data = data.get("weather_forecast", {}).get("daily", {})
            if weather_data:
                dates = [
                    d for d in range(1, len(weather_data["temperature_2m_max"]) + 1)
                ]
                weather_df = {
                    "Day": dates,
                    "Max Temperature (°C)": weather_data["temperature_2m_max"],
                    "Min Temperature (°C)": weather_data["temperature_2m_min"],
                    "Precipitation (mm)": weather_data["precipitation_sum"],
                }

                fig, ax = plt.subplots(figsize=(8, 5))
                sns.lineplot(
                    x="Day",
                    y="Max Temperature (°C)",
                    data=weather_df,
                    ax=ax,
                    label="Max Temp",
                    color="red",
                )
                sns.lineplot(
                    x="Day",
                    y="Min Temperature (°C)",
                    data=weather_df,
                    ax=ax,
                    label="Min Temp",
                    color="blue",
                )
                sns.barplot(
                    x="Day",
                    y="Precipitation (mm)",
                    data=weather_df,
                    ax=ax,
                    color="gray",
                    alpha=0.5,
                )
                ax.set_title("Weather Forecast")
                ax.set_xlabel("Day")
                ax.set_ylabel("Values")
                ax.legend()

                weather_plot_path = save_plot(fig, "weather_plot")
                pdf.image(weather_plot_path, x=10, y=None, w=180)
                pdf.ln(10)

            # Plot earthquake data
            earthquake_data = data.get("earthquake_data", {}).get("earthquakes", [])
            if earthquake_data:
                magnitudes = [
                    eq["magnitude"] for eq in earthquake_data if eq.get("magnitude")
                ]
                depths = [eq["depth"] for eq in earthquake_data if eq.get("depth")]
                places = [eq["place"] for eq in earthquake_data]

                fig, ax = plt.subplots(figsize=(8, 5))
                sns.scatterplot(
                    x=depths, y=magnitudes, hue=places, ax=ax, palette="tab10", s=100
                )
                ax.set_title("Earthquake Analysis")
                ax.set_xlabel("Depth (km)")
                ax.set_ylabel("Magnitude")
                ax.legend(bbox_to_anchor=(1.05, 1), loc="upper left")

                earthquake_plot_path = save_plot(fig, "earthquake_plot")
                pdf.image(earthquake_plot_path, x=10, y=None, w=180)
                pdf.ln(10)

            # Plot fire data
            fire_data = data.get("fire_data", {}).get("fires", [])
            if fire_data:
                brightness = [fire["brightness"] for fire in fire_data]
                confidence = [fire["confidence"] for fire in fire_data]

                fig, ax = plt.subplots(figsize=(8, 5))
                sns.histplot(
                    brightness,
                    bins=20,
                    ax=ax,
                    kde=True,
                    color="orange",
                    label="Brightness",
                )
                sns.histplot(
                    confidence,
                    bins=20,
                    ax=ax,
                    kde=True,
                    color="green",
                    alpha=0.5,
                    label="Confidence",
                )
                ax.set_title("Wildfire Brightness vs Confidence")
                ax.set_xlabel("Value")
                ax.legend()

                fire_plot_path = save_plot(fig, "fire_plot")
                pdf.image(fire_plot_path, x=10, y=None, w=180)
                pdf.ln(10)

            # Save PDF report
            pdf_output_path = os.path.join(temp_dir, filename)
            pdf.output(pdf_output_path)
            return {"success": True, "file_path": pdf_output_path}

    except Exception as e:
        return {"error": str(e)}


@tool
def get_full_daily_forecast(lat: float, lon: float) -> dict:
    """
    Get all available daily weather forecast parameters from Open-Meteo API.
    Args:
        lat: Latitude.
        lon: Longitude.
    Returns:
        Dict with all daily forecast data or error.
    """
    daily_params = [
        "temperature_2m_max", "temperature_2m_mean", "temperature_2m_min",
        "apparent_temperature_max", "apparent_temperature_mean", "apparent_temperature_min",
        "precipitation_sum", "rain_sum", "showers_sum", "snowfall_sum",
        "precipitation_hours",
        "precipitation_probability_max", "precipitation_probability_mean", "precipitation_probability_min",
        "weather_code", "sunrise", "sunset",
        "sunshine_duration", "daylight_duration",
        "wind_speed_10m_max", "wind_gusts_10m_max", "wind_direction_10m_dominant",
        "shortwave_radiation_sum", "et0_fao_evapotranspiration",
        "uv_index_max", "uv_index_clear_sky_max"
    ]
    url = "https://api.open-meteo.com/v1/forecast"
    params = {
        "latitude": lat,
        "longitude": lon,
        "timezone": "auto",
        "daily": ",".join(daily_params)
    }
    try:
        response = requests.get(url, params=params, timeout=10)
        return response.json()
    except Exception as e:
        return {"error": str(e)}


@tool
def climate_change_data(
    lat: float,
    lon: float,
    start_date: str = "1950-01-01",
    end_date: str = "2050-12-31",
    models: list[str] = None
) -> dict:
    """
    Get all available daily climate parameters from Open-Meteo Climate API.
    Args:
        lat: Latitude.
        lon: Longitude.
        start_date: Start date in yyyy-mm-dd (default 1950-01-01).
        end_date: End date in yyyy-mm-dd (default 2050-12-31).
        models: Optional list of climate models (default: all models).
    Returns:
        Dict with all daily climate data or error.
    """
    daily_params = [
        "temperature_2m_max", "temperature_2m_min", "temperature_2m_mean",
        "cloud_cover_mean",
        "relative_humidity_2m_max", "relative_humidity_2m_min", "relative_humidity_2m_mean",
        "soil_moisture_0_to_10cm_mean",
        "precipitation_sum", "rain_sum", "snowfall_sum",
        "wind_speed_10m_mean", "wind_speed_10m_max",
        "pressure_msl_mean",
        "shortwave_radiation_sum"
    ]
    if models is None:
        models = [
            "CMCC_CM2_VHR4", "FGOALS_f3_H", "HiRAM_SIT_HR",
            "MRI_AGCM3_2_S", "EC_Earth3P_HR", "MPI_ESM1_2_XR", "NICAM16_8S"
        ]
    url = "https://climate-api.open-meteo.com/v1/climate"
    params = {
        "latitude": lat,
        "longitude": lon,
        "start_date": start_date,
        "end_date": end_date,
        "models": ",".join(models),
        "daily": ",".join(daily_params),
        "timezone": "auto"
    }
    try:
        response = requests.get(url, params=params, timeout=60)
        return response.json()
    except Exception as e:
        return {"error": str(e)}


@tool
def get_full_air_quality_forecast(
    lat: float,
    lon: float,
    forecast_days: int = 5,
    past_days: int = 0,
    domain: str = "auto"
) -> dict:
    """
    Get all available hourly air quality forecast parameters from Open-Meteo Air Quality API.
    Args:
        lat: Latitude.
        lon: Longitude.
        forecast_days: Number of forecast days (default 5, max 7).
        past_days: Number of past days (default 0, max 92).
        domain: 'auto', 'cams_europe', or 'cams_global'.
    Returns:
        Dict with all hourly air quality data or error.
    """
    hourly_params = [
        "pm10", "pm2_5", "carbon_monoxide", "carbon_dioxide",
        "nitrogen_dioxide", "sulphur_dioxide", "ozone", "aerosol_optical_depth",
        "dust", "uv_index", "uv_index_clear_sky", "ammonia", "methane",
        "alder_pollen", "birch_pollen", "grass_pollen", "mugwort_pollen",
        "olive_pollen", "ragweed_pollen", "european_aqi", "us_aqi"
    ]

    url = "https://air-quality-api.open-meteo.com/v1/air-quality"
    params = {
        "latitude": lat,
        "longitude": lon,
        "forecast_days": min(max(forecast_days, 0), 7),
        "past_days": min(max(past_days, 0), 92),
        "hourly": ",".join(hourly_params),
        "domains": domain,
        "timezone": "auto",
    }
    try:
        response = requests.get(url, params=params, timeout=30)
        return response.json()
    except Exception as e:
        return {"error": str(e)}


@tool
def get_full_marine_daily_forecast(lat: float, lon: float) -> dict:
    """
    Get all available daily marine forecast parameters from Open-Meteo Marine API.
    Args:
        lat: Latitude.
        lon: Longitude.
    Returns:
        Dict with all daily marine forecast data or error.
    """
    daily_params = [
        "wave_height_max", "wind_wave_height_max", "swell_wave_height_max",
        "wave_direction_dominant", "wind_wave_direction_dominant", "swell_wave_direction_dominant",
        "wave_period_max", "wind_wave_period_max", "swell_wave_period_max",
        "wind_wave_peak_period_max", "swell_wave_peak_period_max"
    ]
    url = "https://marine-api.open-meteo.com/v1/marine"
    params = {
        "latitude": lat,
        "longitude": lon,
        "timezone": "auto",
        "daily": ",".join(daily_params)
    }
    try:
        response = requests.get(url, params=params, timeout=10)
        return response.json()
    except Exception as e:
        return {"error": str(e)}


@tool
def get_full_flood_daily_forecast(lat: float, lon: float) -> dict:
    """
    Get all available daily flood parameters from Open-Meteo Flood API.
    Args:
        lat: Latitude.
        lon: Longitude.
    Returns:
        Dict with all daily flood forecast data or error.
    """
    daily_params = [
        "river_discharge",
        "river_discharge_mean",
        "river_discharge_median",
        "river_discharge_max",
        "river_discharge_min",
        "river_discharge_p25",
        "river_discharge_p75"
    ]
    url = "https://flood-api.open-meteo.com/v1/flood"
    params = {
        "latitude": lat,
        "longitude": lon,
        "daily": ",".join(daily_params)
    }
    try:
        response = requests.get(url, params=params, timeout=10)
        return response.json()
    except Exception as e:
        return {"error": str(e)}

@tool
def get_full_satellite_radiation(
    lat: float,
    lon: float,
    start_date: str = None,
    end_date: str = None,
    hourly_native: bool = False,
    tilt: int = 0,
    azimuth: int = 0
) -> dict:
    """
    Get all available hourly satellite solar radiation parameters from Open-Meteo Satellite API.
    Args:
        lat: Latitude.
        lon: Longitude.
        start_date: (optional) Start date (yyyy-mm-dd). If None, today.
        end_date: (optional) End date (yyyy-mm-dd). If None, today.
        hourly_native: Use native satellite temporal resolution (10/15/30min) if True, else hourly.
        tilt: Tilt for GTI (default 0 = horizontal).
        azimuth: Azimuth for GTI (default 0 = south).
    Returns:
        Dict with all hourly satellite solar radiation data or error.
    """
    hourly_params = [
        "shortwave_radiation", "diffuse_radiation", "direct_radiation",
        "direct_normal_irradiance", "global_tilted_irradiance",
        "terrestrial_radiation",
        "shortwave_radiation_instant", "diffuse_radiation_instant", "direct_radiation_instant",
        "direct_normal_irradiance_instant", "global_tilted_irradiance_instant",
        "terrestrial_radiation_instant"
    ]
    url = "https://satellite-api.open-meteo.com/v1/archive"

    today = datetime.utcnow().date()
    if start_date is None:
        start_date = str(today)
    if end_date is None:
        end_date = str(today)

    params = {
        "latitude": lat,
        "longitude": lon,
        "start_date": start_date,
        "end_date": end_date,
        "hourly": ",".join(hourly_params),
        "models": "satellite_radiation_seamless",
        "timezone": "auto",
        "tilt": tilt,
        "azimuth": azimuth,
    }
    if hourly_native:
        params["hourly_native"] = "true"

    try:
        response = requests.get(url, params=params, timeout=30)
        return response.json()
    except Exception as e:
        return {"error": str(e)}