File size: 2,297 Bytes
ee980d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import modal
import os


app_name : str = "example-vllm-openai-compatible"

app = modal.App(name=app_name)



print(f"setting up container image ...")

vllm_image = (
    modal.Image.debian_slim(python_version="3.12")
    .pip_install(
        "vllm==0.7.2",
        "huggingface_hub[hf_transfer]==0.26.2",
        "flashinfer-python==0.2.0.post2",  # pinning, very unstable
        extra_index_url="https://flashinfer.ai/whl/cu124/torch2.5",
    )
    .env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})  # faster model transfers
)

vllm_image = vllm_image.env({"VLLM_USE_V1": "1"})

print(f" done setting up container image.")




MODELS_DIR = "/llamas",
MODEL_NAME = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16"
MODEL_REVISION = "a7c09948d9a632c2c840722f519672cd94af885d"


print(f" downloading model weights...")


hf_cache_vol = modal.Volume.from_name("huggingface-cache", create_if_missing=True)
vllm_cache_vol = modal.Volume.from_name("vllm-cache", create_if_missing=True)


print(f" done downloading model weights.")



print(f"building engine...")

N_GPU = 1  # tip: for best results, first upgrade to more powerful GPUs, and only then increase GPU count

MINUTES = 60  # seconds

VLLM_PORT = 8000


@app.function(
    image = vllm_image,
    secrets=[modal.Secret.from_name("api_key")],
    gpu=f"H100:{N_GPU}",
    scaledown_window=15 * MINUTES,  # how long should we stay up with no requests?
    timeout=10 * MINUTES,  # how long should we wait for container start?
    volumes={
        "/root/.cache/huggingface": hf_cache_vol,
        "/root/.cache/vllm": vllm_cache_vol,
    },
)
@modal.concurrent(
    max_inputs=100
)  # how many requests can one replica handle? tune carefully!
@modal.web_server(port=VLLM_PORT, startup_timeout=50 * MINUTES)
def serve():
    import subprocess

    API_KEY = os.environ["MODAL_API_KEY"]

    cmd = [
        "vllm",
        "serve",
        "--uvicorn-log-level=info",
        MODEL_NAME,
        "--revision",
        MODEL_REVISION,
        "--host",
        "0.0.0.0",
        "--port",
        str(VLLM_PORT),
        "--api-key",
        API_KEY,
        "--enable-auto-tool-choice"
        " ",
        "--tool-call-parser",
        "llama3_json"
    ]

    subprocess.Popen(" ".join(cmd), shell=True)


print(f"done building engine.")