Spaces:
Runtime error
Runtime error
DEV: first
Browse files- .gitignore +1 -0
- README.md +1 -2
- app.py +48 -48
- modal_setup.py +99 -0
- requirements.txt +4 -1
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
README.md
CHANGED
@@ -11,7 +11,6 @@ license: apache-2.0
|
|
11 |
short_description: Podcast Generator MCP Server
|
12 |
tags:
|
13 |
- Agents-MCP-Hackathon
|
|
|
14 |
- mcp-server-track
|
15 |
---
|
16 |
-
|
17 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
11 |
short_description: Podcast Generator MCP Server
|
12 |
tags:
|
13 |
- Agents-MCP-Hackathon
|
14 |
+
- agent-demo-track
|
15 |
- mcp-server-track
|
16 |
---
|
|
|
|
app.py
CHANGED
@@ -1,64 +1,64 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
response = ""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
response
|
40 |
-
|
41 |
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
from smolagents import CodeAgent, ToolCallingAgent, MCPClient, InferenceClientModel
|
6 |
+
from openai import OpenAI
|
7 |
+
|
8 |
+
|
9 |
+
model_name = None
|
10 |
+
workspace = "imessam"
|
11 |
+
environment = None
|
12 |
+
app_name = "example-vllm-openai-compatible"
|
13 |
+
function_name = "serve"
|
14 |
+
|
15 |
+
api_key = os.getenv("MODAL_API_KEY")
|
16 |
|
17 |
+
client = OpenAI(api_key=api_key)
|
18 |
+
|
19 |
+
prefix = workspace + (f"-{environment}" if environment else "")
|
20 |
+
|
21 |
+
client.base_url = (
|
22 |
+
f"https://{prefix}--{app_name}-{function_name}.modal.run/v1"
|
23 |
+
)
|
24 |
|
25 |
+
print(str(client.base_url.host))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
model = client.models.list().data[0]
|
28 |
+
model_id = model.id
|
|
|
|
|
|
|
29 |
|
30 |
+
|
31 |
+
def generate_podcast(prompt : str, history: list) -> str:
|
32 |
|
33 |
response = ""
|
34 |
|
35 |
+
try:
|
36 |
+
mcp_client = MCPClient([
|
37 |
+
{"url": "https://agents-mcp-hackathon-websearch.hf.space/gradio_api/mcp/sse", "transport": "sse"},
|
38 |
+
{"url": "https://agents-mcp-hackathon-footballmatchesbydate.hf.space/gradio_api/mcp/sse", "transport": "sse"}] # This is the MCP Server we created in the previous section
|
39 |
+
)
|
40 |
+
tools = mcp_client.get_tools()
|
41 |
+
|
42 |
+
model = InferenceClientModel()
|
43 |
+
agent = CodeAgent(tools=[*tools], model=model)
|
44 |
+
|
45 |
|
46 |
+
response = str(agent.run(prompt))
|
47 |
+
|
48 |
|
49 |
+
finally:
|
50 |
+
mcp_client.disconnect()
|
51 |
+
|
52 |
+
|
53 |
+
return response
|
54 |
|
|
|
|
|
|
|
55 |
demo = gr.ChatInterface(
|
56 |
+
fn=generate_podcast,
|
57 |
+
type="messages",
|
58 |
+
examples=["Generate a podcast about AI"],
|
59 |
+
title="Podcast Generator Agent and MCP Server",
|
60 |
+
description="This is an agent that uses MCP tools to generate a podcast, and can be used as an MCP server.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
)
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
+
demo.launch(mcp_server=True)
|
modal_setup.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import modal
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
app_name : str = "example-vllm-openai-compatible"
|
6 |
+
|
7 |
+
app = modal.App(name=app_name)
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
print(f"setting up container image ...")
|
12 |
+
|
13 |
+
vllm_image = (
|
14 |
+
modal.Image.debian_slim(python_version="3.12")
|
15 |
+
.pip_install(
|
16 |
+
"vllm==0.7.2",
|
17 |
+
"huggingface_hub[hf_transfer]==0.26.2",
|
18 |
+
"flashinfer-python==0.2.0.post2", # pinning, very unstable
|
19 |
+
extra_index_url="https://flashinfer.ai/whl/cu124/torch2.5",
|
20 |
+
)
|
21 |
+
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"}) # faster model transfers
|
22 |
+
)
|
23 |
+
|
24 |
+
vllm_image = vllm_image.env({"VLLM_USE_V1": "1"})
|
25 |
+
|
26 |
+
print(f" done setting up container image.")
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
MODELS_DIR = "/llamas",
|
32 |
+
MODEL_NAME = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16"
|
33 |
+
MODEL_REVISION = "a7c09948d9a632c2c840722f519672cd94af885d"
|
34 |
+
|
35 |
+
|
36 |
+
print(f" downloading model weights...")
|
37 |
+
|
38 |
+
|
39 |
+
hf_cache_vol = modal.Volume.from_name("huggingface-cache", create_if_missing=True)
|
40 |
+
vllm_cache_vol = modal.Volume.from_name("vllm-cache", create_if_missing=True)
|
41 |
+
|
42 |
+
|
43 |
+
print(f" done downloading model weights.")
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
print(f"building engine...")
|
48 |
+
|
49 |
+
N_GPU = 1 # tip: for best results, first upgrade to more powerful GPUs, and only then increase GPU count
|
50 |
+
|
51 |
+
MINUTES = 60 # seconds
|
52 |
+
|
53 |
+
VLLM_PORT = 8000
|
54 |
+
|
55 |
+
|
56 |
+
@app.function(
|
57 |
+
image = vllm_image,
|
58 |
+
secrets=[modal.Secret.from_name("api_key")],
|
59 |
+
gpu=f"H100:{N_GPU}",
|
60 |
+
scaledown_window=15 * MINUTES, # how long should we stay up with no requests?
|
61 |
+
timeout=10 * MINUTES, # how long should we wait for container start?
|
62 |
+
volumes={
|
63 |
+
"/root/.cache/huggingface": hf_cache_vol,
|
64 |
+
"/root/.cache/vllm": vllm_cache_vol,
|
65 |
+
},
|
66 |
+
)
|
67 |
+
@modal.concurrent(
|
68 |
+
max_inputs=100
|
69 |
+
) # how many requests can one replica handle? tune carefully!
|
70 |
+
@modal.web_server(port=VLLM_PORT, startup_timeout=50 * MINUTES)
|
71 |
+
def serve():
|
72 |
+
import subprocess
|
73 |
+
|
74 |
+
API_KEY = os.environ["MODAL_API_KEY"]
|
75 |
+
|
76 |
+
cmd = [
|
77 |
+
"vllm",
|
78 |
+
"serve",
|
79 |
+
"--uvicorn-log-level=info",
|
80 |
+
MODEL_NAME,
|
81 |
+
"--revision",
|
82 |
+
MODEL_REVISION,
|
83 |
+
"--host",
|
84 |
+
"0.0.0.0",
|
85 |
+
"--port",
|
86 |
+
str(VLLM_PORT),
|
87 |
+
"--api-key",
|
88 |
+
API_KEY,
|
89 |
+
"--enable-auto-tool-choice"
|
90 |
+
" ",
|
91 |
+
"--tool-call-parser",
|
92 |
+
"llama3_json"
|
93 |
+
]
|
94 |
+
|
95 |
+
subprocess.Popen(" ".join(cmd), shell=True)
|
96 |
+
|
97 |
+
|
98 |
+
print(f"done building engine.")
|
99 |
+
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
1 |
+
gradio[mcp]
|
2 |
+
modal
|
3 |
+
openai
|
4 |
+
openai-agents
|