luke9705's picture
Update HfApiModel to use the 'google/gemma-3-27b-it' model in the Agent class.
7b2bd1f
raw
history blame
8.77 kB
import gradio as gr
import os
import base64
import pandas as pd
from PIL import Image
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, OpenAIServerModel, tool
from typing import Optional
import requests
from io import BytesIO
import re
from pathlib import Path
import openai
from openai import OpenAI
import pdfplumber
## utilty functions
def is_image_extension(filename: str) -> bool:
IMAGE_EXTS = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.svg'}
ext = os.path.splitext(filename)[1].lower() # os.path.splitext(path) returns (root, ext)
return ext in IMAGE_EXTS
def load_file(path: str) -> list | dict:
"""Based on the file extension, load the file into a suitable object."""
image = None
text = None
ext = Path(path).suffix.lower() # same as os.path.splitext(filename)[1].lower()
if ext.endswith(".png") or ext.endswith(".jpg") or ext.endswith(".jpeg"):
image = Image.open(path).convert("RGB") # pillow object
elif ext.endswith(".xlsx") or ext.endswith(".xls"):
text = pd.read_excel(path) # DataFrame
elif ext.endswith(".csv"):
text = pd.read_csv(path) # DataFrame
elif ext.endswith(".pdf"):
with pdfplumber.open(path) as pdf:
text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
elif ext.endswith(".py") or ext.endswith(".txt"):
with open(path, 'r') as f:
text = f.read() # plain text str
if image is not None:
return [image]
elif ext.endswith(".mp3") or ext.endswith(".wav"):
return {"raw document text": text, "audio path": path}
else:
return {"raw document text": text, "file path": path}
def check_format(answer: str | list, *args, **kwargs) -> list:
"""Check if the answer is a list and not a nested list."""
print("Checking format of the answer:", answer)
if isinstance(answer, list):
for item in answer:
if isinstance(item, list):
print("list detected")
raise TypeError("Nested lists are not allowed in the final answer.")
elif isinstance(answer, str):
return [answer]
elif isinstance(answer, dict):
raise TypeError(f"Final answer must be a list, not a dict. Please check the answer format. Error: {e}")
## tools definition
@tool
def download_images(image_urls: str) -> list:
"""
Download web images from the given comma‐separated URLs and return them in a list of PIL Images.
Args:
image_urls: comma‐separated list of URLs to download
Returns:
List of PIL.Image.Image objects
"""
urls = [u.strip() for u in image_urls.split(",") if u.strip()] # strip() removes whitespaces
images = []
for __, url in enumerate(urls, start=1): # enumerate seems not needed... keeping it for now
try:
# Fetch the image bytes
resp = requests.get(url, timeout=10)
resp.raise_for_status()
# Load into a PIL image
img = Image.open(BytesIO(resp.content)).convert("RGB")
images.append(img)
except Exception as e:
print(f"Failed to download from {url}: {e}")
return images
@tool # since they gave us OpenAI API credits, we can keep using it
def transcribe_audio(audio_path: str) -> str:
"""
Transcribe audio file using OpenAI Whisper API.
Args:
audio_path: path to the audio file to be transcribed.
Returns:
str : Transcription of the audio.
"""
client = openai.Client(api_key=os.getenv("OPENAI_API_KEY"))
with open(audio_path, "rb") as audio: # to modify path because it is arriving from gradio
transcript = client.audio.transcriptions.create(
file=audio,
model="whisper-1",
response_format="text",
)
print(transcript)
try:
return transcript
except Exception as e:
print(f"Error transcribing audio: {e}")
@tool
def generate_image(prompt: str, neg_prompt: str) -> Image.Image:
"""
Generate an image based on a text prompt using Flux Dev.
Args:
prompt: The text prompt to generate the image from.
neg_prompt: The negative prompt to avoid certain elements in the image.
Returns:
Image.Image: The generated image as a PIL Image object.
"""
client = OpenAI(base_url="https://api.studio.nebius.com/v1",
api_key=os.environ.get("NEBIUS_API_KEY"),
)
completion = client.images.generate(
model="black-forest-labs/flux-dev",
prompt=prompt,
response_format="b64_json",
extra_body={
"response_extension": "png",
"width": 1024,
"height": 1024,
"num_inference_steps": 30,
"seed": -1,
"negative_prompt": neg_prompt,
}
)
image_data = base64.b64decode(completion.to_dict()['data'][0]['b64_json'])
image = BytesIO(image_data)
image = Image.open(image).convert("RGB")
return gr.Image(value=image, label="Generated Image")
"""@tool
def generate_audio(prompt: str) -> object:
space = smolagents.load_tool(
)"""
## agent definition
class Agent:
def __init__(self, ):
client = HfApiModel("google/gemma-3-27b-it", provider="nebius", api_key=os.getenv("NEBIUS_API_KEY"))
self.agent = CodeAgent(
model=client,
tools=[DuckDuckGoSearchTool(max_results=5), VisitWebpageTool(max_output_length=20000), generate_image, download_images, transcribe_audio],
additional_authorized_imports=["pandas", "PIL", "io"],
planning_interval=1,
max_steps=5,
stream_outputs=False,
final_answer_checks=[check_format]
)
with open("system_prompt.txt", "r") as f:
system_prompt = f.read()
self.agent.prompt_templates["system_prompt"] = system_prompt
#print("System prompt:", self.agent.prompt_templates["system_prompt"])
def __call__(self, message: str,
images: Optional[list[Image.Image]] = None,
files: Optional[str] = None,
conversation_history: Optional[dict] = None) -> str:
answer = self.agent.run(message, images = images, additional_args={"files": files, "conversation_history": conversation_history})
return answer
## gradio functions
def respond(message: str, history : dict, web_search: bool = False):
# input
print("history:", history)
text = message.get("text", "")
if not message.get("files") and not web_search: # no files uploaded
print("No files received.")
message = agent(text + "\nADDITIONAL CONTRAINT: Don't use web search", conversation_history=history) # conversation_history is a dict with the history of the conversation
elif not message.get("files") and web_search==True: # no files uploaded
print("No files received + web search enabled.")
message = agent(text, conversation_history=history)
else:
files = message.get("files", [])
print(f"files received: {files}")
if is_image_extension(files[0]):
image = load_file(files[0]) # assuming only one file is uploaded at a time (gradio default behavior)
message = agent(text, images=image, conversation_history=history)
else:
file = load_file(files[0])
message = agent(text, files=file, conversation_history=history)
# output
print("Agent response:", message)
return message
def initialize_agent():
agent = Agent()
print("Agent initialized.")
return agent
## gradio interface
with gr.Blocks() as demo:
global agent
agent = initialize_agent()
gr.ChatInterface(
fn=respond,
type='messages',
multimodal=True,
title='MultiAgent System for Screenplay Creation and Editing',
show_progress='full',
fill_height=True,
fill_width=False,
save_history=True,
additional_inputs=[
gr.Checkbox(value=False, label="Web Search",
info="Enable web search to find information online. If disabled, the agent will only use the provided files and images.",
render=False),
])
if __name__ == "__main__":
demo.launch()