File size: 8,774 Bytes
5a4500e
 
5090fe0
5a4500e
 
 
 
 
 
 
 
 
dd1055c
34bcc8d
5a4500e
c28df4a
5a4500e
5090fe0
5a4500e
 
 
 
5090fe0
5a4500e
 
 
 
 
 
 
 
 
34bcc8d
5a4500e
34bcc8d
 
 
 
5a4500e
 
 
5090fe0
 
 
34bcc8d
 
5090fe0
34bcc8d
c28df4a
856ab04
 
a2812c7
856ab04
 
b5fc7aa
856ab04
 
 
 
 
 
b5fc7aa
 
 
5a4500e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34bcc8d
 
5a4500e
 
5090fe0
3f79364
5a4500e
5090fe0
5a4500e
1f5786d
5090fe0
5a4500e
 
 
 
 
 
 
 
 
 
 
5090fe0
 
 
 
 
5053e3f
 
5090fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd1055c
 
5090fe0
c28df4a
5090fe0
856ab04
 
 
 
 
 
 
 
5a4500e
 
 
 
7b2bd1f
5a4500e
 
5090fe0
5a4500e
 
a2812c7
 
 
5a4500e
5ece203
 
 
 
c28df4a
5a4500e
698b66e
 
 
 
 
5a4500e
 
 
a2812c7
5a4500e
c28df4a
698b66e
5a4500e
a2812c7
5a4500e
a2812c7
 
 
 
5a4500e
 
 
5090fe0
 
698b66e
5090fe0
 
698b66e
c28df4a
 
 
ed2817d
dd1055c
5a4500e
 
 
 
 
5090fe0
5a4500e
 
 
 
 
 
 
5090fe0
b4d9d0c
dd1055c
a2812c7
b4d9d0c
a2812c7
 
8b72ba7
 
a2812c7
5a4500e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
import os
import base64
import pandas as pd
from PIL import Image
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, OpenAIServerModel, tool
from typing import Optional
import requests
from io import BytesIO
import re
from pathlib import Path
import openai
from openai import OpenAI
import pdfplumber


## utilty functions
def is_image_extension(filename: str) -> bool:
    IMAGE_EXTS = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.svg'}
    ext = os.path.splitext(filename)[1].lower() # os.path.splitext(path) returns (root, ext)
    return ext in IMAGE_EXTS

def load_file(path: str) -> list | dict:
    """Based on the file extension, load the file into a suitable object."""
    
    image = None
    text = None
    ext = Path(path).suffix.lower() # same as os.path.splitext(filename)[1].lower()

    if ext.endswith(".png") or ext.endswith(".jpg") or ext.endswith(".jpeg"):
        image = Image.open(path).convert("RGB")            # pillow object
    elif ext.endswith(".xlsx") or ext.endswith(".xls"):
        text = pd.read_excel(path)                        # DataFrame
    elif ext.endswith(".csv"):
        text = pd.read_csv(path)                          # DataFrame
    elif ext.endswith(".pdf"):
        with pdfplumber.open(path) as pdf:
            text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
    elif ext.endswith(".py") or ext.endswith(".txt"):
        with open(path, 'r') as f:
            text = f.read()                               # plain text str
              
    if image is not None:
        return [image]                 
    elif ext.endswith(".mp3") or ext.endswith(".wav"):
        return {"raw document text": text, "audio path": path} 
    else:
        return {"raw document text": text, "file path": path}
    
def check_format(answer: str | list, *args, **kwargs) -> list:
    """Check if the answer is a list and not a nested list."""
    print("Checking format of the answer:", answer)
    if isinstance(answer, list):
        for item in answer:
            if isinstance(item, list):
                print("list detected")
                raise TypeError("Nested lists are not allowed in the final answer.")
    elif isinstance(answer, str):
        return [answer]
    elif isinstance(answer, dict):
        raise TypeError(f"Final answer must be a list, not a dict. Please check the answer format. Error: {e}")
        
        

## tools definition
@tool
def download_images(image_urls: str) -> list:
    """
    Download web images from the given comma‐separated URLs and return them in a list of PIL Images.
    Args:
        image_urls: comma‐separated list of URLs to download
    Returns:
        List of PIL.Image.Image objects
    """
    urls = [u.strip() for u in image_urls.split(",") if u.strip()] # strip() removes whitespaces
    images = []
    for __, url in enumerate(urls, start=1): # enumerate seems not needed... keeping it for now
        try:
            # Fetch the image bytes
            resp = requests.get(url, timeout=10)
            resp.raise_for_status()

            # Load into a PIL image
            img = Image.open(BytesIO(resp.content)).convert("RGB")
            images.append(img)

        except Exception as e:
            print(f"Failed to download from {url}: {e}")
    return images

@tool # since they gave us OpenAI API credits, we can keep using it
def transcribe_audio(audio_path: str) -> str:
    """
    Transcribe audio file using OpenAI Whisper API.
    Args:
        audio_path: path to the audio file to be transcribed.
    Returns:
        str : Transcription of the audio.
    """
    client = openai.Client(api_key=os.getenv("OPENAI_API_KEY"))
    with open(audio_path, "rb") as audio:                 # to modify path because it is arriving from gradio
        transcript = client.audio.transcriptions.create(
        file=audio,
        model="whisper-1",
        response_format="text",
    )
    print(transcript)
    try:
        return transcript
    except Exception as e:
        print(f"Error transcribing audio: {e}")

@tool
def generate_image(prompt: str, neg_prompt: str) -> Image.Image:
    """
    Generate an image based on a text prompt using Flux Dev.
    Args:
        prompt: The text prompt to generate the image from.
        neg_prompt: The negative prompt to avoid certain elements in the image.
    Returns:
        Image.Image: The generated image as a PIL Image object.
    """
    client = OpenAI(base_url="https://api.studio.nebius.com/v1",
                    api_key=os.environ.get("NEBIUS_API_KEY"),
                    )

    completion = client.images.generate(
        model="black-forest-labs/flux-dev",
        prompt=prompt,
        response_format="b64_json",
        extra_body={
            "response_extension": "png",
            "width": 1024,
            "height": 1024,
            "num_inference_steps": 30,
            "seed": -1,
            "negative_prompt": neg_prompt,
        }
    )
    
    image_data = base64.b64decode(completion.to_dict()['data'][0]['b64_json'])
    image = BytesIO(image_data)
    image = Image.open(image).convert("RGB") 

    return gr.Image(value=image, label="Generated Image")

"""@tool
def generate_audio(prompt: str) -> object:
    space = smolagents.load_tool(
        
    )"""




## agent definition
class Agent:
    def __init__(self, ):
        client = HfApiModel("google/gemma-3-27b-it", provider="nebius", api_key=os.getenv("NEBIUS_API_KEY"))
        self.agent = CodeAgent(
            model=client,
            tools=[DuckDuckGoSearchTool(max_results=5), VisitWebpageTool(max_output_length=20000), generate_image, download_images, transcribe_audio],
            additional_authorized_imports=["pandas", "PIL", "io"],
            planning_interval=1,
            max_steps=5,
            stream_outputs=False,
            final_answer_checks=[check_format]
        )
        with open("system_prompt.txt", "r") as f:
            system_prompt = f.read()
            self.agent.prompt_templates["system_prompt"] = system_prompt
        
        #print("System prompt:", self.agent.prompt_templates["system_prompt"])

    def __call__(self, message: str, 
                 images: Optional[list[Image.Image]] = None, 
                 files: Optional[str] = None, 
                 conversation_history: Optional[dict] = None) -> str:
        answer = self.agent.run(message, images = images, additional_args={"files": files, "conversation_history": conversation_history})
        return answer

## gradio functions
def respond(message: str, history : dict, web_search: bool = False):
    
    # input
    print("history:", history)
    text = message.get("text", "")
    if not message.get("files") and not web_search: # no files uploaded
        print("No files received.")
        message = agent(text + "\nADDITIONAL CONTRAINT: Don't use web search", conversation_history=history) # conversation_history is a dict with the history of the conversation 
    elif not message.get("files") and web_search==True: # no files uploaded
        print("No files received + web search enabled.")
        message = agent(text, conversation_history=history)
    else:
        files = message.get("files", [])
        print(f"files received: {files}")
        if is_image_extension(files[0]):
            image = load_file(files[0]) # assuming only one file is uploaded at a time (gradio default behavior)
            message = agent(text, images=image, conversation_history=history)
        else:
            file = load_file(files[0])
            message = agent(text, files=file, conversation_history=history)
    # output
    print("Agent response:", message)
    
    return message

def initialize_agent():
    agent = Agent()
    print("Agent initialized.")
    return agent

## gradio interface
with gr.Blocks() as demo:
    global agent 
    agent = initialize_agent()
    gr.ChatInterface(
                        fn=respond,
                        type='messages',
                        multimodal=True,
                        title='MultiAgent System for Screenplay Creation and Editing',
                        show_progress='full',
                        fill_height=True,
                        fill_width=False,
                        save_history=True,
                        additional_inputs=[
                        gr.Checkbox(value=False, label="Web Search", 
                                    info="Enable web search to find information online. If disabled, the agent will only use the provided files and images.",
                                    render=False),
                    ])


if __name__ == "__main__":
    demo.launch()