File size: 8,774 Bytes
5a4500e 5090fe0 5a4500e dd1055c 34bcc8d 5a4500e c28df4a 5a4500e 5090fe0 5a4500e 5090fe0 5a4500e 34bcc8d 5a4500e 34bcc8d 5a4500e 5090fe0 34bcc8d 5090fe0 34bcc8d c28df4a 856ab04 a2812c7 856ab04 b5fc7aa 856ab04 b5fc7aa 5a4500e 34bcc8d 5a4500e 5090fe0 3f79364 5a4500e 5090fe0 5a4500e 1f5786d 5090fe0 5a4500e 5090fe0 5053e3f 5090fe0 dd1055c 5090fe0 c28df4a 5090fe0 856ab04 5a4500e 7b2bd1f 5a4500e 5090fe0 5a4500e a2812c7 5a4500e 5ece203 c28df4a 5a4500e 698b66e 5a4500e a2812c7 5a4500e c28df4a 698b66e 5a4500e a2812c7 5a4500e a2812c7 5a4500e 5090fe0 698b66e 5090fe0 698b66e c28df4a ed2817d dd1055c 5a4500e 5090fe0 5a4500e 5090fe0 b4d9d0c dd1055c a2812c7 b4d9d0c a2812c7 8b72ba7 a2812c7 5a4500e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import os
import base64
import pandas as pd
from PIL import Image
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, VisitWebpageTool, OpenAIServerModel, tool
from typing import Optional
import requests
from io import BytesIO
import re
from pathlib import Path
import openai
from openai import OpenAI
import pdfplumber
## utilty functions
def is_image_extension(filename: str) -> bool:
IMAGE_EXTS = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp', '.svg'}
ext = os.path.splitext(filename)[1].lower() # os.path.splitext(path) returns (root, ext)
return ext in IMAGE_EXTS
def load_file(path: str) -> list | dict:
"""Based on the file extension, load the file into a suitable object."""
image = None
text = None
ext = Path(path).suffix.lower() # same as os.path.splitext(filename)[1].lower()
if ext.endswith(".png") or ext.endswith(".jpg") or ext.endswith(".jpeg"):
image = Image.open(path).convert("RGB") # pillow object
elif ext.endswith(".xlsx") or ext.endswith(".xls"):
text = pd.read_excel(path) # DataFrame
elif ext.endswith(".csv"):
text = pd.read_csv(path) # DataFrame
elif ext.endswith(".pdf"):
with pdfplumber.open(path) as pdf:
text = "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
elif ext.endswith(".py") or ext.endswith(".txt"):
with open(path, 'r') as f:
text = f.read() # plain text str
if image is not None:
return [image]
elif ext.endswith(".mp3") or ext.endswith(".wav"):
return {"raw document text": text, "audio path": path}
else:
return {"raw document text": text, "file path": path}
def check_format(answer: str | list, *args, **kwargs) -> list:
"""Check if the answer is a list and not a nested list."""
print("Checking format of the answer:", answer)
if isinstance(answer, list):
for item in answer:
if isinstance(item, list):
print("list detected")
raise TypeError("Nested lists are not allowed in the final answer.")
elif isinstance(answer, str):
return [answer]
elif isinstance(answer, dict):
raise TypeError(f"Final answer must be a list, not a dict. Please check the answer format. Error: {e}")
## tools definition
@tool
def download_images(image_urls: str) -> list:
"""
Download web images from the given comma‐separated URLs and return them in a list of PIL Images.
Args:
image_urls: comma‐separated list of URLs to download
Returns:
List of PIL.Image.Image objects
"""
urls = [u.strip() for u in image_urls.split(",") if u.strip()] # strip() removes whitespaces
images = []
for __, url in enumerate(urls, start=1): # enumerate seems not needed... keeping it for now
try:
# Fetch the image bytes
resp = requests.get(url, timeout=10)
resp.raise_for_status()
# Load into a PIL image
img = Image.open(BytesIO(resp.content)).convert("RGB")
images.append(img)
except Exception as e:
print(f"Failed to download from {url}: {e}")
return images
@tool # since they gave us OpenAI API credits, we can keep using it
def transcribe_audio(audio_path: str) -> str:
"""
Transcribe audio file using OpenAI Whisper API.
Args:
audio_path: path to the audio file to be transcribed.
Returns:
str : Transcription of the audio.
"""
client = openai.Client(api_key=os.getenv("OPENAI_API_KEY"))
with open(audio_path, "rb") as audio: # to modify path because it is arriving from gradio
transcript = client.audio.transcriptions.create(
file=audio,
model="whisper-1",
response_format="text",
)
print(transcript)
try:
return transcript
except Exception as e:
print(f"Error transcribing audio: {e}")
@tool
def generate_image(prompt: str, neg_prompt: str) -> Image.Image:
"""
Generate an image based on a text prompt using Flux Dev.
Args:
prompt: The text prompt to generate the image from.
neg_prompt: The negative prompt to avoid certain elements in the image.
Returns:
Image.Image: The generated image as a PIL Image object.
"""
client = OpenAI(base_url="https://api.studio.nebius.com/v1",
api_key=os.environ.get("NEBIUS_API_KEY"),
)
completion = client.images.generate(
model="black-forest-labs/flux-dev",
prompt=prompt,
response_format="b64_json",
extra_body={
"response_extension": "png",
"width": 1024,
"height": 1024,
"num_inference_steps": 30,
"seed": -1,
"negative_prompt": neg_prompt,
}
)
image_data = base64.b64decode(completion.to_dict()['data'][0]['b64_json'])
image = BytesIO(image_data)
image = Image.open(image).convert("RGB")
return gr.Image(value=image, label="Generated Image")
"""@tool
def generate_audio(prompt: str) -> object:
space = smolagents.load_tool(
)"""
## agent definition
class Agent:
def __init__(self, ):
client = HfApiModel("google/gemma-3-27b-it", provider="nebius", api_key=os.getenv("NEBIUS_API_KEY"))
self.agent = CodeAgent(
model=client,
tools=[DuckDuckGoSearchTool(max_results=5), VisitWebpageTool(max_output_length=20000), generate_image, download_images, transcribe_audio],
additional_authorized_imports=["pandas", "PIL", "io"],
planning_interval=1,
max_steps=5,
stream_outputs=False,
final_answer_checks=[check_format]
)
with open("system_prompt.txt", "r") as f:
system_prompt = f.read()
self.agent.prompt_templates["system_prompt"] = system_prompt
#print("System prompt:", self.agent.prompt_templates["system_prompt"])
def __call__(self, message: str,
images: Optional[list[Image.Image]] = None,
files: Optional[str] = None,
conversation_history: Optional[dict] = None) -> str:
answer = self.agent.run(message, images = images, additional_args={"files": files, "conversation_history": conversation_history})
return answer
## gradio functions
def respond(message: str, history : dict, web_search: bool = False):
# input
print("history:", history)
text = message.get("text", "")
if not message.get("files") and not web_search: # no files uploaded
print("No files received.")
message = agent(text + "\nADDITIONAL CONTRAINT: Don't use web search", conversation_history=history) # conversation_history is a dict with the history of the conversation
elif not message.get("files") and web_search==True: # no files uploaded
print("No files received + web search enabled.")
message = agent(text, conversation_history=history)
else:
files = message.get("files", [])
print(f"files received: {files}")
if is_image_extension(files[0]):
image = load_file(files[0]) # assuming only one file is uploaded at a time (gradio default behavior)
message = agent(text, images=image, conversation_history=history)
else:
file = load_file(files[0])
message = agent(text, files=file, conversation_history=history)
# output
print("Agent response:", message)
return message
def initialize_agent():
agent = Agent()
print("Agent initialized.")
return agent
## gradio interface
with gr.Blocks() as demo:
global agent
agent = initialize_agent()
gr.ChatInterface(
fn=respond,
type='messages',
multimodal=True,
title='MultiAgent System for Screenplay Creation and Editing',
show_progress='full',
fill_height=True,
fill_width=False,
save_history=True,
additional_inputs=[
gr.Checkbox(value=False, label="Web Search",
info="Enable web search to find information online. If disabled, the agent will only use the provided files and images.",
render=False),
])
if __name__ == "__main__":
demo.launch()
|