KnowledgeBridge - System Architecture & Flow
π― Overview
This document provides a comprehensive technical overview of the KnowledgeBridge system architecture, data flow, and AI processing pipeline.
π Main Data Flow
User Query β AI Enhancement β Multi-Source Search β URL Validation β Results Display
π Detailed Process Flow
Stage 1: Input Processing & Enhancement
Components:
- Enhanced Search Interface (React/TypeScript)
- Input validation and sanitization
- Rate limiting middleware
Technical Details:
- React captures user input with real-time validation
- Optional AI query enhancement using Nebius DeepSeek models
- Express.js endpoint with comprehensive security middleware
- Request body size limits and input sanitization
Stage 2: AI-Powered Query Enhancement
Components:
- Nebius AI client with DeepSeek-R1-0528 model
- Smart query analysis and improvement
- Intent recognition and keyword extraction
Technical Details:
- Nebius API call:
deepseek-ai/DeepSeek-R1-0528
- Analyzes user intent and suggests improvements
- Provides enhanced query, keywords, and alternative suggestions
- Fallback to original query if enhancement fails
Stage 3: Embedding Generation
Components:
- Nebius embedding service
- BAAI/bge-en-icl model for vector generation
- Mock embedding fallback for reliability
Technical Details:
- Primary model:
BAAI/bge-en-icl
- Generates high-dimensional vector representations
- Fallback to deterministic mock embeddings for demos
- Semantic meaning captured in numerical vectors
Stage 4: Multi-Source Search
Components:
- Local storage search (in-memory with sample data)
- GitHub repository search with advanced filtering
- Wikipedia API integration
- ArXiv academic paper search
Technical Details:
- Local Search: Keyword matching with relevance scoring
- GitHub API: Enhanced with author filtering and fallback strategies
- Wikipedia API: 3-second timeout with content validation
- ArXiv API: Format validation and paper existence verification
- Parallel Processing: Concurrent search across all sources
Stage 5: URL Validation & Content Verification
Components:
- Smart URL validation system
- ArXiv paper ID format checking
- Content-based error detection
- Concurrent processing with rate limits
Technical Details:
- ArXiv Validation: Checks paper ID format (2024.12345, cs.AI/1234567)
- Content Verification: Detects error pages that return 200 status
- Rate Limiting: Configurable concurrency to prevent API abuse
- Trusted Domains: Fast-path for reliable sources (GitHub, Wikipedia)
Stage 6: Document Analysis (Optional)
Components:
- Nebius AI with configurable output formatting
- DeepSeek-R1 model for comprehensive analysis
- Content cleanup and markdown processing
Technical Details:
- Analysis types: summary, classification, key_points, quality_score
- Configurable markdown vs plain text output
- DeepSeek R1 thinking tag cleanup for clean results
- Custom prompts optimized for each analysis type
Stage 7: Results Processing & Display
Components:
- Result ranking and relevance scoring
- Citation management system
- Interactive UI with error boundaries
Technical Details:
- Relevance-based sorting with multiple factors
- Rich metadata display with type-safe rendering
- Error boundaries prevent UI crashes
- Real-time result updates and filtering
ποΈ System Architecture
Frontend Stack
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β React 18 + TypeScript β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Enhanced Search Interface β Knowledge Graph β AI β
β - Unified search & AI β - D3.js visualization β Toolsβ
β - Query enhancement β - Interactive nodes βPanel β
β - Configurable analysis β - Relationship mapping β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β TanStack Query (Data Fetching & Caching) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Radix UI + Tailwind CSS β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Backend Stack
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Express.js + Security Middleware β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Helmet.js β Rate Limiting β Input Validation βCORSβ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β API Routes Layer β
β /api/search β /api/analyze-document β /api/health β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Service Layer β
β Nebius Client β Modal Client β Storage Service β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
AI & Processing Layer
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Nebius AI Platform β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β DeepSeek-R1-0528 β BAAI/bge-en-icl β
β - Chat completions β - Embedding generation β
β - Document analysis β - Semantic similarity β
β - Query enhancement β - Vector search β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Modal Platform β
β - Distributed processing β - Scalable compute β
β - Batch operations β - Resource management β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
π Security Architecture
Input Protection
Request β Rate Limiter β Helmet.js β Input Validator β API Route
β β β β β
100/15min CSP Headers Body Size Zod Schema Business Logic
10/min* XSS Protection 10MB Limit Type Safety Error Handling
* Sensitive endpoints
Error Handling Chain
React Error Boundary β API Error Handler β Service Error Handler
β β β
UI Graceful Fallback HTTP Status Codes Logging & Recovery
π Performance Characteristics
Response Times
Operation | Average Time | Details |
---|---|---|
Local Search | <100ms | In-memory keyword matching |
URL Validation | 1-3s per URL | Concurrent processing |
Document Analysis | 3-5s | AI model processing time |
Embedding Generation | 500ms-1s | Nebius API call |
Query Enhancement | 1-2s | DeepSeek model inference |
Scalability Features
- Horizontal Scaling: Modal platform for distributed processing
- Rate Limiting: Prevents API abuse and ensures fair usage
- Caching: TanStack Query for client-side data caching
- Error Recovery: Graceful degradation when services are unavailable
- Load Distribution: Concurrent processing of multiple requests
π§ Data Flow Patterns
Search Request Flow
graph TD
A[User Query] --> B[Rate Limiter]
B --> C[Input Validation]
C --> D[AI Enhancement?]
D -->|Yes| E[Nebius Query Enhancement]
D -->|No| F[Direct Search]
E --> F[Multi-Source Search]
F --> G[Local Storage]
F --> H[GitHub API]
F --> I[Wikipedia API]
F --> J[ArXiv API]
G --> K[URL Validation]
H --> K
I --> K
J --> K
K --> L[Results Ranking]
L --> M[Response Formatting]
M --> N[Client Display]
Document Analysis Flow
graph TD
A[Document Content] --> B[Content Validation]
B --> C[Analysis Type Selection]
C --> D[Nebius DeepSeek API]
D --> E[Response Processing]
E --> F[Format Selection]
F -->|Markdown| G[Rich Formatting]
F -->|Plain Text| H[Clean Text Output]
G --> I[Client Display]
H --> I
π οΈ Technology Integration Points
External API Integration
- Nebius AI: Primary AI service for all language model tasks
- Modal: Distributed processing and compute scaling
- GitHub API: Repository search with authentication
- Wikipedia API: Authoritative content with caching
- ArXiv API: Academic paper search with validation
Internal Service Communication
- REST APIs: Standard HTTP/JSON for client-server communication
- Event-Driven: React state management for UI updates
- Error Propagation: Structured error handling across all layers
- Type Safety: TypeScript contracts for all service boundaries
π Quality Assurance
Code Quality
- TypeScript: 100% type coverage across frontend and backend
- Input Validation: Zod schemas for all API endpoints
- Error Boundaries: React error boundaries prevent UI crashes
- Security Middleware: Comprehensive protection against common attacks
Testing Strategy
- Type Checking: Continuous TypeScript compilation validation
- API Testing: Health checks and endpoint validation
- Error Testing: Graceful handling of service failures
- Performance Testing: Response time monitoring and optimization
This architecture provides a robust, scalable, and secure foundation for AI-powered knowledge discovery with comprehensive error handling and performance optimization.