File size: 15,486 Bytes
f70a5f4 8140962 f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 4e2a9bc f70a5f4 4e2a9bc f70a5f4 4e2a9bc f70a5f4 4e2a9bc f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 4e2a9bc f70a5f4 4e2a9bc f70a5f4 4e2a9bc f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 907a3ac f70a5f4 8140962 f70a5f4 8140962 f70a5f4 8140962 4e2a9bc 8140962 f70a5f4 8140962 4e2a9bc 8140962 f70a5f4 8140962 4e2a9bc 8140962 f70a5f4 8140962 4e2a9bc 8140962 f70a5f4 8140962 f70a5f4 8140962 f70a5f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
"""
KnowledgeBridge Modal App
Provides distributed computing capabilities for document processing and vector search
"""
import modal
from typing import List, Dict, Any, Optional
import os
# Create Modal app
app = modal.App("knowledgebridge-main")
# Define the image with required dependencies
image = (
modal.Image.debian_slim(python_version="3.11")
.pip_install([
"fastapi[standard]",
"numpy",
"faiss-cpu",
"PyPDF2",
"pillow",
"pytesseract",
"requests",
"scikit-learn",
"sentence-transformers",
"openai",
"tiktoken"
])
.apt_install(["tesseract-ocr", "tesseract-ocr-eng", "poppler-utils"])
)
# Shared volume for storing vector indices
volume = modal.Volume.from_name("knowledgebridge-storage", create_if_missing=True)
@app.function(
image=image,
volumes={"/storage": volume},
timeout=300,
memory=2048
)
def extract_text_from_documents(documents: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Extract text from documents using OCR and PDF parsing
"""
import json
import base64
from io import BytesIO
import PyPDF2
import pytesseract
from PIL import Image
results = []
for doc in documents:
try:
doc_id = doc.get('id', f"doc_{len(results)}")
content_type = doc.get('contentType', 'text/plain')
content = doc.get('content', '')
extracted_text = ""
if content_type == 'application/pdf':
# Handle PDF content
try:
# Assume content is base64 encoded PDF
pdf_data = base64.b64decode(content)
pdf_reader = PyPDF2.PdfReader(BytesIO(pdf_data))
for page_num, page in enumerate(pdf_reader.pages):
page_text = page.extract_text()
extracted_text += f"Page {page_num + 1}:\n{page_text}\n\n"
except Exception as pdf_error:
extracted_text = f"PDF extraction failed: {str(pdf_error)}"
elif content_type.startswith('image/'):
# Handle image content with OCR
try:
image_data = base64.b64decode(content)
image = Image.open(BytesIO(image_data))
extracted_text = pytesseract.image_to_string(image)
except Exception as ocr_error:
extracted_text = f"OCR extraction failed: {str(ocr_error)}"
else:
# Plain text or other formats
extracted_text = content
results.append({
'id': doc_id,
'extracted_text': extracted_text,
'original_type': content_type,
'status': 'completed'
})
except Exception as e:
results.append({
'id': doc.get('id', f"doc_{len(results)}"),
'extracted_text': "",
'original_type': doc.get('contentType', 'unknown'),
'status': 'failed',
'error': str(e)
})
import hashlib
task_id = f"extract_{hashlib.md5(str(documents).encode()).hexdigest()[:8]}"
return {
'task_id': task_id,
'status': 'completed',
'results': results,
'processed_count': len(results)
}
@app.function(
image=image,
volumes={"/storage": volume},
timeout=600,
memory=4096,
cpu=2
)
def build_vector_index(documents: List[Dict[str, Any]], index_name: str = "main_index") -> Dict[str, Any]:
"""
Build FAISS vector index from documents
"""
import numpy as np
import faiss
import pickle
import hashlib
try:
from sentence_transformers import SentenceTransformer
# Load embedding model
model = SentenceTransformer('all-MiniLM-L6-v2')
# Extract texts and create embeddings
texts = []
doc_metadata = []
for doc in documents:
text = doc.get('content', doc.get('extracted_text', ''))
if text and len(text.strip()) > 10: # Only process non-empty texts
texts.append(text[:8000]) # Limit text length
doc_metadata.append({
'id': doc.get('id'),
'title': doc.get('title', 'Untitled'),
'source': doc.get('source', 'Unknown'),
'content': text
})
if not texts:
task_id = f"index_{index_name}_{hashlib.md5(str(documents).encode()).hexdigest()[:8]}"
return {
'task_id': task_id,
'status': 'failed',
'error': 'No valid texts to index'
}
# Generate embeddings
embeddings = model.encode(texts, show_progress_bar=False)
embeddings = np.array(embeddings).astype('float32')
# Create FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
# Normalize embeddings for cosine similarity
faiss.normalize_L2(embeddings)
index.add(embeddings)
# Try multiple storage locations with fallbacks
storage_paths = ["/storage", "/tmp", "."]
index_path = None
metadata_path = None
for storage_dir in storage_paths:
try:
os.makedirs(storage_dir, exist_ok=True)
test_index_path = f"{storage_dir}/{index_name}.index"
test_metadata_path = f"{storage_dir}/{index_name}_metadata.pkl"
# Test write permissions
test_file = f"{storage_dir}/test_write_{index_name}.tmp"
with open(test_file, 'w') as f:
f.write("test")
os.remove(test_file)
# If we get here, we can write to this directory
index_path = test_index_path
metadata_path = test_metadata_path
print(f"Using storage directory: {storage_dir}")
break
except Exception as e:
print(f"Cannot write to {storage_dir}: {e}")
continue
if not index_path:
raise Exception("No writable storage directory found")
print(f"Writing index to: {index_path}")
faiss.write_index(index, index_path)
print(f"Writing metadata to: {metadata_path}")
with open(metadata_path, 'wb') as f:
pickle.dump(doc_metadata, f)
# Only commit volume if we used /storage
if index_path.startswith("/storage"):
volume.commit()
task_id = f"index_{index_name}_{hashlib.md5(str(documents).encode()).hexdigest()[:8]}"
return {
'task_id': task_id,
'status': 'completed',
'index_name': index_name,
'document_count': len(doc_metadata),
'dimension': dimension,
'index_path': index_path
}
except Exception as e:
task_id = f"index_{index_name}_{hashlib.md5(str(documents).encode()).hexdigest()[:8]}"
return {
'task_id': task_id,
'status': 'failed',
'error': str(e)
}
@app.function(
image=image,
volumes={"/storage": volume},
timeout=60,
memory=2048
)
def vector_search(query: str, index_name: str = "main_index", max_results: int = 10) -> Dict[str, Any]:
"""
Perform vector search using FAISS index
"""
import numpy as np
import faiss
import pickle
try:
from sentence_transformers import SentenceTransformer
# Load embedding model
model = SentenceTransformer('all-MiniLM-L6-v2')
# Try to find index in multiple storage locations
storage_paths = ["/storage", "/tmp", "."]
index_path = None
metadata_path = None
for storage_dir in storage_paths:
test_index_path = f"{storage_dir}/{index_name}.index"
test_metadata_path = f"{storage_dir}/{index_name}_metadata.pkl"
if os.path.exists(test_index_path) and os.path.exists(test_metadata_path):
index_path = test_index_path
metadata_path = test_metadata_path
print(f"Found index in: {storage_dir}")
break
if not index_path or not metadata_path:
return {
'status': 'failed',
'error': f'Index {index_name} not found in any storage location. Please build index first.',
'results': []
}
# Load FAISS index
index = faiss.read_index(index_path)
# Load metadata
with open(metadata_path, 'rb') as f:
doc_metadata = pickle.load(f)
# Generate query embedding
query_embedding = model.encode([query])
query_embedding = np.array(query_embedding).astype('float32')
faiss.normalize_L2(query_embedding)
# Search
scores, indices = index.search(query_embedding, min(max_results, len(doc_metadata)))
# Format results
results = []
for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
if idx >= 0 and idx < len(doc_metadata): # Valid index
doc = doc_metadata[idx]
results.append({
'id': doc['id'],
'title': doc['title'],
'content': doc['content'],
'source': doc['source'],
'relevanceScore': float(score),
'rank': i + 1,
'snippet': doc['content'][:200] + '...' if len(doc['content']) > 200 else doc['content']
})
return {
'status': 'completed',
'results': results,
'query': query,
'total_found': len(results)
}
except Exception as e:
return {
'status': 'failed',
'error': str(e),
'results': []
}
@app.function(
image=image,
timeout=300,
memory=2048
)
def batch_process_documents(request: Dict[str, Any]) -> Dict[str, Any]:
"""
Process multiple documents in batch
"""
import hashlib
try:
documents = request.get('documents', [])
operations = request.get('operations', ['extract_text'])
task_id = f"batch_{hashlib.md5(str(request).encode()).hexdigest()[:8]}"
results = {
'task_id': task_id,
'status': 'completed',
'operations_completed': [],
'document_count': len(documents)
}
# Extract text if requested
if 'extract_text' in operations:
extraction_result = extract_text_from_documents(documents)
results['operations_completed'].append('extract_text')
results['extraction_results'] = extraction_result.get('results', [])
# Build index if requested
if 'build_index' in operations:
index_name = request.get('index_name', 'batch_index')
index_result = build_vector_index(documents, index_name)
results['operations_completed'].append('build_index')
results['index_results'] = index_result
return results
except Exception as e:
task_id = f"batch_{hashlib.md5(str(request).encode()).hexdigest()[:8]}"
return {
'task_id': task_id,
'status': 'failed',
'error': str(e)
}
# Simple task status tracking (in-memory for demo)
task_statuses = {}
@app.function(timeout=30)
def get_task_status(task_id: str) -> Dict[str, Any]:
"""
Get status of a processing task
"""
# In a real implementation, this would check a database
# For now, return a simple status
return {
'task_id': task_id,
'status': 'completed', # Simplified for demo
'progress': 100,
'message': 'Task completed successfully'
}
# Web endpoints using FastAPI
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
import datetime
# Pydantic models
class VectorSearchRequest(BaseModel):
query: str
index_name: str = "main_index"
max_results: int = 10
class DocumentRequest(BaseModel):
documents: List[Dict[str, Any]]
class IndexRequest(BaseModel):
documents: List[Dict[str, Any]]
index_name: str = "main_index"
class BatchRequest(BaseModel):
documents: List[Dict[str, Any]]
operations: List[str] = ["extract_text"]
index_name: str = "batch_index"
web_app = FastAPI(title="KnowledgeBridge Modal API")
@web_app.post("/vector-search")
async def api_vector_search(request: VectorSearchRequest):
try:
result = vector_search.remote(request.query, request.index_name, request.max_results)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@web_app.post("/extract-text")
async def api_extract_text(request: DocumentRequest):
try:
result = extract_text_from_documents.remote(request.documents)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@web_app.post("/build-index")
async def api_build_index(request: IndexRequest):
try:
result = build_vector_index.remote(request.documents, request.index_name)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@web_app.post("/batch-process")
async def api_batch_process(request: BatchRequest):
try:
result = batch_process_documents.remote({
"documents": request.documents,
"operations": request.operations,
"index_name": request.index_name
})
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@web_app.get("/task-status/{task_id}")
async def api_task_status(task_id: str):
try:
return {
'task_id': task_id,
'status': 'completed',
'progress': 100,
'message': 'Task completed successfully'
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@web_app.get("/health")
async def api_health():
return {
'status': 'healthy',
'service': 'KnowledgeBridge Modal App',
'version': '1.0.0',
'timestamp': datetime.datetime.now(datetime.timezone.utc).isoformat()
}
@app.function(image=image)
@modal.asgi_app()
def fastapi_app():
return web_app
if __name__ == "__main__":
print("KnowledgeBridge Modal App")
print("Available functions:")
print("- extract_text_from_documents")
print("- build_vector_index")
print("- vector_search")
print("- batch_process_documents")
print("- get_task_status") |