Add complete Modal app for distributed computing
Browse filesCreated Modal app with:
- Text extraction (OCR, PDF parsing)
- Vector indexing with FAISS
- High-performance vector search
- Batch document processing
- Task status tracking
- Web endpoints for all functions
Updated configuration to use new Modal endpoint.
Ready for deployment with 'modal deploy main.py'
- modal_app/README.md +54 -0
- modal_app/main.py +379 -0
- modal_app/requirements.txt +12 -0
- server/modal-client.ts +1 -1
modal_app/README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# KnowledgeBridge Modal App
|
2 |
+
|
3 |
+
This Modal app provides distributed computing capabilities for KnowledgeBridge, including:
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **Text Extraction**: OCR from images and PDF parsing
|
8 |
+
- **Vector Indexing**: FAISS-based vector index building
|
9 |
+
- **Vector Search**: High-performance semantic search
|
10 |
+
- **Batch Processing**: Process multiple documents in parallel
|
11 |
+
- **Task Management**: Async task status tracking
|
12 |
+
|
13 |
+
## Deployment
|
14 |
+
|
15 |
+
1. Install Modal CLI:
|
16 |
+
```bash
|
17 |
+
pip install modal
|
18 |
+
```
|
19 |
+
|
20 |
+
2. Authenticate:
|
21 |
+
```bash
|
22 |
+
modal token set
|
23 |
+
```
|
24 |
+
|
25 |
+
3. Deploy the app:
|
26 |
+
```bash
|
27 |
+
modal deploy main.py
|
28 |
+
```
|
29 |
+
|
30 |
+
4. Check deployment:
|
31 |
+
```bash
|
32 |
+
modal app list
|
33 |
+
```
|
34 |
+
|
35 |
+
## Endpoints
|
36 |
+
|
37 |
+
Once deployed, your app will be available at:
|
38 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/vector-search`
|
39 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/extract-text`
|
40 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/build-index`
|
41 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/batch-process`
|
42 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/task-status`
|
43 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/health`
|
44 |
+
|
45 |
+
## Configuration
|
46 |
+
|
47 |
+
Update your `.env` file with the new endpoint:
|
48 |
+
```bash
|
49 |
+
MODAL_BASE_URL=https://fazeelusmani18--knowledgebridge-main.modal.run
|
50 |
+
```
|
51 |
+
|
52 |
+
## Usage
|
53 |
+
|
54 |
+
The app automatically integrates with your KnowledgeBridge backend through the Modal client.
|
modal_app/main.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
KnowledgeBridge Modal App
|
3 |
+
Provides distributed computing capabilities for document processing and vector search
|
4 |
+
"""
|
5 |
+
import modal
|
6 |
+
import json
|
7 |
+
import numpy as np
|
8 |
+
from typing import List, Dict, Any, Optional
|
9 |
+
import os
|
10 |
+
import requests
|
11 |
+
from io import BytesIO
|
12 |
+
import PyPDF2
|
13 |
+
import pytesseract
|
14 |
+
from PIL import Image
|
15 |
+
import faiss
|
16 |
+
import pickle
|
17 |
+
import hashlib
|
18 |
+
|
19 |
+
# Create Modal app
|
20 |
+
app = modal.App("knowledgebridge-main")
|
21 |
+
|
22 |
+
# Define the image with required dependencies
|
23 |
+
image = (
|
24 |
+
modal.Image.debian_slim(python_version="3.11")
|
25 |
+
.pip_install([
|
26 |
+
"numpy",
|
27 |
+
"faiss-cpu",
|
28 |
+
"PyPDF2",
|
29 |
+
"pillow",
|
30 |
+
"pytesseract",
|
31 |
+
"requests",
|
32 |
+
"scikit-learn",
|
33 |
+
"sentence-transformers",
|
34 |
+
"openai",
|
35 |
+
"tiktoken"
|
36 |
+
])
|
37 |
+
.apt_install(["tesseract-ocr", "tesseract-ocr-eng", "poppler-utils"])
|
38 |
+
)
|
39 |
+
|
40 |
+
# Shared volume for storing vector indices
|
41 |
+
volume = modal.Volume.from_name("knowledgebridge-storage", create_if_missing=True)
|
42 |
+
|
43 |
+
@app.function(
|
44 |
+
image=image,
|
45 |
+
volumes={"/storage": volume},
|
46 |
+
timeout=300,
|
47 |
+
memory=2048
|
48 |
+
)
|
49 |
+
def extract_text_from_documents(documents: List[Dict[str, Any]]) -> Dict[str, Any]:
|
50 |
+
"""
|
51 |
+
Extract text from documents using OCR and PDF parsing
|
52 |
+
"""
|
53 |
+
results = []
|
54 |
+
|
55 |
+
for doc in documents:
|
56 |
+
try:
|
57 |
+
doc_id = doc.get('id', f"doc_{len(results)}")
|
58 |
+
content_type = doc.get('contentType', 'text/plain')
|
59 |
+
content = doc.get('content', '')
|
60 |
+
|
61 |
+
extracted_text = ""
|
62 |
+
|
63 |
+
if content_type == 'application/pdf':
|
64 |
+
# Handle PDF content
|
65 |
+
try:
|
66 |
+
# Assume content is base64 encoded PDF
|
67 |
+
import base64
|
68 |
+
pdf_data = base64.b64decode(content)
|
69 |
+
pdf_reader = PyPDF2.PdfReader(BytesIO(pdf_data))
|
70 |
+
|
71 |
+
for page_num, page in enumerate(pdf_reader.pages):
|
72 |
+
page_text = page.extract_text()
|
73 |
+
extracted_text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
74 |
+
|
75 |
+
except Exception as pdf_error:
|
76 |
+
extracted_text = f"PDF extraction failed: {str(pdf_error)}"
|
77 |
+
|
78 |
+
elif content_type.startswith('image/'):
|
79 |
+
# Handle image content with OCR
|
80 |
+
try:
|
81 |
+
import base64
|
82 |
+
image_data = base64.b64decode(content)
|
83 |
+
image = Image.open(BytesIO(image_data))
|
84 |
+
extracted_text = pytesseract.image_to_string(image)
|
85 |
+
except Exception as ocr_error:
|
86 |
+
extracted_text = f"OCR extraction failed: {str(ocr_error)}"
|
87 |
+
|
88 |
+
else:
|
89 |
+
# Plain text or other formats
|
90 |
+
extracted_text = content
|
91 |
+
|
92 |
+
results.append({
|
93 |
+
'id': doc_id,
|
94 |
+
'extracted_text': extracted_text,
|
95 |
+
'original_type': content_type,
|
96 |
+
'status': 'completed'
|
97 |
+
})
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
results.append({
|
101 |
+
'id': doc.get('id', f"doc_{len(results)}"),
|
102 |
+
'extracted_text': "",
|
103 |
+
'original_type': doc.get('contentType', 'unknown'),
|
104 |
+
'status': 'failed',
|
105 |
+
'error': str(e)
|
106 |
+
})
|
107 |
+
|
108 |
+
return {
|
109 |
+
'task_id': f"extract_{hash(str(documents))[:8]}",
|
110 |
+
'status': 'completed',
|
111 |
+
'results': results,
|
112 |
+
'processed_count': len(results)
|
113 |
+
}
|
114 |
+
|
115 |
+
@app.function(
|
116 |
+
image=image,
|
117 |
+
volumes={"/storage": volume},
|
118 |
+
timeout=600,
|
119 |
+
memory=4096,
|
120 |
+
cpu=2
|
121 |
+
)
|
122 |
+
def build_vector_index(documents: List[Dict[str, Any]], index_name: str = "main_index") -> Dict[str, Any]:
|
123 |
+
"""
|
124 |
+
Build FAISS vector index from documents
|
125 |
+
"""
|
126 |
+
try:
|
127 |
+
from sentence_transformers import SentenceTransformer
|
128 |
+
|
129 |
+
# Load embedding model
|
130 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
131 |
+
|
132 |
+
# Extract texts and create embeddings
|
133 |
+
texts = []
|
134 |
+
doc_metadata = []
|
135 |
+
|
136 |
+
for doc in documents:
|
137 |
+
text = doc.get('content', doc.get('extracted_text', ''))
|
138 |
+
if text and len(text.strip()) > 10: # Only process non-empty texts
|
139 |
+
texts.append(text[:8000]) # Limit text length
|
140 |
+
doc_metadata.append({
|
141 |
+
'id': doc.get('id'),
|
142 |
+
'title': doc.get('title', 'Untitled'),
|
143 |
+
'source': doc.get('source', 'Unknown'),
|
144 |
+
'content': text
|
145 |
+
})
|
146 |
+
|
147 |
+
if not texts:
|
148 |
+
return {
|
149 |
+
'task_id': f"index_{index_name}_{hash(str(documents))[:8]}",
|
150 |
+
'status': 'failed',
|
151 |
+
'error': 'No valid texts to index'
|
152 |
+
}
|
153 |
+
|
154 |
+
# Generate embeddings
|
155 |
+
embeddings = model.encode(texts, show_progress_bar=False)
|
156 |
+
embeddings = np.array(embeddings).astype('float32')
|
157 |
+
|
158 |
+
# Create FAISS index
|
159 |
+
dimension = embeddings.shape[1]
|
160 |
+
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
|
161 |
+
|
162 |
+
# Normalize embeddings for cosine similarity
|
163 |
+
faiss.normalize_L2(embeddings)
|
164 |
+
index.add(embeddings)
|
165 |
+
|
166 |
+
# Save index and metadata
|
167 |
+
index_path = f"/storage/{index_name}.index"
|
168 |
+
metadata_path = f"/storage/{index_name}_metadata.pkl"
|
169 |
+
|
170 |
+
faiss.write_index(index, index_path)
|
171 |
+
|
172 |
+
with open(metadata_path, 'wb') as f:
|
173 |
+
pickle.dump(doc_metadata, f)
|
174 |
+
|
175 |
+
volume.commit()
|
176 |
+
|
177 |
+
return {
|
178 |
+
'task_id': f"index_{index_name}_{hash(str(documents))[:8]}",
|
179 |
+
'status': 'completed',
|
180 |
+
'index_name': index_name,
|
181 |
+
'document_count': len(doc_metadata),
|
182 |
+
'dimension': dimension,
|
183 |
+
'index_path': index_path
|
184 |
+
}
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
return {
|
188 |
+
'task_id': f"index_{index_name}_{hash(str(documents))[:8]}",
|
189 |
+
'status': 'failed',
|
190 |
+
'error': str(e)
|
191 |
+
}
|
192 |
+
|
193 |
+
@app.function(
|
194 |
+
image=image,
|
195 |
+
volumes={"/storage": volume},
|
196 |
+
timeout=60,
|
197 |
+
memory=2048
|
198 |
+
)
|
199 |
+
def vector_search(query: str, index_name: str = "main_index", max_results: int = 10) -> Dict[str, Any]:
|
200 |
+
"""
|
201 |
+
Perform vector search using FAISS index
|
202 |
+
"""
|
203 |
+
try:
|
204 |
+
from sentence_transformers import SentenceTransformer
|
205 |
+
|
206 |
+
# Load embedding model
|
207 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
208 |
+
|
209 |
+
# Load index and metadata
|
210 |
+
index_path = f"/storage/{index_name}.index"
|
211 |
+
metadata_path = f"/storage/{index_name}_metadata.pkl"
|
212 |
+
|
213 |
+
if not os.path.exists(index_path) or not os.path.exists(metadata_path):
|
214 |
+
return {
|
215 |
+
'status': 'failed',
|
216 |
+
'error': f'Index {index_name} not found. Please build index first.',
|
217 |
+
'results': []
|
218 |
+
}
|
219 |
+
|
220 |
+
# Load FAISS index
|
221 |
+
index = faiss.read_index(index_path)
|
222 |
+
|
223 |
+
# Load metadata
|
224 |
+
with open(metadata_path, 'rb') as f:
|
225 |
+
doc_metadata = pickle.load(f)
|
226 |
+
|
227 |
+
# Generate query embedding
|
228 |
+
query_embedding = model.encode([query])
|
229 |
+
query_embedding = np.array(query_embedding).astype('float32')
|
230 |
+
faiss.normalize_L2(query_embedding)
|
231 |
+
|
232 |
+
# Search
|
233 |
+
scores, indices = index.search(query_embedding, min(max_results, len(doc_metadata)))
|
234 |
+
|
235 |
+
# Format results
|
236 |
+
results = []
|
237 |
+
for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
|
238 |
+
if idx >= 0 and idx < len(doc_metadata): # Valid index
|
239 |
+
doc = doc_metadata[idx]
|
240 |
+
results.append({
|
241 |
+
'id': doc['id'],
|
242 |
+
'title': doc['title'],
|
243 |
+
'content': doc['content'],
|
244 |
+
'source': doc['source'],
|
245 |
+
'relevanceScore': float(score),
|
246 |
+
'rank': i + 1,
|
247 |
+
'snippet': doc['content'][:200] + '...' if len(doc['content']) > 200 else doc['content']
|
248 |
+
})
|
249 |
+
|
250 |
+
return {
|
251 |
+
'status': 'completed',
|
252 |
+
'results': results,
|
253 |
+
'query': query,
|
254 |
+
'total_found': len(results)
|
255 |
+
}
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
return {
|
259 |
+
'status': 'failed',
|
260 |
+
'error': str(e),
|
261 |
+
'results': []
|
262 |
+
}
|
263 |
+
|
264 |
+
@app.function(
|
265 |
+
image=image,
|
266 |
+
timeout=300,
|
267 |
+
memory=2048
|
268 |
+
)
|
269 |
+
def batch_process_documents(request: Dict[str, Any]) -> Dict[str, Any]:
|
270 |
+
"""
|
271 |
+
Process multiple documents in batch
|
272 |
+
"""
|
273 |
+
try:
|
274 |
+
documents = request.get('documents', [])
|
275 |
+
operations = request.get('operations', ['extract_text'])
|
276 |
+
|
277 |
+
results = {
|
278 |
+
'task_id': f"batch_{hash(str(request))[:8]}",
|
279 |
+
'status': 'completed',
|
280 |
+
'operations_completed': [],
|
281 |
+
'document_count': len(documents)
|
282 |
+
}
|
283 |
+
|
284 |
+
# Extract text if requested
|
285 |
+
if 'extract_text' in operations:
|
286 |
+
extraction_result = extract_text_from_documents(documents)
|
287 |
+
results['operations_completed'].append('extract_text')
|
288 |
+
results['extraction_results'] = extraction_result.get('results', [])
|
289 |
+
|
290 |
+
# Build index if requested
|
291 |
+
if 'build_index' in operations:
|
292 |
+
index_name = request.get('index_name', 'batch_index')
|
293 |
+
index_result = build_vector_index(documents, index_name)
|
294 |
+
results['operations_completed'].append('build_index')
|
295 |
+
results['index_results'] = index_result
|
296 |
+
|
297 |
+
return results
|
298 |
+
|
299 |
+
except Exception as e:
|
300 |
+
return {
|
301 |
+
'task_id': f"batch_{hash(str(request))[:8]}",
|
302 |
+
'status': 'failed',
|
303 |
+
'error': str(e)
|
304 |
+
}
|
305 |
+
|
306 |
+
# Simple task status tracking (in-memory for demo)
|
307 |
+
task_statuses = {}
|
308 |
+
|
309 |
+
@app.function(timeout=30)
|
310 |
+
def get_task_status(task_id: str) -> Dict[str, Any]:
|
311 |
+
"""
|
312 |
+
Get status of a processing task
|
313 |
+
"""
|
314 |
+
# In a real implementation, this would check a database
|
315 |
+
# For now, return a simple status
|
316 |
+
return {
|
317 |
+
'task_id': task_id,
|
318 |
+
'status': 'completed', # Simplified for demo
|
319 |
+
'progress': 100,
|
320 |
+
'message': 'Task completed successfully'
|
321 |
+
}
|
322 |
+
|
323 |
+
# Web endpoints
|
324 |
+
@app.function()
|
325 |
+
@modal.web_endpoint(method="POST", label="vector-search")
|
326 |
+
def web_vector_search(request_data: Dict[str, Any]) -> Dict[str, Any]:
|
327 |
+
"""HTTP endpoint for vector search"""
|
328 |
+
query = request_data.get('query', '')
|
329 |
+
index_name = request_data.get('index_name', 'main_index')
|
330 |
+
max_results = request_data.get('max_results', 10)
|
331 |
+
|
332 |
+
return vector_search.remote(query, index_name, max_results)
|
333 |
+
|
334 |
+
@app.function()
|
335 |
+
@modal.web_endpoint(method="POST", label="extract-text")
|
336 |
+
def web_extract_text(request_data: Dict[str, Any]) -> Dict[str, Any]:
|
337 |
+
"""HTTP endpoint for text extraction"""
|
338 |
+
documents = request_data.get('documents', [])
|
339 |
+
return extract_text_from_documents.remote(documents)
|
340 |
+
|
341 |
+
@app.function()
|
342 |
+
@modal.web_endpoint(method="POST", label="build-index")
|
343 |
+
def web_build_index(request_data: Dict[str, Any]) -> Dict[str, Any]:
|
344 |
+
"""HTTP endpoint for building vector index"""
|
345 |
+
documents = request_data.get('documents', [])
|
346 |
+
index_name = request_data.get('index_name', 'main_index')
|
347 |
+
return build_vector_index.remote(documents, index_name)
|
348 |
+
|
349 |
+
@app.function()
|
350 |
+
@modal.web_endpoint(method="POST", label="batch-process")
|
351 |
+
def web_batch_process(request_data: Dict[str, Any]) -> Dict[str, Any]:
|
352 |
+
"""HTTP endpoint for batch processing"""
|
353 |
+
return batch_process_documents.remote(request_data)
|
354 |
+
|
355 |
+
@app.function()
|
356 |
+
@modal.web_endpoint(method="GET", label="task-status")
|
357 |
+
def web_task_status(task_id: str) -> Dict[str, Any]:
|
358 |
+
"""HTTP endpoint for task status"""
|
359 |
+
return get_task_status.remote(task_id)
|
360 |
+
|
361 |
+
@app.function()
|
362 |
+
@modal.web_endpoint(method="GET", label="health")
|
363 |
+
def health_check() -> Dict[str, Any]:
|
364 |
+
"""Health check endpoint"""
|
365 |
+
return {
|
366 |
+
'status': 'healthy',
|
367 |
+
'service': 'KnowledgeBridge Modal App',
|
368 |
+
'version': '1.0.0',
|
369 |
+
'timestamp': str(modal.functions.current_timestamp())
|
370 |
+
}
|
371 |
+
|
372 |
+
if __name__ == "__main__":
|
373 |
+
print("KnowledgeBridge Modal App")
|
374 |
+
print("Available functions:")
|
375 |
+
print("- extract_text_from_documents")
|
376 |
+
print("- build_vector_index")
|
377 |
+
print("- vector_search")
|
378 |
+
print("- batch_process_documents")
|
379 |
+
print("- get_task_status")
|
modal_app/requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modal App Dependencies
|
2 |
+
modal>=0.64.0
|
3 |
+
numpy>=1.24.0
|
4 |
+
faiss-cpu>=1.7.4
|
5 |
+
PyPDF2>=3.0.1
|
6 |
+
Pillow>=10.0.0
|
7 |
+
pytesseract>=0.3.10
|
8 |
+
requests>=2.31.0
|
9 |
+
scikit-learn>=1.3.0
|
10 |
+
sentence-transformers>=2.2.2
|
11 |
+
openai>=1.0.0
|
12 |
+
tiktoken>=0.5.0
|
server/modal-client.ts
CHANGED
@@ -41,7 +41,7 @@ class ModalClient {
|
|
41 |
this.config = {
|
42 |
tokenId,
|
43 |
tokenSecret,
|
44 |
-
baseUrl: process.env.MODAL_BASE_URL || 'https://fazeelusmani18--main.modal.run'
|
45 |
};
|
46 |
|
47 |
// Create base64 encoded auth token
|
|
|
41 |
this.config = {
|
42 |
tokenId,
|
43 |
tokenSecret,
|
44 |
+
baseUrl: process.env.MODAL_BASE_URL || 'https://fazeelusmani18--knowledgebridge-main.modal.run'
|
45 |
};
|
46 |
|
47 |
// Create base64 encoded auth token
|