File size: 6,086 Bytes
1d33b47
0381907
0df58ae
 
0381907
 
 
 
 
 
 
 
c48241c
 
 
0381907
 
 
 
 
 
 
 
 
9ae2411
 
0381907
1643a16
 
 
 
 
 
 
 
 
0381907
 
 
9ae2411
0381907
0e66f23
 
 
0381907
1643a16
 
 
 
 
 
0381907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8265a8e
 
 
 
 
0381907
 
8265a8e
 
 
1643a16
8265a8e
 
dc1889a
 
 
8265a8e
 
 
 
 
 
1643a16
 
 
0381907
8265a8e
0381907
8265a8e
 
0381907
 
0e66f23
 
0381907
1834a02
 
 
 
 
 
0381907
 
6fa3c2f
 
 
 
8265a8e
 
 
1643a16
bb34401
 
1643a16
676e8d5
bb34401
 
2d9b8e2
0381907
 
 
 
424f75b
 
1d33b47
0381907
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import streamlit as st
import os
import numpy as np # linear algebra
import pandas as pd # data processing
# from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
# from utils import download_video, extract_audio, accent_classify
import whisper
from transformers import pipeline
import yt_dlp
import torchaudio
import yt_dlp
import ffmpeg
from transformers.utils import logging

logging.set_verbosity_info()

# Define the resampling rate in Hertz (Hz) for audio data
RATE_HZ = 16000
# Define the maximum audio interval length to consider in seconds
MAX_SECONDS = 1
# Calculate the maximum audio interval length in samples by multiplying the rate and seconds
MAX_LENGTH = RATE_HZ * MAX_SECONDS


def download_video(url, output_dir="/app/tmp"):
    os.makedirs(output_dir, exist_ok=True)
    ydl_opts = {
            'format': 'worstvideo[ext=mp4]+bestaudio[ext=m4a]/bestaudio',
            "outtmpl": os.path.join(output_dir, "video.%(ext)s"),
            "quiet": True,
            'merge_output_format': 'mp4',
            'quiet': True,
            'noplaylist': True,
            'nocheckcertificate': True,
            'retries': 3,
            }

    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        ydl.download([url])
    return os.path.join(output_dir, "video.mp4")

def extract_audio(input_path, output_dir="/app/tmp"):
    os.makedirs(output_dir, exist_ok=True)
    output_path = os.path.join(output_dir, "audio.mp3")
    (
            ffmpeg
            .input(input_path)
            .output(output_path, format='mp3', acodec='libmp3lame', audio_bitrate='192k')
            .overwrite_output()
            .run(quiet=True)
            )
    return output_path

# Split files by chunks with == MAX_LENGTH size
def split_audio(file):
    try:
        # Load the audio file using torchaudio and get its sample rate.
        audio, rate = torchaudio.load(str(file))

        # Calculate the number of segments based on the MAX_LENGTH
        num_segments = (len(audio[0]) // MAX_LENGTH)  # Floor division to get segments

        # Create an empty list to store segmented audio data
        segmented_audio = []

        # Split the audio into segments
        for i in range(num_segments):
            start = i * MAX_LENGTH
            end = min((i + 1) * MAX_LENGTH, len(audio[0]))
            segment = audio[0][start:end]

            # Create a transformation to resample the audio to a specified sample rate (RATE_HZ).
            transform = torchaudio.transforms.Resample(rate, RATE_HZ)
            segment = transform(segment).squeeze(0).numpy().reshape(-1)

            segmented_audio.append(segment)

        # Create a DataFrame from the segmented audio
        df_segments = pd.DataFrame({'audio': segmented_audio})

        return df_segments

    except Exception as e:
        # If an exception occurs (e.g., file not found), return nothing
        print(f"Error processing file: {e}")
        return None

def accent_classify(pipe, audio_path):
    audio_df = split_audio(audio_path)
    return pipe(np.concatenate(audio_df["audio"][:50].to_list()))[0]

st.set_page_config(page_title="Accent Classifier", layout="centered")

st.title("πŸŽ™οΈ English Accent Classifier")
st.markdown("Upload a video link and get the English accent with confidence.")

st.subheader("1. Upload a Video File")
uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "mov", "avi"])

st.subheader("2. Or Enter a Video URL")
video_url = st.text_input("Paste a public video URL (Loom, or MP4):")

if st.button("Analyze"):
    video_path = None
    output_dir="/app/tmp"
    os.makedirs(output_dir, exist_ok=True)

    if uploaded_file:
        video_path = os.path.join(output_dir, "video.mp4")
        with open(video_path, "wb") as f:
            f.write(uploaded_file.read())
            st.success("βœ… Video uploaded successfully.")
    elif video_url.strip():
        with st.spinner("Downloading video from URL..."):
            try:
                video_path = download_video(video_url)
            except Exception as e:
                st.error(f"❌ Failed to download video: {e}")
            else:
                st.success(f"βœ… Video downloaded: {video_path}")
                
    else:
        st.warning("⚠️ Please upload a video file or enter a valid URL.")

    if video_path and os.path.exists(video_path):
        st.write("Exists:", os.path.exists(video_path))
        with st.spinner("Extracting audio..."):
            audio_path = extract_audio(video_path)
            st.write("Audio saved at:", audio_path)
            st.write("Exists:", os.path.exists(audio_path))

        with st.spinner("Transcribing with Whisper..."):
            whisper_model = whisper.load_model("base")
            result = whisper_model.transcribe(audio_path)
            transcription = result['text']
            transcription = "Hello There"
            pass

        with st.spinner("Classifying accent..."):
            # model_name = "dima806/english_accents_classification"
            # pipe = pipeline('audio-classification', model=model_name, device=-1)  # GPU (device=0) or CPU (device=-1)
            # accent_data = accent_classify(pipe, audio_path)
            audio_df = split_audio(audio_path)
            waves = f"{np.concatenate(audio_df["audio"][:5].to_list())}"
            st.markdown("**Audio waves:**")
            st.text_area("Audio waves", waves, height=200)

            # audio_df = split_audio(audio_path)
            # print(np.concatenate(audio_df["audio"][:50].to_list()))

            accent_data = {"label": "American", "score": 0.9}
            accent = accent_data.get("label", "American")
            confidence = accent_data.get("score", 0.0)
            # pass

        st.success("Analysis Complete!")
        st.markdown(f"**Accent:** {accent}")
        st.markdown(f"**Confidence Score:** {confidence:.2f}%")
        st.markdown("**Transcription:**")
        st.text_area("Transcript", transcription, height=200)

        # Cleanup
        os.remove(video_path)
        os.remove(audio_path)