7H4M3R commited on
Commit
2d9b8e2
·
verified ·
1 Parent(s): c48241c

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +15 -12
src/streamlit_app.py CHANGED
@@ -133,16 +133,16 @@ def accent_classify(pipe, audio_path):
133
  audio_df = split_audio(audio_path)
134
  return pipe(np.concatenate(audio_df["audio"][:50].to_list()))[0]
135
 
136
- # Load HF pipeline model (audio classification)
137
- @st.cache_resource
138
- def load_audio_classifier():
139
- model_name = "dima806/english_accents_classification"
140
- return pipeline('audio-classification', model=model_name, device=0) # GPU (device=0) or CPU (device=-1)
141
 
142
- # Load Whisper model
143
- @st.cache_resource
144
- def load_whisper_model():
145
- return whisper.load_model("base")
146
 
147
  # Load models once
148
  pipe = load_audio_classifier()
@@ -161,22 +161,25 @@ if st.button("Analyze"):
161
  else:
162
  with st.spinner("Downloading video..."):
163
  video_path = download_video(video_url)
164
- pass
165
 
166
  with st.spinner("Extracting audio..."):
167
  audio_path = extract_audio(video_path)
168
- pass
169
 
170
  with st.spinner("Transcribing with Whisper..."):
 
171
  result = whisper_model.transcribe(audio_path)
172
  transcription = result['text']
173
  # pass
174
 
175
  with st.spinner("Classifying accent..."):
 
 
176
  accent_data = accent_classify(pipe, audio_path)
177
  accent = accent_data.get("label", "us")
178
  confidence = accent_data.get("score", 0)
179
- pass
180
 
181
 
182
  # accent = "Englsh"
 
133
  audio_df = split_audio(audio_path)
134
  return pipe(np.concatenate(audio_df["audio"][:50].to_list()))[0]
135
 
136
+ # # Load HF pipeline model (audio classification)
137
+ # @st.cache_resource
138
+ # def load_audio_classifier():
139
+ # model_name = "dima806/english_accents_classification"
140
+ # return pipeline('audio-classification', model=model_name, device=0) # GPU (device=0) or CPU (device=-1)
141
 
142
+ # # Load Whisper model
143
+ # @st.cache_resource
144
+ # def load_whisper_model():
145
+ # return whisper.load_model("base")
146
 
147
  # Load models once
148
  pipe = load_audio_classifier()
 
161
  else:
162
  with st.spinner("Downloading video..."):
163
  video_path = download_video(video_url)
164
+ # pass
165
 
166
  with st.spinner("Extracting audio..."):
167
  audio_path = extract_audio(video_path)
168
+ # pass
169
 
170
  with st.spinner("Transcribing with Whisper..."):
171
+ whisper_model = whisper.load_model("base")
172
  result = whisper_model.transcribe(audio_path)
173
  transcription = result['text']
174
  # pass
175
 
176
  with st.spinner("Classifying accent..."):
177
+ model_name = "dima806/english_accents_classification"
178
+ pipe = pipeline('audio-classification', model=model_name, device=0) # GPU (device=0) or CPU (device=-1)
179
  accent_data = accent_classify(pipe, audio_path)
180
  accent = accent_data.get("label", "us")
181
  confidence = accent_data.get("score", 0)
182
+ # pass
183
 
184
 
185
  # accent = "Englsh"